
EE 231 Fall 2010

EE 231

Homework 13

Due December 3, 2010

1. Explain in words and write the HDL statements for the operations specified by the following
register transfer notations;

(a) R1← R1− 1, R2 ← R1
Transfer the contents of R1 minus 1 into R1; at the same time, transfer the contents of
R1 (before subtracting the 1) into R2.

always @(posedge clock) begin
R1 <= R1 - 1;
R2 <= R1;

end

(b) R3← shr R3
Shift R3 right, and save the result into R3.

always @(posedge clock)
R3 <= R3 >> 1;

(c) If (S = 0) then (R0 ← shr R0) else (R0 ← shl R0)
If S is 0, shift R0 right and save the result into R0; otherwise, shift R0 left and save the
result into R0.

always @(posedge clock)
if (S == 0) R0 <= R0 >> 1;
else R0 <= R0 << 1;

1

EE 231 Fall 2010

2. Construct a block diagram and an ASMD chart, and write a Verilog program, which controls
a machine which dispenses a can of soda. The machine will accept pennies, nickels, dimes and
quarters. Only one coin will go through the machine at a time, and that coin will be detected
for exactly one clock cycle. The dispense output should go high for one clock cycle when the
total amount of money inserted is equal to or greater than 60 cents. If the total is greater
than 60 cents, the excess is held in the register to be used for the next soda. For example,
if 75 cents is deposited, the machine should dispense a soda, and leave 15 cents towards the
next soda.

The datapath should consist of a register to hold the total amount, a combinational circuit
which can add the amount deposited to the register and subtract the cost of the soda from
the register, and a display showing how much money is available for the soda.

The controller should have a reset input to reset the count to zero.

There are many ways to solve problems like this. Here is the way I did it.

For the datapath, I used one register to hold the total amount deposited. When a penny
comes in, I add 1 to the total; when a nickel comes in I add 5 to the total, when a dime comes
in I add 10 to the total, and when a quarter comes in I add 25 to the total. When a soda is
dispensed I subtract 60 from the total. I have a comparator which checks to see if at least 60
cents has been deposited.

The controller has four states: S_reset to clear the register which holds the amount deposited;
S_deposit which checks to see if a coin has been deposited, and S_Test which checks to see
if at least 60 cents has been deposited, and S_Dispense which dispenses the soda. (You could
do this with one fewer states if Dispense were a Mealy output instead of a Moore output.)

datapath

P

D

Q

N

Sel_P

Sel_N

Sel_D

Sel_Q

Sel_Disp

Dispense

S_Test

S_Dispense

Done

Mux <− Sel_P

Load_Reg

S_reset

clear

Load_Reg

Load_Reg

Load_Reg

Load_Reg

reset_b

5 10 −60251

Mux

Reg

>= 60

Mux_Sel

Done
Total

Q

D

N

Mux <− Sel_N

Mux <− Sel_D

Mux <− Sel_Q

Mux <− Sel_Disp

P

0

1

0

0

0

1

1

1

0

1

clear

Load_Reg

S_deposit

controller

2

EE 231 Fall 2010

module hw13_p2(input clock, reset_b, P, N, D, Q,
output [6:0] Total, output Dispense);

wire [2:0] Mux_Sel;
wire Done, clear, load;

controller M1 (clock, reset_b, P, N, D, Q, Done,
clear, load, Dispense, Mux_Sel);

datapath M2 (clock, clear, load, Mux_Sel,
Total, Done);

endmodule

module controller (input clock, reset_b, P, N, D, Q, Done,
output reg clear, load, Dispense,
output reg [2:0] Mux_Sel);

parameter S_reset = 2’b00, S_deposit = 2’b01,
S_test = 2’b10, S_dispense = 2’b11;

parameter Sel_P = 3’b000, Sel_N = 3’b001, Sel_D = 3’b010,
Sel_Q = 3’b011, Sel_Disp = 3’b100;

reg [1:0] state, next_state;

always @(posedge clock, negedge reset_b)
if (~reset_b) state <= S_reset;
else state <= next_state;

/* Next state combinational block */
always @(state, Done, P, N, D, Q)

case (state)
S_reset: next_state = S_deposit ;
S_deposit : if (P || N || D || Q) next_state = S_test;

else next_state = S_deposit;
S_test: if (Done) next_state = S_dispense;

else next_state = S_deposit;
S_dispense: next_state = S_deposit;

endcase

/* Output combinational block */
always @(state, P, N, D, Q, Done) begin

Mux_Sel = 3’hx;
clear = 1’b0;
load = 1’b0;
Dispense = 1’b0;

3

EE 231 Fall 2010

case (state)
S_reset: clear = 1’b1;
S_deposit: if (P) begin Mux_Sel = Sel_P; load = 1’b1; end

else if (N) begin Mux_Sel = Sel_N; load = 1’b1; end
else if (D) begin Mux_Sel = Sel_D; load = 1’b1; end
else if (Q) begin Mux_Sel = Sel_Q; load = 1’b1; end

S_test: if (Done) begin Mux_Sel = Sel_Disp; load = 1’b1; end
S_dispense: Dispense = 1’b1;

endcase
end
endmodule

module datapath(input clock, clear, load, input [2:0] Mux_Sel,
output reg [6:0] Total, output Done);

wire [6:0] mux_out;

parameter Sel_P = 3’b000, Sel_N = 3’b001, Sel_D = 3’b010,
Sel_Q = 3’b011, Sel_Disp = 3’b100;

assign mux_out = (Mux_Sel == Sel_P) ? Total + 7’d1 :
(Mux_Sel == Sel_N) ? Total + 7’d5 :
(Mux_Sel == Sel_D) ? Total + 7’d10 :
(Mux_Sel == Sel_Q) ? Total + 7’d25 :
(Mux_Sel == Sel_Disp) ? Total - 7’d60 :
Total;

/* Enough money to dispense when Total >= 60 cents */
assign Done = (Total >= 7’d60);

always @(posedge clock)
if (clear) Total <= 7’d0;
else if (load) Total <= mux_out;
else Total <= Total;

endmodule

4

EE 231 Fall 2010

3. Design a reaction timer system, which measures the amount of time elapsed between turning
on a light and the user pressing a button. The system has three inputs: a 1 kHz clock, a reset
button, and the user button B. It has three outputs: a one-bit output L to turn on an LED,
a 12-bit output T to display the reaction time, and a one-bit output S which is activated if
the user is too slow. After the reset button is pushed, the system waits for 10 seconds, then
activates the L output, and starts counting on the T register. When the user presses the
B button, the T value is held. If the user is too slow, and fails to press the button within
2 seconds, the S output is activated, and the T register displays 2,000.

Construct a block diagram (controller and datapath) and an ASMD chart, and write a Verilog
program, to implement the reaction timer.

Again, there are many ways to do this. Here is what I did.

The datapath has two counters, one to count to 10,000 (to way 10 seconds), and the other
to count to 2,000 (to wait 2 seconds). The datapath outputs a signal Ctr1_Done when Ctr1
has counted to 10,000; Slow, when the user fails to press the button in 2 seconds; and the
reaction time.

The controller has four states: S_reset which resets the two counters, S_Ctr1 when Ctr1
counts, S_Ctr2 when Ctr2 counts, and S_Done when the user has pushed the button or the
time has elapsed. Ctr1 counts until the datapath asserts Ctr1_Done. Ctr2 counts until either
the user pushes the button (B is asserted), or 2 seconds elasped (Slow is asserted).

For testing, I had Ctr1 time out after 10 counts (instead of 10,000), and Slow was asserted
after 20 counts (instead of 2,000).

controller

Ctr2

Ctr1

==10,000

==2,000

Ctr1_Done

clear

Ctr1_Count

Ctr2_Count

S_reset

clear

S_Ctr1

Ctr1_Count

Ctr1_Done

S_Ctr2

Slow

User

0

1

0

0

1

1

S_Done

Ctr2_Count, L

reset_b

Slow Time

L

datapath

5

EE 231 Fall 2010

module hw13_p3(input clock, reset_b, User,
output [11:0] Time, output L, Slow);

wire clear, Ctr1_Count, Ctr2_Count, Ctr1_Done;

controller M1 (clock, reset_b, Ctr1_Done, User, Slow,
clear, Ctr1_Count, Ctr2_Count, L);

datapath M2 (clock, clear, Ctr1_Count, Ctr2_Count,
Time, Ctr1_Done, Slow);

endmodule

module controller (input clock, reset_b, Ctr1_Done, User, Slow,
output reg clear, Ctr1_Count, Ctr2_Count, L);

parameter S_reset = 2’b00, S_Ctr1 = 2’b01,
S_Ctr2 = 2’b10, S_Done = 2’b11;

reg [1:0] state, next_state;

always @(posedge clock, negedge reset_b)
if (~reset_b) state <= S_reset;
else state <= next_state;

/* Next state combinational block */
always @(state, Ctr1_Done, User, Slow)

case (state)
S_reset: next_state = S_Ctr1;
S_Ctr1: if (Ctr1_Done) next_state = S_Ctr2;

else next_state = S_Ctr1;
S_Ctr2: if (User) next_state = S_Done;

else if (Slow) next_state = S_Done;
else next_state = S_Ctr2;

S_Done: next_state = S_Done;
endcase

/* Output combinational block */
always @(state) begin

clear = 1’b0;
Ctr1_Count = 1’b0;
Ctr2_Count = 1’b0;
L = 1’b0;
case (state)

S_reset: clear = 1’b1;
S_Ctr1: Ctr1_Count = 1’b1;
S_Ctr2: begin Ctr2_Count = 1’b1; L = 1’b1; end

6

EE 231 Fall 2010

default: ;
endcase

end
endmodule

module datapath(input clock, clear, Ctr1_Count, Ctr2_Count,
output [11:0] Time, output Ctr1_Done, Slow);

reg [13:0] Ctr1;
reg [11:0] Ctr2;

assign Time = Ctr2;

assign Ctr1_Done = (Ctr1 >= 14’d10000) ? 1’b1 : 1’b0;
assign Slow = (Ctr2 >= 12’d2000) ? 1’b1 : 1’b0;

always @(posedge clock) begin
if (clear) begin Ctr1 <= 14’d0; Ctr2 <= 12’d0; end
if (Ctr1_Count) Ctr1 <= Ctr1 + 14’d1;
if (Ctr2_Count) Ctr2 <= Ctr2 + 12’d1;

end

endmodule

7

