
EE 231 Lab 4
Fall 2005

Design and Implementation of State Machines
Design of a Computer Control Unit

In this lab you will design a control system for a computer. You will design it as a state
machine. Be sure to read the handout Using AHDL to Design State Machines. There are also
a few other blocks you will need to implement your computer -- a multiplexer, a decoder, and
a tri-state buffer. In Part 1 of this lab, you will design these other blocks. In Part 2, you will
design the computer control unit, and in Part 3, you will implement and test the control unit.

Part 1. Other Combinational Circuits

1. In the diagram of the final computer there is an element labeled MUX. This is a
multiplexer. The MEM_SEL lines are the selection lines of the multiplexer. Depending on
the state of the MEM_SEL lines, the MUX (multiplexer) will choose to output one of three
possible signals: the value in either PROG_ADDR, PC, or MAR.

Write an Altera program to implement the MUX. (Remember, PROG_ADDR, PC, and
MAR are each 8 bits wide).

2. Directly to the right of the MUX is another computer element. This is the Decoder (DCD).
The DCD determines if the memory address output by the MUX is equal to 0xFF.
- If the address equals 0xFF then the ADDR_FF line should be brought low. This will
allow either the external input or output to be enabled depending on the state of the M_W
(memory write) and M_R (memory read) lines.
- If the output of the mux is not equal to 0xFF, then the ADDR_NOTFF line should be
brought low. When the ADDR_NOTFF line is low, the memory is selected and can be read
from or written to (depending on the state of M_W and M_R).

Write an Altera Program to implement the encoder.

3. You will need three tri-state buffers in the final computer. AHDL has an active-hi tri-state
buffer TRI. Here is a program which implements an 8-bit active-low tri-state buffer:

SUBDESIGN 8trin
(
 enan : INPUT; %Active low enable input %
 data_in[7..0] : INPUT;
 data_out[7..0] : BIDIR;
)

VARIABLE
 buffer[7..0] : TRI;

1

BEGIN
 buffer[].oe = !enan; % Enable buffer when enan is low %
 buffer[].in = data_in[7..0];
 data_out[7..0] = buffer[].out;

END;

Design and simulate an 8-bit tri-state buffer in AHDL.

Part 2. Design of the Computer Control Unit

 The data-processing functions of the computer are divided into simple units called
instructions. A computer program is just a collection of computer instructions. The
instruction set of a computer are the basic operations that the computer can perform. The
instruction set of our computer is shown in Figure 1.

 In this lab you will design the computer control unit. The control unit is a finite state
machine. Its inputs are the instruction register and the carry, as well as a clock pulse and
RESET. The control unit's outputs are the control signals that direct the operation of the rest
of the computer.

The control unit can be in one of three states: RESET, C1, C2, C3. Each state takes up one
clock cycle.
•RESET is the Reset state. The computer gets into this state when the Reset button is pushed.
This will reset the program counter PC to 0x00, which is the first instruction the computer
will execute when Reset is released. In the Reset state, MEM_SEL should be set to
PROG_ADDR. This will allow you to enter programs into memory. To enter a program, put
the memory address you want to load on the PROG_ADDR lines, and put the data you want
to load on the PROG_DATA lines. Then bring PROG_WRITE low, then high. This will
write the value on PROG_DATA lines into the memory address on PROG_ADDR lines.
Once the program is entered, release the Reset line. On the next clock cycle, the control unit
should transition to state C1.
•C1 is the Fetch Cycle. The computer program is stored in memory. During the fetch cycle
the next instruction is “fetched” from memory and loaded into the instruction register
(INST).
•C2 is the first Execution Cycle. Once an instruction has been loaded into the INST, the
control unit determines the required course of action to take based on the value of INST and
the current state of the control unit. Some instructions require only require one execution
cycle (C2) while others require two(C2 and C3).
•C3 is the second Execution Cycle. It is only needed by some of the instructions.

The output of the control unit depends on both the present state and the input. (What type of
state machine is this?)

2

Mnemonic Operation
LDAA addr

load ACCA from
memory

Loads register A with the value in memory at address 'addr'.

LDAA #num
load ACCA with an
immediate value

Loads register A with the 4 bit value immediately following the
LDAA #num command in program memory.

STAA addr
store ACCA in
memory

Stores the value in register A at the memory address 'addr'.

ADDA addr
add ACCA and value
in memory

Adds the value in memory location 'addr' to the value in register A
and places the result in register A.

SUBA addr
subtracts value in
memory from ACCA

Subtracts the value in memory location 'addr' from the value in
register A. The result is stored in register A.

ANDA addr
logical AND of ACCA
and value in memory

Performs a logical AND of the value in memory location 'addr' with
the value in register A. Puts the result in register A.

ORAA addr
logical OR of ACCA
and value in memory

Performs a logical OR of the value in memory location 'addr' with
the value in register A. Puts the result in A.

CMPA addr
compares the value in
ACCA to value in
memory

Compares the value in register A to the value in memory location
'addr'. This is done by subtracting the value in memory location
'addr' from the value in register A. The C bit reflects the result. The
values in A and memory location 'addr' do not change.

COMA
complement ACCA

Replaces the value in register A with its one's complement.

INCA
increment

Adds one to the value in register A and stores the result in register
A.

LSLA Logical shift left of A

LSRA Logical shift right of A

ASRA Arithmetic shift right of A
JMP addr

jump
Jumps to the instruction stored at address 'addr'. (The value in PC is
replaced with 'addr'.)

JCS addr
jump if carry is set

Checks to see if the carry is set.
-If the carry is set, then the PC is loaded with 'addr'.
-If the carry is not set, the jump command is ignored. The PC is
incremented and the program continues with the next instruction.

Figure 1: Instruction Set of Computer

3

The output of the control unit are the control signals shown on the block diagram of the
computer. Except for ALU_CTL and MEM_SEL, all of these signals are active low, so your
AHDL program should have a DEFAULTS section in which those signals will be high be
default. In your AHDL code, you will bring the signals low at the correct times to implement
the instruction the control unit is executing.

During the FETCH cycle the control unit will fetch the next instruction from memory to
determine what instruction it should execute. Thus, the FETCH cycle will be the same for all
instructions – it will read the instruction from memory, and latch it into the INST register.
To do this, READ, INST_L and PC_I should be low, and MEM_SEL should be set to select
the address from the program counter PC. With the control lines set up like this, the address
to the memory will be from the PC – i.e., the address of the next instruction to execute, and
the memory output enable line will be low (active). The memory will put the data at that
address on its output lines, which are the input lines to the INST register. On the next clock
edge, the data from memory will be latched into the INST register, and the PC will be
incremented to the next memory address.

What the control unit does next will depend on the data loaded into the INST register. Here
are a couple of examples:

Example 1:
The first instruction in the program is “LDAA addr”. In this example, we will assume
addr = 0xF5. We will further assume that the instruction is the first instruction of the
program, and is located at address 0x00.

This instruction translates as “load accumulator A with the value located in memory address
0xF5”. If this is the first line of the program, and the program starts at address 0x00 in
memory, then before the fetch cycle the PC is pointing at address 0x00 as shown below.

PC
Memory
Address

Memory
Data

→ 00 LDAA addr
01 F5
02 ??

 INST = ??
MAR = ??

C1 During the Fetch Cycle the instruction register must be loaded with the instruction
(LDAA addr). To do this the MUX must select the PC as the address source, memory
address 0x00 must be read which causes its value to be placed on the DATA lines. The value
on the DATA lines must be latched into the INST register, and the PC must be incremented.
Now the situation is as below:

4

PC
Memory
Address

Memory
Data

00 LDAA addr
→ 01 F5

02 ??
 INST = LDAA addr

 MAR = ??

(NOTE: The instruction register cannot actually contain “LDAA addr”, it will contain the
binary/hex op code you have chosen to represent the command LDAA addr).

C2 During C2, you must read the memory address that the PC is pointing at. By reading
address 0x01 the value 0xF5 is placed on the DATA line. Then 0xF5 needs to be stored in
the MAR register. Finally the program counter should be incremented. After these steps the
situation should be as shown below. Thus during C2, you should have PC_I low, MAR_L
low, READ low, and MEM_SEL set to PC.

PC
Memory
Address

Memory
Data

00 LDAA addr
01 F5

→ 02 ??
 INST = LDAA addr

 MAR = F5

C3 Now that MAR contains the value 0xF5, the multiplexer should select MAR as the
source of the address. This address should then be read which causes the memory contents
of address 0xF5 to be loaded onto the DATA line. Then the ALU can load this value into
ACCA. During C3, you should have PC_I low, READ low, ACCA_L low, and ALU_CTL
set to the value which implements the LOAD function of the ALU. When the control lines
are set up like this, the value 0xF5 will be on the address lines of the memory unit, the data
lines out of the memory unit will contain the data in address 0xF5. This data will be passed
through the ALU to the input of ACCA. On the next clock cycle, the value will be latched
into ACCA, Note that you do not want PC_I low, because the program counter is already
pointing to the next instruction to be executed, and should not be incremented.

Example 2:
The first instruction in the program is “LDAA #num” where #num = F5

This instruction translates as “load accumulator A with the value F5”. Before the program
begins, the situation is as below:

5

PC
Memory
Address

Memory
Data

→ 00 LDAA #num
01 F5
02 ?

INST = ?

C1 The fetch cycle is the same for this command as it was in Example 1 (The fetch cycle is
the same for all commands). After the fetch cycle the situation should be:

PC
Memory
Address

Memory
Data

00 LDAA #num
→ 01 F5

02 ?
 INST = LDAA #num

C2 During C2 the PC is pointing at memory address 0x01. By reading this address, the value
0xF5 is placed on the DATA line. READ, ACCA_L and PC_I should be low, MEM_SEL
should be set to select PC, and the ALU_CTL lines should select the function which loads
ACCA. When the control lines are set up like this, the value 0x01 will be on the address lines
of the memory unit, the data lines out of the memory unit will contain the data in address
0x01 (which is 0xF5). This data will be passed through the ALU to the input of ACCA. On
the next clock cycle, the value will be latched into ACCA.

Shown below is some code to implement the commands LDAA addr and LDAA #num.
This is just one possible implementation. (NOTE this is not a complete program, just a
portion of code) Here LDAA addr is represented by the constant LDAA, and LDAA #num
is represented by the constant LDAA_IMM:

VARIABLE
 Control: MACHINE WITH STATES (RESET, C1, C2, C3);

BEGIN
DEFAULTS

%Enter default values here%
END DEFAULTS;

Control.clk = CLOCK;
Control.reset = !reset;

CASE Control IS
WHEN RESET =>

MEM_SEL = PROG_ADDR;

6

Control = C1;
WHEN C1 =>

INST_L = GND;
MEM_SEL[] = PC;
READ = GND;
PC_I = GND;
Control = C2;

WHEN C2 =>
CASE INST[] IS

WHEN LDAA =>
MEM_SEL[] = PC;
READ= GND;
MAR_L = GND;
PC_I = GND;
Control = C3;

WHEN LDAA_IMM =>
MEM_SEL[] = PC;
ALU_CTL[] = ALU_LOAD;
ACCA_L = GND;
PC_I = GND;
Control = C1;

 % Add other instructions here %
WHEN OTHERS =>

Control = C1;
END CASE;

WHEN C3=>
CASE INST[] IS

WHEN LDAA =>
MEM_SEL[] = MAR;
READ = GND;
ALU_CTL[] = ALU_LOAD;
ACCA_L = GND;
Control = C1;

 % Add other instructions here %
WHEN OTHERS =>

Control = C1;
END CASE;

END CASE;
END;

Example 3:
The first instruction in the program is “JMP addr” where addr = 0xF5

This instruction translates as “load program counter PC with the value F5”. Before the
program begins, the situation is as below:

7

PC
Memory
Address

Memory
Data

→ 00 JMP
01 F5
02 ?

INST = ?

C1 The fetch cycle is the same for this command as it was in Example 1 (The fetch cycle is
the same for all commands). After the fetch cycle the situation should be:

PC
Memory
Address

Memory
Data

00 JMP
→ 01 F5

02 ?
 INST = JMP addr

C2 During C2 the PC is pointing at memory address 0x01. By reading this address, the value
0xF5 is placed on the DATA line. READ, ACCA_L and PC_L should be low, and
MEM_SEL should be set to select PC. The ALU is not being used. When the control lines
are set up like this, the value 0x01 will be on the address lines of the memory unit, the data
lines out of the memory unit will contain the data in address 0x01 (which is 0xF5). On the
next clock edge, the value 0xF5 will be loaded into the program counter PC, so the next
instruction the computer will execute will be that at address 0xF5. There is no C3 cycle.

Implement the Control Unit
1. Assign opcodes to each instruction in the instruction set.
2. Draw the state diagram for the control unit.
3. Write an Altera program to implement the control unit. If you are unsure about an

instruction or how to implement an instruction, ask a TA or lab instructor. It is vital for
the functioning of the final computer that each command be implemented properly by the
control unit.

• This is a complex program. To improve readability you should assign CONSTANTs
to values that are frequently used in your program (such as the opcodes.) For more
on CONSTANT see Altera's Help menu, Search for Help on..., type “Constant
keyword”, then choose Constant Statement Description (AHDL).

• You should also provide default values for the control signals.
In Altera's Help menu, Search for Help on... type “Defaults Statement”, then
choose Defaults Statement Description (AHDL).

4. Simulate the control unit in Altera. What happens when RESET is low? Test with
different values for INST and check that the control unit cycles through the appropriate
states for that instruction and that the control signals are what you expect. Test the JCS

8

command both when the carry is set and when the carry is not set.

9

