
EE 231L Fall 2005

EE 231L

Using AHDL to Design Combinational Circuits

Altera Hardware Description Language (AHDL) is a language developed by Altera Corporation
for programming their programmable logic devices (PLDs). There are other HDLs which can be
used to program PLDs (VHDL and Verilog HDL are two industry standards), but these other,
more general, languages are harder to learn and use. In this lab you will learn how to design digital
logic circuits using AHDL.

With AHDL, there are two methods for entering designs – a text design file (.tdf) or a graphical
design file (.gdf). Using the graphical design method you enter circuits as you would draw them
on a schematic. This method is quite easy to learn and use for simple circuits, but becomes very
cumbersome for large designs. The text design method is flexible, and much easier to use for large
designs. We will show several examples using the graphical design method, but will concentrate
mainly on the text design method.

This lab deals with designing combinational circuits. This brief tutorial will give you the
information you need to design combinational circuits using the text design method with AHDL.

Here is a sample text design file which illustrates many features of combinational AHDL,
boolean.tdf (taken from ”MAX+PLUS II AHDL” manual from Altera):

SUBDESIGN boolean
(

a0, a1, b : INPUT;
out : OUTPUT;

)
VARIABLE

a_equals_2 : NODE;
BEGIN

a_equals_2 = a1 & !a0;
out = a_equals_2 # b;

END;

This implements the following logic OUT = ((A1 AND NOT A0) OR B):

A0

A1

B
OUT

A_EQUALS_2

1



EE 231L Fall 2005

Key things to not about this:

• A TDF file must have a line SUBDESIGN. The subdesign name must be the same as the file
name.

• There is a section which describes the inputs and outputs.

• There is an optional variable section which describes variables (other than inputs and outputs)
used in the code which follows. In this example, the variable a_equals_2 is declared to be
a NODE, which is used to store the value of an intermediate expression, and requires no extra
logic.

• The code is surrounded by a BEGIN and an END.

• Each line of code ends with a semicolon.

• Outputs must be on the left hand side of an equal sign.

• Inputs must be on the right hand side of an equal sign.

• Nodes can be on either side of an equal sign.

• Boolean expressions are written using ands (& or and), ors (# or or), exclusive ors ($ or XOR).
nots (!), nands (!& or NAND), nors (!# or NOR), and exclusive nor (!$ or XNOR).

Here is an example of a more TDF file which implements Boolean logic using a truth table
(also taken from the ”MAX+PLUS II AHDL” manual):

TITLE "EE 231 Example TDF File";
SUBDESIGN example1
(

i[3..0] : INPUT;
ascii_code[7..0] : OUTPUT;

)
BEGIN

DEFAULTS
ascii_code[7..0] = B"00111111"; % ASCII question mark %

END DEFAULTS;

TABLE
i[3..0] => ascii_code[];
B"1000" => B"01100001"; % "a" %
B"0100" => B"01100010"; % "b" %
B"0010" => B"01100011"; % "c" %
B"0001" => B"01100100"; % "d" %

END TABLE;
END;

2



EE 231L Fall 2005

This shows several features of AHDL:

1. An optional TITLE statement can be used. This puts the specified title on the output files
generated by the Altera compiler.

2. Multiple inputs and outputs can be grouped together into a group. One can refer to a subset
of the group be using brackets – ascii_code[1] or ascii_code[1..0]. All elements of the
array can be referred to as ascii_code[] or ascii_code[7..0].

3. A DEFAULTS section indicates default values to use for a variable. For this program, the inputs
i[] can have one of 16 values. The program specifies the output ascii_code[] for 4 of the
possible 16 values. The DEFAULTS section tells the Altera compiler that, if the inputs are in
one of the other possible states, the output should be an ASCII question mark.

4. Comments are entered by surrounding them with percent (%) signs.

5. A binary number can be entered with the following notation: B"1100". Other ways to enter
this number are: decimal (12), octal (O"14" or Q"14") and hexadecimal (X"C" or H"C").

A third way to enter a Boolean expression is with a CASE statement. Here is code to implement
the above logic with a CASE statement:

TITLE "EE 231 Example TDF File";
SUBDESIGN example2
(

i[3..0] : INPUT;
ascii_code[7..0] : OUTPUT;

)
BEGIN

CASE i[] is
WHEN B"0001" =>

ascii_code[] = B"01100001"; % "a" %
WHEN B"0001" =>

ascii_code[] = B"01100010"; % "b" %
WHEN B"0001" =>

ascii_code[] = B"01100011"; % "c" %
WHEN B"0001" =>

ascii_code[] = B"01100100"; % "d" %
WHEN OTHERS =>

ascii_code[] = B"00111111"; % ASCII question mark %
END CASE;

END;

• The CASE statement is similar to the switch statement in C.

3



EE 231L Fall 2005

A fourth way to enter a Boolean expression is with an IF THEN ELSE syntax. Here is code to
implement the above logic with IF THEN ELSE syntax:

TITLE "EE 231 Example TDF File";
SUBDESIGN example3
(

i[3..0] : INPUT;
ascii_code[7..0] : OUTPUT;

)
BEGIN

IF (i[] == B"1000") THEN
ascii_code[] = B"01100001";

ELSIF (i[] == B"0100") THEN
ascii_code[] = B"01100010";

ELSIF (i[] == B"0010") THEN
ascii_code[] = B"01100011";

ELSIF (i[] == B"0001") THEN
ascii_code[] = B"01100100";

ELSE ascii_code[] = B"00111111"; % ASCII question mark %
END IF;

END;

• As in C, == is used for comparison — if the left-hand and right-hand side of the expression
equal each other, the result is TRUE, and the THEN statement will be implemented.

• Using the ELSIF clause may cause Altera to generate unnecessarily complex logic. It is usually
better to avoid using the ELSIF clause if possible.

4


