
EE 231L Fall 2005

EE 231L

Using AHDL to Design Sequential Circuits

In order to design a sequential circuit, you need to use a logic element with memory – a flip-flop
or a latch. AHDL has several types of such elements – a latch, a D flip-flop, a JK flip-flop, an SR
flip-flop and a toggle flip-flop. Here we will discuss two of these elements — the latch and the D
flip-flop.

Latch A latch in AHDL has two inputs – D and En, and one output Q. When En is low, the output
Q does not change. When En is high, the output Q is equal to the input D. Thus, when En is
low, it will hold the value on theD input when En went from high to low. To use a latch in
AHDL, declare it in the VARIABLE section of the program:

VARIABLE
A : LATCH;

will define an eight-bit latch. To specify what should on the D input of A, use A.d. To specify
what should on the En input of A, use A.ena. To use the Q output, refer to A.q.

D flip-flop There are two D-type flip-flops in AHDL – DFF and DFFE (D flip-flop with enable). DFF
has the standard D flip-flop inputs and outputs – D input (D), clock input (CLK), active-low
asynchronous clear input (CLRN), active-low asynchronous set input (prn), and the Q output
(Q). DFFE has another input – enable (ENA). The ENA input to a DFFE must be high for the
flip-flop to change state – with ENA low, the Q output will not change on a clock edge.

To use a DFFE, declare it in the VARIABLE section of the program:

VARIABLE
B : DFFE;

Let’s build a simple 3-bit up counter: it will count 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, ... Here is the
state transition table:

Present State Next State
y2 y1 y0 Y2 Y1 Y0

0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

This can be implemented with three D flip-flops with the following Boolean equations:

1

EE 231L Fall 2005

Y2 = y2y0 + y2y1 + y2y1y0

Y1 = y1y0 + y1y0

Y0 = y0

Here is an AHDL program to implement a three-bit counter:

SUBDESIGN 3count
(count[2..0] : OUTPUT;

clock : INPUT;
)

VARIABLE
y[2..0] : DFFE; % Three D flip-flops with enable %

BEGIN
DEFAULTS

y[].ena = VCC; % flip-flops always enabled %
y[].clrn = VCC; % flip-flops always enabled %
y[].prn = VCC; % flip-flops always enabled %

END DEFAULTS;

y[].clk = clock; % Use input clock to run flip-flops %
y2.d = (y2.q & !y0.q) # (y2.q & !y1.q) # (!y2.q & y1.q & y0.q);
y1.d = (!y1.q & y0.q) # (y1.q & !y0.q);
y0.d = !y0.q;

count[] = y[].q; % Assign the outputs of the flip-flops to the
output of the system %

END;

You can also design the counter by specifying the transition table and let AHDL determine
the Boolean equations:

SUBDESIGN 3count
(count[2..0] : OUTPUT;

clock : INPUT;
)

VARIABLE
y[2..0] : DFFE; % Three D flip-flops with enable %

BEGIN
DEFAULTS

y[].ena = VCC; % flip-flops always enabled %
y[].clrn = VCC; % flip-flops always enabled %
y[].prn = VCC; % flip-flops always enabled %

END DEFAULTS;

2

EE 231L Fall 2005

y[].clk = clock; % Specify the clock for the D flip-flops %

TABLE
y[2..0].q => y[2..0].d;
B"000" => B"001";
B"001" => B"010";
B"010" => B"011";
B"011" => B"100";
B"100" => B"101";
B"101" => B"110";
B"110" => B"111";
B"111" => B"000";

END TABLE;

count[] = y[].q; % Assign the outputs of the flip-flops to the
output of the system %

END;

However, there is a much easier way to design counters. The inputs to the D flip-flops are the
outputs of the D flip-flops plus one:

SUBDESIGN 3count
(count[2..0] : OUTPUT;

clock : INPUT;
)

VARIABLE
y[2..0] : DFFE; % Three D flip-flops with enable %

BEGIN
DEFAULTS

y[].ena = VCC; % flip-flops always enabled %
y[].clrn = VCC; % flip-flops always enabled %
y[].prn = VCC; % flip-flops always enabled %

END DEFAULTS;

y[].clk = clock; % Specify the clock for the D flip-flops %

y[].q = y[].d + 1; % Next count is current count plus one %

count[] = y[].q; % Assign the outputs of the flip-flops to the
output of the system %

END;

3

EE 231L Fall 2005

This gives you the ability to design very large counters which would be hard to do using
other techniques. A 16-bit counter has 216 or 65,536 states. It is difficult to develop the Boolean
equations, and impractical to enter a transition table with 65,536 lines. Here is a design for a 16-bit
counter:

SUBDESIGN 16count
(count[15..0] : OUTPUT;

clock : INPUT;
)

VARIABLE
y[15..0] : DFFE; % Sixteen D flip-flops with enable %

BEGIN
DEFAULTS

y[].ena = VCC; % flip-flops always enabled %
y[].clrn = VCC; % flip-flops always enabled %
y[].prn = VCC; % flip-flops always enabled %

END DEFAULTS;

y[].clk = clock; % Specify the clock for the D flip-flops %

y[].d = y[].q + 1; % Next count is current count plus one %

count[] = y[].q; % Assign the outputs of the flip-flops to the
output of the system %

END;

Another, more powerful, way to design sequential circuits is with state machines. We will
discuss how to do this in Lab 4.

4

