
EE 231L Fall 2006

EE 231L

Using AHDL to Design Sequential Circuits

In order to design a sequential circuit, you need to use a logic element with memory – a flip-flop
or a latch. AHDL has several types of such elements – a latch, a D flip-flop, a JK flip-flop, an SR
flip-flop and a toggle flip-flop. Here we will discuss two of these elements — the latch and the D
flip-flop.

Latch A latch in AHDL has two inputs – D and En, and one output Q. When En is low, the output
Q does not change. When En is high, the output Q is equal to the input D. Thus, when En is
low, it will hold the value which was on the D input when En went from high to low. To use
a latch in AHDL, declare it in the VARIABLE section of the program:

VARIABLE
A : LATCH;

will define a one-bit latch. To specify what should on the D input of A, use A.d. To specify
what should on the En input of A, use A.ena. To use the Q output, refer to A.q.

Here is the way to specify an eight-bit latch:

VARIABLE
A[7..0] : LATCH;

Here is AHDL code to connect the inputs of the latch to input lines called data_in, the
outputs of the latch to output lines called data_out, and the the enable lines to an input
called latch_enable:

SUBDESIGN my_latch
(
data_in[7..0] : INPUT;
latch_enable : INPUT;
data_out[7..0] : OUTPUT;
)
VARIABLE
A[7..0] : LATCH;
BEGIN
A[].d = data_in[];
A[].ena = latch_enable;
data_out[] = A[].q;
END;

D flip-flop There are two D-type flip-flops in AHDL – DFF and DFFE (D flip-flop with enable). DFF
has the standard D flip-flop inputs and outputs – D input (D), clock input (CLK), active-low
asynchronous clear input (CLRN), active-low asynchronous set input (prn), and the Q output
(Q). DFFE has another input – enable (ENA). The ENA input to a DFFE must be high for the
flip-flop to change state – with ENA low, the Q output will not change on a clock edge.

To use a DFFE, declare it in the VARIABLE section of the program:

1

EE 231L Fall 2006

VARIABLE
B : DFFE;

Let’s build a simple 3-bit up counter: it will count 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, ... Here is the
state transition table:

Present State Next State
y2 y1 y0 Y2 Y1 Y0

0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

This can be implemented with three D flip-flops with the following Boolean equations:

Y2 = y2y0 + y2y1 + y2y1y0

Y1 = y1y0 + y1y0

Y0 = y0

Here is an AHDL program to implement a three-bit counter:

SUBDESIGN 3count
(count[2..0] : OUTPUT;

clock : INPUT;
)

VARIABLE
y[2..0] : DFFE; % Three D flip-flops with enable %

BEGIN
DEFAULTS

y[].ena = VCC; % flip-flops always enabled %
y[].clrn = VCC; % flip-flops always enabled %
y[].prn = VCC; % flip-flops always enabled %

END DEFAULTS;

y[].clk = clock; % Use input clock to run flip-flops %
y2.d = (y2.q & !y0.q) # (y2.q & !y1.q) # (!y2.q & y1.q & y0.q);
y1.d = (!y1.q & y0.q) # (y1.q & !y0.q);
y0.d = !y0.q;

count[] = y[].q; % Assign the outputs of the flip-flops to the

2

EE 231L Fall 2006

output of the system %
END;

You can also design the counter by specifying the transition table and let AHDL determine
the Boolean equations:

SUBDESIGN 3count
(count[2..0] : OUTPUT;

clock : INPUT;
)

VARIABLE
y[2..0] : DFFE; % Three D flip-flops with enable %

BEGIN
DEFAULTS

y[].ena = VCC; % flip-flops always enabled %
y[].clrn = VCC; % flip-flops always enabled %
y[].prn = VCC; % flip-flops always enabled %

END DEFAULTS;

y[].clk = clock; % Specify the clock for the D flip-flops %

TABLE
y[2..0].q => y[2..0].d;
B"000" => B"001";
B"001" => B"010";
B"010" => B"011";
B"011" => B"100";
B"100" => B"101";
B"101" => B"110";
B"110" => B"111";
B"111" => B"000";

END TABLE;

count[] = y[].q; % Assign the outputs of the flip-flops to the
output of the system %

END;

However, there is a much easier way to design counters. The inputs to the D flip-flops are the
outputs of the D flip-flops plus one:

SUBDESIGN 3count
(count[2..0] : OUTPUT;

clock : INPUT;
)

3

EE 231L Fall 2006

VARIABLE
y[2..0] : DFFE; % Three D flip-flops with enable %

BEGIN
DEFAULTS

y[].ena = VCC; % flip-flops always enabled %
y[].clrn = VCC; % flip-flops always enabled %
y[].prn = VCC; % flip-flops always enabled %

END DEFAULTS;

y[].clk = clock; % Specify the clock for the D flip-flops %

y[].d = y[].q + 1; % Next count is current count plus one %

count[] = y[].q; % Assign the outputs of the flip-flops to the
output of the system %

END;

4

EE 231L Fall 2006

This gives you the ability to design very large counters which would be hard to do using
other techniques. A 16-bit counter has 216 or 65,536 states. It is difficult to develop the Boolean
equations, and impractical to enter a transition table with 65,536 lines. Here is a design for a 16-bit
counter:

SUBDESIGN 16count
(count[15..0] : OUTPUT;

clock : INPUT;
)

VARIABLE
y[15..0] : DFFE; % Sixteen D flip-flops with enable %

BEGIN
DEFAULTS

y[].ena = VCC; % flip-flops always enabled %
y[].clrn = VCC; % flip-flops always enabled %
y[].prn = VCC; % flip-flops always enabled %

END DEFAULTS;

y[].clk = clock; % Specify the clock for the D flip-flops %

y[].d = y[].q + 1; % Next count is current count plus one %

count[] = y[].q; % Assign the outputs of the flip-flops to the
output of the system %

END;

Another, more powerful, way to design sequential circuits is with state machines. We will
discuss how to do this in Lab 4.

When you simulate a sequential circuit, you need to do a Timing Analysis. Before you can
do a timing analysis, you have to tell Quartus which input is your clock signal. To do this, go to
Assignments — Timing Analysis Settings. Click on Individual Clocks, and select New.
Give the clock input a name (perhaps clock), and select the node which is used for the clock. The
Required fmax setting is the maximum speed for the clock signal (for now, just choose 1 MHz).
The timing analysis will tell you if your circuit can work at that frequency.

After setting up your clock signal, recompile your design. Quartus should no longer give the
warning ”Found pins functioning as undefined clocks and/or memory enables”. Go to Processing
— Simulator Tool, and make sure the Simulation mode is set for Timing. You can now create
a Vector Waveform File to simulate your design.

When you design with sequential circuits, one (or more) of your inputs will function as a clock.

5

