
EE 231L Fall 2005

EE 231L

Using AHDL to Design State Machines

Finite state machine is another name for sequential circuits. A two-bit up-down counter can
be described as a state machine with one input and two outputs:

0/z=00

1/z=01

2/z=10

3/z=11

u=0 u=0

u=0u=0

u=1

u=1u=1

u=1

There are many ways to design state machines using AHDL. Here are one design for the two-bit
up-down counter:

SUBDESIGN two_bit
(count[1..0] : OUTPUT;

clock : INPUT;
up : INPUT;

)

VARIABLE
ss : MACHINE WITH STATES(s0, s1, s2, s3);

BEGIN
ss.clk = clock; % Specify the clock for the state machine %

CASE ss IS
WHEN s0 =>

count[] = B"00";
IF (up == 1) THEN ss = s1; ELSE ss= s3; END IF;

WHEN s1 =>
count[] = B"01";
IF (up == 1) THEN ss = s2; ELSE ss= s0; END IF;

WHEN s2 =>

1

EE 231L Fall 2005

count[] = B"10";
IF (up == 1) THEN ss = s3; ELSE ss= s1; END IF;

WHEN s3 =>
count[] = B"11";
IF (up == 1) THEN ss = s0; ELSE ss= s2; END IF;

END CASE;

END;

The two-bit up-down counter is a Moore machine — i.e., the outputs of the machine depend
only on the current state, and not on the current input. You can design a Moore machine by
specifing a bit pattern associated with each state. In this example, we use a state transition table
rather than a CASE statement. The count[1..0] outputs are directly associated with bits of the
state machine. This means that the count[1..0] outputs will be the outputs of flip-flops, and will
not change value until the machine changes states.

SUBDESIGN two_bit
(count[1..0] : OUTPUT;

clock : INPUT;
up : INPUT;

)

VARIABLE
ss : MACHINE OF BITS (count[1..0])

WITH STATES(s0 = B"00",
s1 = B"01",
s2 = B"10",
s3 = B"11");

BEGIN
ss.clk = clock; % Specify the clock for the state machine %

TABLE
% current current next %
% state input state %

ss, up => ss;
s0, 1 => s1;
s1, 1 => s2;
s2, 1 => s3;
s3, 1 => s0;
s0, 0 => s3;
s1, 0 => s0;
s2, 0 => s1;
s3, 0 => s2;

END TABLE;

END;

2

EE 231L Fall 2005

You can use AHDL to design state machines with asynchronous outputs, also called Mealy
machines. Here is an example from your textbook:

Reset w = 1 / z = 0

w = 0 / z = 0

w = 1 / z = 1A Bw = 0 / z = 0

Here is an AHDL file to implement the design. This example shows how to reset a state
machine. When reset goes high, the machine will be reset to the first state in the state machine
list; in this case, that will be state A. The reset is done using the clrn and prn inputs to D flip-flops,
so the reset is done as soon as reset goes high; it is not necessary to wait for a clock edge.

When in state B, the output will be 0 when the input is 0, and the output will be 1 when the
input is 1. The output will change multiple times while in state B if the input changes multiple
times. For a Moore machine, the output changes only when the machine switches from one state
to another.

SUBDESIGN mealy
(

clock : INPUT;
reset : INPUT;
w : INPUT;
z : OUTPUT;

)

VARIABLE
ss : MACHINE WITH STATES(A, B);

BEGIN
ss.clk = clock; % Specify the clock for the state machine %
ss.reset = reset; % Specify the reset for the state machine %

CASE ss IS
WHEN A =>

if (w == GND) THEN
z = GND;
ss = A;

else
z = GND;
ss = B;

END IF;
WHEN B =>

if (w == 1) THEN
z = 1;
ss = B;

3

EE 231L Fall 2005

else
z = 0;
ss = A;

END IF;
END CASE;

END;

Here is the same system designed using a state transition table:

SUBDESIGN mealy
(

clock : INPUT;
reset : INPUT;
w : INPUT;
z : OUTPUT;

)

VARIABLE
ss : MACHINE WITH STATES(A, B);

BEGIN
ss.clk = clock; % Specify the clock for the state machine %
ss.reset = reset; % Specify the reset for the state machine %

TABLE
% current current current next %
% state input output state %

ss, w => z, ss;
A, 0 => 0, A;
A, 1 => 0, B;
B, 0 => 0, A;
B, 1 => 1, B;

END TABLE;

END;

Note that this just describes in a table what the state diagram described in a figure.

4

