EE 231

Homework 11

Due November 15, 2010

1. The memory units that follow are specified by the number of words times the number of bits per word. How many address lines and input-output data lines are needed in each case?
(a) 32×8
(b) 4 M x 16
(c) $2 \mathrm{G} \times 32$
2. Give the number of bytes stored in the memories listed in Problem 1.
3. A DRAM chip uses two-dimensional address demultiplexing. It has 16 common address pins, with the row address having four more bits than the column address (the row address has 16 bits, the column address has 12 bits). What is the capacity of the memory?
4. This problem deals with the Hamming code for error detection and correction. To be able to detect and correct one-bit errors for eight-bit words, five parity bits are required. The numbers are of the form $P_{0} P_{1} P_{2} D_{3} P_{4} D_{5} D_{6} D_{7} P_{8} D_{9} D_{10} D_{11} D_{12}$, where P_{0} is the overall parity bit (called P_{13} in the text), and $D_{3} D_{5} D_{6} D_{7} D_{9} D_{10} D_{11} D_{12}$ is the original 8 -bit data word.
(a) You read the number 0001010110000 from a memory which uses error detection and correction. What was the original 8 -bit data word that was written?
(b) Repeat (a) for the number 1010000101100.
(c) Repeat (a) for the number 1110011111001.
5. This problem deals with the Hamming code for error detection and correction. To be able to detect and correct one-bit errors for eight-bit words, five parity bits are required.
(a) What is the code to store the number 10010110
(b) Repeat (a) for the number 10111101
(c) Repeat (a) for the number 01001011
