
EE 231L Fall 2006

EE 231L Lab 2

Design and Implementation of Combinational Circuits

Part 1. The Decoder Circuit

1. Build the decoder circuit you designed in the pre-lab using HCMOS logic chips.

2. Test your circuit with your logic probe, and confirm that it functions for all possible input
combinations. Have your lab instructor or TA verify the circuit works.

Part 2. Decoder Circuit in Altera

1. Program the decoder circuit in Altera using a Graphics Design File.

2. Program the decoder circuit in Altera using a Text Design File.

3. Simulate the circuit with Altera’s waveform editor.

4. Test your circuit with your logic probe, and confirm that it functions for all possible input
combinations. Have your lab instructor or TA verify the circuit works.

Part 3. Arithmetic Logic Unit

The heart of every computer is an Arithmetic Logic Unit (ALU). This is the part of the
computer which performs arithmetic operations on numbers, e.g. addition, subtraction, etc. Here
you will use the Altera language to implement an ALU having 11 functions.

ALU Operations

Your ALU will perform 11 functions on two 8-bit inputs. Later on this ALU will be one component
of the computer you build in the final lab. At that time the ALU inputs will be from the DATA
bus, ACCA (Accumulator A) and X (X register). To help make the transition to the computer, you
should call the inputs DATA[7..0], ACCA[7..0], and X[7..0]. These inputs could represent either
unsigned numbers, two’s complement numbers, or non-numeric bit patterns. The ALU will generate
an 8-bit result (result), a one bit carry (C) and a one-bit zero bit (Z). To select which of the 11
functions to implement you will use ALU_CTL as selection lines. You will decide which combination
of bits in the selection lines ALU_CTL correspond to for each instruction. The 11 functions are
described in Table 1.

1

EE 231L Fall 2006

ACCA[7..0]

C

ALU_CTL[?..0]

ALU
DATA[7..0]

 X[7..0]
Z

result[7..0]

Figure 1. ALU block diagram.

It is up to you to determine how many control lines are necessary to select the ten different functions.

Table 1. ALU Functions.

2

EE 231L Fall 2006

ALU_CTL Mnemonic Description
Load DATA => result: Output = DATA input

(load DATA into result) C is a don’t care
1 -> Z if result === 0, 0 -> Z otherwise

ADDA ACCA+DATA => result: Add DATA and ACCA
(add) C is carry from addition

1 -> Z if result === 0, 0 -> Z otherwise
SUBA ACCA-DATA => result: Subtract DATA from ACCA

(subtract) C is borrow from subtraction
1 -> Z if result === 0, 0 -> Z otherwise

ANDA ACCA & DATA => result: Logical AND
(logical AND) C is a don’t care

1 -> Z if result === 0, 0 -> Z otherwise
ORAA ACCA # DATA => result: Logical OR

(logical OR) C is a don’t care
1 -> Z if result === 0, 0 -> Z otherwise

COMA ACCA => result: One’s complement of ACCA
(complement) 1 => C

1 -> Z if result === 0, 0 -> Z otherwise
INCA ACCA + 1 => result: Add one to the value in ACCA

(increment) C is a don’t care
1 -> Z if result === 0, 0 -> Z otherwise

LSRA Shift all bits of ACCA one place to the right
(logical shift right) 0 => result[7], ACCA[7..1] -> result[6..0], ACCA[0] => C

1 -> Z if result === 0, 0 -> Z otherwise
LSLA Shift all bits of ACCA one place to the left

(logical shift left) 0 => result[0], ACCA[6..0] -> result[7..1],
ACCA[7] => C
1 -> Z if result === 0, 0 -> Z otherwise

ASRA Shift all bits of ACCA one place to the right
(arithmetic shift right) ACCA[0] => result[7], ACCA[7..1] -> result[6..0],

ACCA[0] => C
1 -> Z if result === 0, 0 -> Z otherwise

CPX X-DATA => result: Subtract DATA from X
(compare X to DATA) C is borrow from subtraction

1 -> Z if result === 0, 0 -> Z otherwise

1. Design your ALU using Altera. Use a Text Design File. Be certain to deal with any unused
bit combinations of the ALU_CTL lines in your Altera program. If for any reason ALU_CTL
should have an undefined bit pattern on its lines during operation you should know what
output will be produced.

2. Simulate the ALU using the Altera simulator. Test multiple combinations of DATA, ACCA and
X. Choose test values that will test all possibilities for the carry and zero bits.

3. Program your ALU code into you EPF6016. Verify that it works, using the test data from
your simulation.

3

EE 231L Fall 2006

4. Make your code into an Altera function called ALU. Verify that you can call this function
from another Altera TDF program.

4

