EE 231

Homework 11

Due November 15, 2010

1. The memory units that follow are specified by the number of words times the number of bits per word. How many address lines and input-output data lines are needed in each case?
(a) 32×8
$32=2^{5}$, so 32×8 takes 5 address lines and 8 data lines, for a total of $5+8=13 \mathrm{I} / \mathrm{O}$ lines.
(b) 4 M x 16
$4 \mathrm{M}=4 \times 2^{20}=2^{22}$, so $4 \mathrm{M} \times 16$ takes 22 address lines and 16 data lines, for a total of $22+16=38$ I/O lines.
(c) $2 \mathrm{G} \times 32$
$2 \mathrm{G}=2 \times 2^{30}=2^{1} \times 2^{30}=2^{31}$, so $2 \mathrm{G} \times 32$ takes 31 address lines and 32 data lines, for a total of $63 \mathrm{I} / \mathrm{O}$ lines.
2. Give the number of bytes stored in the memories listed in Problem 1.
(a) 32×8 : A byte is 8 bits, so 32×8 has 32 bytes.
(b) $4 \mathrm{M} \times 16: 4 \mathrm{M}=2^{22}=4,194,304$ words. Each word is 2 bytes, so the total number of words is $8,388,608$.
(c) $2 \mathrm{G} \times 32: 2 \mathrm{G}=2^{21}=2,147,483,648$. Each word is 4 bytes, so the total number of words is $8,589,934,592$.
3. A DRAM chip uses two-dimensional address demultiplexing. It has 16 common address pins, with the row address having four more bits than the column address (the row address has 16 bits, the column address has 12 bits). What is the capacity of the memory?
The DRAM chip has 16 rows and 12 columns, for a total of 28 address lines. $2^{28}=$ $268,435,456$ memory locations. Also, $2^{28}=2^{8} \times 2^{20}=256 \times 2^{20}=256 \mathrm{M}$.
4. This problem deals with the Hamming code for error detection and correction. To be able to detect and correct one-bit errors for eight-bit words, five parity bits are required. The numbers are of the form $P_{0} P_{1} P_{2} D_{3} P_{4} D_{5} D_{6} D_{7} P_{8} D_{9} D_{10} D_{11} D_{12}$, where P_{0} is the overall parity bit (called P_{13} in the text), and $D_{3} D_{5} D_{6} D_{7} D_{9} D_{10} D_{11} D_{12}$ is the original 8 -bit data word.
(a) You read the number 0001010110000 from a memory which uses error detection and correction. What was the original 8-bit data word that was written?

P_{0}	P_{1}	P_{2}	D_{3}	P_{4}	D_{5}	D_{6}	D_{7}	P_{8}	D_{9}	D_{10}	D_{11}	D_{12}
0	0	0	1	0	1	0	1	1	0	0	0	0

$C_{0}=\mathrm{XOR}$ of all bits $\left(P_{0}\right.$ through $\left.D_{13}\right)$. There are four ones, which is an even number, indicating no errors or a two-bit uncorrectable error.
$C_{1}=\operatorname{XOR}\left(P_{1}, D_{3}, D_{5}, D_{7}, D_{9}, D_{11}\right)=\operatorname{XOR}(0,1,1,1,0,0)=1$
$C_{2}=\operatorname{XOR}\left(P_{2}, D_{3}, D_{6}, D_{7}, D_{10}, D_{11}\right)=\operatorname{XOR}(0,1,0,1,0,0)=0$
$C_{4}=\operatorname{XOR}\left(P_{4}, D_{5}, D_{6}, D_{7}, D_{12}\right)=\operatorname{XOR}(0,1,0,1,0)=0$
$C_{8}=X O R\left(P_{8}, D_{9}, D_{10}, D_{11}, D_{12}\right)=X O R(1,0,0,0.0)=1$
$C_{8,4,2,1}=1001_{2}=9_{10} \neq 0$ so there is a two-bit uncorrectable error.
(b) Repeat (a) for the number 1010000101100.

P_{0}	P_{1}	P_{2}	D_{3}	P_{4}	D_{5}	D_{6}	D_{7}	P_{8}	D_{9}	D_{10}	D_{11}	D_{12}

$C_{0}=\mathrm{XOR}$ of all bits $\left(P_{0}\right.$ through $\left.D_{13}\right)$. There are five ones, which is an odd number, indicating a one-bit correctable error.
$C_{1}=\operatorname{XOR}\left(P_{1}, D_{3}, D_{5}, D_{7}, D_{9}, D_{11}\right)=\operatorname{XOR}(0,0,0,1,1,0)=0$
$C_{2}=\operatorname{XOR}\left(P_{2}, D_{3}, D_{6}, D_{7}, D_{10}, D_{11}\right)=\operatorname{XOR}(1,0,0,1,1,0)=1$
$C_{4}=\operatorname{XOR}\left(P_{4}, D_{5}, D_{6}, D_{7}, D_{12}\right)=\operatorname{XOR}(0,0,0,1,0)=1$
$C_{8}=X O R\left(P_{8}, D_{9}, D_{10}, D_{11}, D_{12}\right)=X O R(0,1,1,0.0)=0$
$C_{8,4,2,1}=0110_{2}=6_{10}$ so bit D_{6} was flipped.
Original number is $D_{3} D_{5} D_{6}^{\prime} D_{7} D_{9} D_{10} D_{11} D_{12}=(00111100)_{2}=3 C_{16}$
(c) Repeat (a) for the number 1110011111001.

P_{0}	P_{1}	P_{2}	D_{3}	P_{4}	D_{5}	D_{6}	D_{7}	P_{8}	D_{9}	D_{10}	D_{11}	D_{12}
1	1	1	0	0	1	1	1	1	1	0	0	1

$C_{0}=$ XOR of all bits $\left(P_{0}\right.$ through $\left.D_{13}\right)$. There are nine ones, which is an odd number, indicating a one-bit correctable error.
$C_{1}=\operatorname{XOR}\left(P_{1}, D_{3}, D_{5}, D_{7}, D_{9}, D_{11}\right)=\operatorname{XOR}(1,0,1,1,1,0)=0$
$C_{2}=\operatorname{XOR}\left(P_{2}, D_{3}, D_{6}, D_{7}, D_{10}, D_{11}\right)=\operatorname{XOR}(1,0,1,1,0,0)=1$
$C_{4}=\operatorname{XOR}\left(P_{4}, D_{5}, D_{6}, D_{7}, D_{12}\right)=\operatorname{XOR}(0,1,1,1,1)=0$
$C_{8}=\operatorname{XOR}\left(P_{8}, D_{9}, D_{10}, D_{11}, D_{12}\right)=\operatorname{XOR}(1,1,0,0,1)=1$
$C_{8,4,2,1}=1010_{2}=10_{10}$ so bit D_{10} was flipped.
Original number is $D_{3} D_{5} D_{6} D_{7} D_{9} D_{10}^{\prime} D_{11} D_{12}=(01111101)_{2}=7 D_{16}$
5. This problem deals with the Hamming code for error detection and correction. To be able to detect and correct one-bit errors for eight-bit words, five parity bits are required.
(a) What is the code to store the number 10010110

P_{0}	P_{1}	P_{2}	D_{3}	P_{4}	D_{5}	D_{6}	D_{7}	P_{8}	D_{9}	D_{10}	D_{11}	D_{12}
$?$	$?$	$?$	1	$?$	0	0	1	$?$	0	1	1	0
$P_{1}=$	$X O R\left(D_{3}, D_{5}, D_{7}, D_{9}, D_{11}\right)=X O R(1,0,1,0,1)=1$											
$P_{2}=X O R\left(D_{3}, D_{6}, D_{7}, D_{10}, D_{11}\right)=X O R(1,0,1,1,1)=0$												
$P_{4}=$	$\operatorname{XOR}\left(D_{5}, D_{6}, D_{7}, D_{12}\right)=X O R(0,0,1,0)=1$											
$P_{8}=X O R\left(D_{9}, D_{10}, D_{11}, D_{12}\right)=X O R(0,1,1,0)=0$												

$\begin{array}{cccccccccccccc} & P_{0} & P_{1} & P_{2} & D_{3} & P_{4} & D_{5} & D_{6} & D_{7} & P_{8} & D_{9} & D_{10} & D_{11} & D_{12} \\ \text { This gives: } & ? & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
$P_{0}=\mathrm{XOR}$ of all bits $\left(P_{1}\right.$ through $\left.D_{13}\right)$. There are six ones, which is an even number, so P_{0} will be 0 .

P_{0}	P_{1}	P_{2}	D_{3}	P_{4}	D_{5}	D_{6}	D_{7}	P_{8}	D_{9}	D_{10}	D_{11}	D_{12}
0	1	0	1	1	0	0	1	0	0	1	1	0

The 13-bit encoded number is 0101100100110.
(b) Repeat (a) for the number 10111101.

P_{0}	P_{1}	P_{2}	D_{3}	P_{4}	D_{5}	D_{6}	D_{7}	P_{8}	D_{9}	D_{10}	D_{11}	D_{12}
$?$	$?$	$?$	1	$?$	0	1	1	$?$	1	1	0	1
$P_{1}=$	$\operatorname{XOR}\left(D_{3}, D_{5}, D_{7}, D_{9}, D_{11}\right)=\operatorname{XOR}(1,0,1,1,0)=1$											
$P_{2}=\operatorname{XOR}\left(D_{3}, D_{6}, D_{7}, D_{10}, D_{11}\right)=\operatorname{XOR}(1,1,1,1,0)=0$												
$P_{4}=\operatorname{XOR}\left(D_{5}, D_{6}, D_{7}, D_{12}\right)=X O R(0,1,1,1)=1$												
$P_{8}=\operatorname{XOR}\left(D_{9}, D_{10}, D_{11}, D_{12}\right)=\operatorname{XOR}(1,1,0,1)=1$												

$\begin{array}{cccccccccccccc} & P_{0} & P_{1} & P_{2} & D_{3} & P_{4} & D_{5} & D_{6} & D_{7} & P_{8} & D_{9} & D_{10} & D_{11} & D_{12} \\ \text { This gives: } & ? & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1\end{array}$
$P_{0}=\mathrm{XOR}$ of all bits $\left(P_{1}\right.$ through $\left.D_{13}\right)$. There are nine ones, which is an odd number, so P_{0} will be 1 .

$$
\begin{array}{ccccccccccccc}
P_{0} & P_{1} & P_{2} & D_{3} & P_{4} & D_{5} & D_{6} & D_{7} & P_{8} & D_{9} & D_{10} & D_{11} & D_{12} \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1
\end{array}
$$

The 13-bit encoded number is 1101101111101.
(c) Repeat (a) for the number 01001011.

P_{0}	P_{1}	P_{2}	D_{3}	P_{4}	D_{5}	D_{6}	D_{7}	P_{8}	D_{9}	D_{10}	D_{11}	D_{12}
$?$	$?$	$?$	0	$?$	1	0	0	$?$	1	0	1	1
$P_{1}=$	$=\operatorname{XOR}\left(D_{3}, D_{5}, D_{7}, D_{9}, D_{11}\right)=\operatorname{XOR}(0,1,0.1,1)=1$											
$P_{2}=$	$\operatorname{XOR}\left(D_{3}, D_{6}, D_{7}, D_{10}, D_{11}\right)=\operatorname{XOR}(0,0,0,0,1)=1$											
$P_{4}=$	$\operatorname{XOR}\left(D_{5}, D_{6}, D_{7}, D_{12}\right)=\operatorname{XOR}(1,0,0,1)=0$											
P_{8}	$=\operatorname{XOR}\left(D_{9}, D_{10}, D_{11}, D_{12}\right)=\operatorname{XOR}(1.0 .1,1)=1$											

This gives: $\begin{array}{ccccccccccccc}P_{0} & P_{1} & P_{2} & D_{3} & P_{4} & D_{5} & D_{6} & D_{7} & P_{8} & D_{9} & D_{10} & D_{11} & D_{12} \\ ? & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$
$P_{0}=$ XOR of all bits (P_{1} through D_{13}). There are seven ones, which is an odd number, so P_{0} will be 1 .

P_{0}	P_{1}	P_{2}	D_{3}	P_{4}	D_{5}	D_{6}	D_{7}	P_{8}	D_{9}	D_{10}	D_{11}	D_{12}
1	1	1	0	0	1	0	0	1	1	0	1	1

The 13 -bit encoded number is 1110010011011 .

