
EE 231L Fall 2005

EE 231L Lab 2

Design and Implementation of Combinational Circuits

Part 1. The Majority Circuit

1. Build the majority circuit you designed in the pre-lab using HCMOS logic chips.

2. Test your circuit with your logic probe, and confirm that it functions for all possible input
combinations. Have your lab instructor or TA verify the circuit works.

Part 2. Majority Circuit in Altera

1. Program the majority circuit in Altera using a Graphics Design File.

2. Program the majority circuit in Altera using a Text Design File.

3. Simulate the circuit with Altera’s waveform editor.

4. Test your circuit with your logic probe, and confirm that it functions for all possible input
combinations. Have your lab instructor or TA verify the circuit works.

Part 3. Arithmetic Logic Unit

The heart of every computer is an Arithmetic Logic Unit (ALU). This is the part of the
computer which performs arithmetic operations on numbers, e.g. addition, subtraction, etc. Here
you will use the Altera language to implement an ALU having 10 functions.

ALU Operations

Your ALU will perform 10 functions on two 8-bit inputs. Later on this ALU will be one component
of the computer you build in the final lab. At that time the ALU inputs will be from the DATA
line and from ACCA (Accumulator A). To help make the transition to the computer, you should call
the inputs DATA[7..0] and ACCA[7..0]. These inputs could represent either unsigned numbers,
two’s complement numbers, or simply non-numeric bit patterns. The ALU will generate an 8-bit
result (A) and a one bit carry (C). To select which of the 10 functions to implement you will use
ALU_CTL as selection lines. You will decide which combination of bits in the selection lines ALU_CTL
correspond to for each instruction. The 10 functions are described in Table 1.

1



EE 231L Fall 2005

DATA[7..0]

ACCA[7..0]

C

A[7..0]

ALU_CTL[?..0]

ALU

Figure 1. ALU block diagram.

It is up to you to determine how many control lines are necessary to select the ten different functions.

Table 1. ALU Functions.

ALU_CTL Mnemonic Description
Load DATA => A: Output = DATA input

(load into A) C is a don’t care
ADDA ACCA+DATA => A: Add DATA and ACCA

(add and store into A) C is carry from addition
SUBA ACCA-DATA => A: Subtract DATA from ACCA

(subtract and store into A) C is borrow from subtraction
ANDA ACCA & DATA => A: Logical AND

(logical AND) C is a don’t care
ORAA ACCA # DATA => A: Logical OR

(logical OR) C is a don’t care
COMA ACCA => A: One’s complement of ACCA

(complement) 1 => C
INCA ACCA + 1 => A: Add one to the value in ACCA

(increment) C is a don’t care
LSRA Shift all bits of ACCA one place to the right

(logical shift right) 0 => A[7], ACCA[0] => C
LSLA Shift all bits of ACCA one place to the left

(logical shift left) 0 => A[0], ACCA[7] => C
ASRA Shift all bits of ACCA one place to the right

(arithmetic shift right) ACCA[7] => A[7], ACCA[0] => C

1. Design your ALU using Altera. Use a Text Design File. Be certain to deal with any unused
bit combinations of the ALU_CTL lines in your Altera program. If for any reason ALU_CTL
should have an undefined bit pattern on its lines during operation you should know what
output will be produced.

2. Simulate the ALU using the Altera simulator. Test multiple combinations of DATA and
ACCA. Choose test values that will test all possibilities for the carry bit.

2



EE 231L Fall 2005

3. Program your ALU code into you EPM7064. Verify that it works, using the test data from
your simulation.

4. Make your code into an Altera function called ALU. Verify that you can call this function
from another Altera TDF program.

3


