
EE 231 Fall 2010

EE 231

Homework 9

Due October 29, 2010

1. A serial parity-bit generator is a sequential circuit that does the following: it receives an n-bit
message followed by a 0 (so there are n + 1 clock bits to send the message). At the output,
the circuit sends the original n-bit message, but replaces the 0 with a parity bit. Design a
4-bit serial parity-bit generator which replaces the zero bit with an odd parity bit.

(a) Draw a state diagram for the circuit.
As you receive the four data bits, you want to send out the same bits, and keep track of
whether you received an even or odd number of bits. You need a state which tells you
that you have received one bit, and that you have seen an even number of ones (state
S1_E); and you need a state which tells you that you have received one bit, and that
you have seen an odd number of ones (state S1_O). You need similar states for receiving
two, three, and four bits. After you receive the fourth bit, you will go back to the reset
state (no bits received), and and send out a 0 if you have seen an odd number of ones,
and put out a 1 if you have seen an even number of ones.

S0

S1_OS1_E

S2_E S2_O

S3_OS3_E

S4_E S4_O

0/0

0/0

0/0

1/1 1/1

1/1 1/1

1/1 1/1

0/0

0/0

0/0

reset

0/0 1/1

X/0

X/1

1



EE 231 Fall 2010

(b) Draw a state transition table for the circuit.
You have 9 states, so you need at least 4 flip-flops. There are 7 unused states. I assign
the states so the bits Q2, Q1, Q0 tell me how many bits of data we have received, and
bit Q3 indicates whether we have received an even or odd number of 1’s. In State S0,
we haven’t received any bits, so we have seen an even number of 1’s.

Present Next
State Flip-Flops Input State Flip-Flops Output

Q3 Q2 Q1 Q0 Din Q3 Q2 Q1 Q0 Dout

S0 0 0 0 0 0 S1E 0 0 0 1 0
S0 0 0 0 0 1 S1O 1 0 0 1 1
S1E 0 0 0 1 0 S2E 0 0 1 0 0
S1E 0 0 0 1 1 S2O 1 0 1 0 1
S1O 1 0 0 1 0 S2O 1 0 1 0 0
S1O 1 0 0 1 1 S2E 0 0 1 0 1
S2E 0 0 1 0 0 S3E 0 0 1 1 0
S2E 0 0 1 0 1 S3O 1 0 1 1 1
S2O 1 0 1 0 0 S3O 1 0 1 1 0
S2O 1 0 1 0 1 S3E 0 0 1 1 1
S3E 0 0 1 1 0 S4E 0 1 0 0 0
S3E 0 0 1 1 1 S4O 1 1 0 0 1
S3O 1 0 1 1 0 S4O 1 1 0 0 0
S3O 1 0 1 1 1 S4E 0 1 0 0 1
S4E 0 1 0 0 0 S0 0 0 0 0 1
S4E 0 1 0 0 1 S0 0 0 0 0 1
S4O 1 1 0 0 0 S0 0 0 0 0 0
S4O 1 1 0 0 1 S0 0 0 0 0 0

2



EE 231 Fall 2010

(c) Show how to implement the circuit using D flip-flops.
You have 4 flip-flops and 1 input bit, so you would have to draw five 5-input Karnaugh
maps to find the inputs to the flip-flops and the output bit. Rather than doing that, I
note that the three least significant bits Q2Q1Q0 count 0, 1, 2, 3, 4, 0, 1, 2, 3, 4 ... I can
get this behavior by using a modulus five counter.
To get bit Q3, I note that if bit Q3 was a 0 and the input is 0, Q3 stays a 0; if bit Q3

was a 0 and the input is 1, Q3 goes to a 1; if bit Q3 was a 1 and the input is 0, Q3 goes
to a 1; if bit Q3 was a 1 and the input is 1, Q3 stays a 1 (except that in state S4, Q3

always goes to 0). If you are in states S0 through S3, bit Q3 will become Q3 ⊕Din; if
you are in state S4, bit Q3 will become 0. If you are in states S0 through S3, Q2 will
be 0, and if you are in state S4, Q2 will be 1. This gives the equation:

Q3(t + 1) = Q′
2(Q3 ⊕Din)

The output is always equal to the input in states S0 through S3; the output in S4E is
1 and the output in S4O is 0. This gives the equation:

Dout = Q′
2Din + Q2Q

′
3

Q2

Q2

Q1

Q0

D2

D1

D0

001

counter

Modulus 5 Q2 Q1 Q0

D Q
Q2

Q3

Din

Q3

Din

Q2

Q3

(d) Write a Verilog program to implement the circuit.

module serial_parity_generator(input clk, reset, Din, output reg Dout);
parameter S0 = 4’b0000, /* List the names of the states */

S1_E = 4’b0001,
S1_O = 4’b1001,
S2_E = 4’b0010,
S2_O = 4’b1010,
S3_E = 4’b0011,
S3_O = 4’b1011,
S4_E = 4’b0100,
S4_O = 4’b1100;

3



EE 231 Fall 2010

/* Need 4 ff’s for 9 states */
reg [3:0] state;

always @(posedge clk, negedge reset)
if (~reset) state <= S0;
else case (state)
S0: if (Dout) state <= S1_O;

else state <= S1_E;
S1_E: if (Dout) state <= S2_O;

else state <= S2_E;
S1_O: if (Dout) state <= S2_E;

else state <= S2_O;
S2_E: if (Dout) state <= S3_O;

else state <= S3_E;
S2_O: if (Dout) state <= S3_E;

else state <= S3_O;
S3_E: if (Dout) state <= S4_O;

else state <= S4_E;
S3_O: if (Dout) state <= S4_E;

else state <= S4_O;
S4_E: state <= S0;
S4_O: state <= S0;
default: state <= S0;
endcase

always @(state, Din)
case (state)
S0 : Dout = Din;
S1_E: Dout = Din;
S1_O: Dout = Din;
S2_E: Dout = Din;
S2_O: Dout = Din;
S3_E: Dout = Din;
S3_O: Dout = Din;
S4_E: Dout = 1’b1;
S4_O: Dout = 1’b0;
endcase

endmodule

(e) Is this a Mealy machine or a Moore machine? Why?
The output depends on the present state and the current input, so it is a Mealy machine.

4



EE 231 Fall 2010

2. Design a synchronous sequential circuit that will count through the sequence 0, 2, 4, 6 when
its control input x is 0, and through the sequence 6, 4, 2, 0 when x = 1. The circuit should
return to the 0 state if it finds itself in an invalid state.

(a) Draw a state diagram for the circuit.

reset

S0

S1

S2

S3

S4

S5

S6

S7

(b) Draw a state transition table for the circuit.
You have eight states, so you need three flip-flops:

Present Next
State Flip-Flops State Flip-Flops

Q2 Q1 Q0 Q2 Q1 Q0

S0 0 0 0 S2 0 1 0
S1 0 0 1 S0 0 0 0
S2 0 1 0 S4 1 0 0
S3 0 1 1 S0 0 0 0
S4 1 0 0 S6 1 1 0
S5 1 0 1 S0 0 0 0
S6 1 1 0 S0 0 0 0
S7 1 1 1 S0 0 0 0

5



EE 231 Fall 2010

(c) Write a Verilog module to implement the system.

module hw9_p2(input reset, clk, output reg [3:0] Q);

parameter S0 = 3’b000,
S1 = 3’b001,
S2 = 3’b010,
S3 = 3’b011,
S4 = 3’b100,
S5 = 3’b101,
S6 = 3’b110,
S7 = 3’b111;

always @(posedge clk, negedge reset)
if (~reset) Q <= S0;
else case (Q)
S0: Q <= S2;
S2: Q <= S4;
S4 Q <= S6;
S6: Q <= S0;
default: Q <= S0;
endcase

endmodule

6



EE 231 Fall 2010

3. The serial adder of Fig. 6.6 uses two four-bit shift registers. Register A holds the binary
number 1101 and register B holds 0110. The carry flip-flop is initially reset to 0. List the
binary values in register A and the carry flip-flop after each shift.

The system will behave according to the state table of Figure 6.2:

Present Inputs Next Output
State State

Q x y Q S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

x and y are the LSB of A and B. After each clock cycle, we will have:

Before Clock After Clock
A B x y Q S Q A B

1101 0110 1 0 0 1 0 1110 x011
1110 x011 0 1 0 1 0 1111 xx01
1111 xx01 1 1 0 0 1 0111 xxx0
0111 xxx0 1 0 1 0 1 0011 xxxx

Before the first clock cycle, x will be 1 and y will be 0 (the LSB of A and B), and Q will
be 0 (reset condition). This will make S equal to 1, and the J −K inputs will be 00, so the
J −K flip-flop will hold Q at 0. After the clock, A will shift one to the right, and S will shift
in from the right, so A becomes 1 → 1101 ⇒ 1110, and Q will become 0. We don’t know
what is on the Serial Input to B, so B becomes x → 0110 ⇒ x011. The second clock cycle
will start with A = 1110, B = x011, and Q = 0. After four clock cycles, A will become 0011,
and Q will be 1. This is correct: 1101 + 0110 = 1_0011.

7



EE 231 Fall 2010

4. Consider the following Verilog statements

(a) RegA <= 32;
RegB <= RegA;

Assume that RegA contains the value of 45 and RegB contains the value of 32 initially.
What are the values of RegA and RegB after execution?
The two statements are executed at the same time, on the rising edge of the clock. Before
the clock edge, RegA has a 45, so after the clock edge, RegA will have a 32 and RegB will
have a 45.

(b) RegA = 32;
RegB = RegA;

Assume that RegA contains the value of 45 and RegB contains the value of 32 initially.
What are the values of RegA and RegB after execution?
The two statements are executed sequentially. A 32 goes into RegA, then that 32 goes
into RegB. After the clock edge, RegA and RegB will both be 32.

,

8



EE 231 Fall 2010

5. Consider the following Verilog code fragment:

reg [3:0] A, B;

always @( posedge clock )
begin
A = 5;
B = A + 2;
end

Before the clock edge, A has the value of 3, and B has the value of 6. What will be the values
of A and B after the clock edge?

The statements are executed sequentially. A will go to 5, then B will go to 7 (A + 2).

6. Consider the following Verilog code fragment:

reg [3:0] A, B;

always @( posedge clock )
begin
A <= 5;
B <= A + 2;
end

Before the clock edge, A has the value of 3, and B has the value of 6. What will be the values
of A and B after the clock edge?

The statements are executed simultaneously. A will go to 5, then B will go to 7 (3 + 2).

9


