EE 231

Homework 12

Due November 22, 2010

1. Consider the circuit below:

(a) Is this a Mealy machine or a Moore machine? Explain.
(b) Find the state transition table for the circuit.
(c) Draw the state transition diagram for the circuit.
2. Consider the state tranition diagram below for a state machine with one input x (plus clock and $\overline{\text { reset }}$) and two outputs y and z. Complete the timing diagram for the outputs y and z. You do not have to find the state transition table. You should be able to go directly from the state diagram to the timing diagram.

Y

z

3. The 32×7 ROM, as shown below, is to be programmed as a 7 -segment decoder with blanking. It is used to drive a seven-segment LED where the inputs are active low (a 0 turns on the segment, a 1 turns off the segment). When the blank input is high, all the segments a through g should be high. When the blank input is low, the 4 -bit hex value should be displayed on the seven-segment display. For example, when the input is 00010 , the display should be active, and should display a 2 , so segments a, b, d, e and g should be low, and segments c and f should be high. Specify the truth table for the ROM.

4. Specify the size of a ROM (number of words and number of bits per word) that will accomodate the truth table for the following combinational circuit components:
(a) a binary multiplier the multiplies two 6 -bit binary words.
(b) a greatest common divisor generator, which finds the greatest common divisior of two eight-bit numbers.
(c) a quadruple two-to-one line multiplexer with common select and enable inputs.
5. Derive the PAL programming table for a 4-bit decimal-to-gray-code converter. The Gray code table is on Page 22 of the text. The input should be the 4 -bit decimal number, and the output should be the Gray code for that number. Draw the corresponding fuses on the attached PAL figure.

