
EE 231L Fall 2006

EE 231L Lab 4

Design and Implementation of State Machines
Design of a Computer Control Unit

In this lab you will design a control system for a computer. You will design it as a state
machine. Be sure to read the handout Using AHDL to Design State Machines. There are also
a few other blocks you will need to implement your computer – a multiplexer, a decoder, and a
tri-state buffer. In Part 1 of this lab, you will design these other blocks. In Part 2, you will design
the computer control unit, and in Part 3, you will implement and test the control unit.

Part 1. Other Combinational Circuits.

1. Multiplexer .

In the diagram of the final computer there is an element labeled MUX. This is a multiplexer.
The MEM_SEL lines are the selection lines of the multiplexer. Depending on the state of the MEM_SEL
lines, the MUX (multiplexer) will choose to output one of four possible signals: the value in either
PROG_ADDR, PC, MAR or X.

Write an Altera program to implement the MUX. (Remember, PROG_ADDR, PC, and MAR are each
8 bits wide).

2. Decoder .

Directly to the right of the MUX is another computer element. This is the Decoder (DCD). The
DCD determines if the memory address output by the MUX is equal to 0xFF.

• If the address equals 0xFF then the ADDR_FF line should be brought low. This will allow
either the external input or output to be enabled depending on the state of the M_W (memory
write) and M_R (memory read) lines.

• If the output of the mux is not equal to 0xFF, then the ADDR_NOTFF line should be brought
low. When the ADDR_NOTFF line is low, the memory is selected and can be read from or
written to (depending on the state of M_W and M_R).

Write an Altera Program to implement the decoder.

3. Tri-State Buffer.

You will need two tri-state buffers in the final computer. AHDL has an active-hi tri-state
buffer (TRI). Here is a program which implements an 8-bit active-low tri-state buffer:

SUBDESIGN 8trin
(

enan : INPUT; %Active low enable input %
data_in[7..0] : INPUT;
data_out[7..0] : BIDIR;

)

1



EE 231L Fall 2006

VARIABLE
buffer[7..0] : TRI;

BEGIN
buffer[].oe = !enan; % Enable buffer when enan is low %
buffer[].in = data_in[7..0];
data_out[7..0] = buffer[].out;

END;

Part 2. Design of Computer Control Unit.

The data-processing functions of the computer are divided into simple units called instructions.
A computer program is just a collection of computer instructions. The instruction set of a computer
are the basic operations that the computer can perform. The instruction set of our computer is
shown in Figure 1.

In this lab you will design the computer control unit. The control unit is a finite state machine.
Its inputs are the instruction register and the carry, as well as a clock pulse and RESET. The control
unit’s outputs are the control signals that direct the operation of the rest of the computer.

The control unit can be in one of four states: RESET, C1, C2, C3:

RESET is the Reset state. The computer gets into this state when the Reset input is low, and
stays in this state until the Reset input goes high.

C1 is the Fetch Cycle. The computer program is stored in memory. During the fetch cycle the
next instruction is fetched from memory and loaded into the instruction register (INST).

C2 is the first bf Execution Cycle. Once an instruction has been loaded into the INST, the control
unit determines the required course of action to take based on the value of INST and the
current state of the control unit.

C3 is the second Execution Cycle. Some instructions require only require one execution cycle
(C2) while others require two(C2 and C3).

The output of the control unit depends on both the present state and the input. (What type
of state machine is this?)

2



EE 231L Fall 2006

Mnemoinic Operation
LDAA addr Loads ACCA with the value in memory at address addr
load ACCA from
memory C stays the same, Z changes
LDAA #num Loads ACCA with num, the value in memory at the address
load ACCA with an immediately following the LDAA #num command
immediate C stays the same, Z changes
LDAA 0,X Loads ACCA with the value in memory at the address
load ACCA indexed in the X register. C stays the same, Z changes.
STAA addr Stores the value in ACCA at the memory address addr
store ACCA in memory C stays the same, Z changes
ADDA addr Adds the value in memroy location addr to the value in ACCA
add ACCA and value at saves the result in ACCA
in memory Z and C change
SUBA addr Subtracts the value in memroy location addr from the value in ACCA
subtract value in memory at saves the result in ACCA
from ACCA Z and C change
ANDA addr Perform a logical AND of the value in memroy location addr with
logical AND of ACCA the value in ACCA. Save result in ACCA
and value in memory C stays the same, Z changes.
ORAA addr Perform a logical OR of the value in memroy location addr with
logical OR of ACCA the value in ACCA. Save result in ACCA
and value in memory C stays the same, Z changes.
CMPA addr Compare ACCA to value in addr. This is done by subtracting
compares ACCA to the value in addr from ACCA. The C and Z bits
the value in addr are changed. ACCA does not change
LDX #num Loads X with num, the value in memory at the address
load X with an immediately following the LDX #num command
immediate C stays the same, Z changes.
INX Increment value in X
increment X C stays the same, Z changes.
CPX #num Compare X to num, the value in memory at the address
compares X to immediately following the CPX #num command. The C and Z bits
the num are changed. X does not change
COMA Replace the value in ACCA with its one’s complement
complement ACCA C is set to 1, Z changes.
INCA Increment value in ACCA
increment ACCA C stays the same, Z changes
LSLA Logical shift left of ACCA. C and Z change.
LSRA Logical shift right of ACCA. C and Z change.
ASRA Arithmetic shift right of ACCA. C and Z change.
JMP addr Jumps to the instruction stored in address addr
jump (The value in PC is replaced with addr.) C and Z stay the same.
JCS addr Jumps to the instruction stored in address addr if C = 1. If C is
jump if carry set not set, continue with next instruction. C and Z stay the same.
JEQ addr Jumps to the instruction stored in address addr if Z = 1. If Z is
jump if carry set not set, continue with next instruction. C and Z stay the same.

Figure 1.

3



EE 231L Fall 2006

The outputs of the control unit are the control signals shown on the block diagram of the
computer. Except for ALU_CTL and MEM_SEL, all of these signals are active low, so your AHDL pro-
gram should have a DEFAULTS section in which those signals will be high be default. In your AHLD
code you will activate the appropriate signals at the correct times to implement the instruction the
control unit is executing.

During the FETCH cycle the control unit will fetch the next instruction from memory to deter-
mine what instruction it should execute. Thus, the FETCH cycle will be the same for all instructions
? it will read the instruction from memory, and latch it into the INST register. To do this, READ,
INST_L and PC_I should be low, and MEM_SEL should be set to select the address from the program
counter PC. With the control lines set up like this, the address to the memory will be from the PC
— i.e., the address of the next instruction to execute, and the memory output enable line will be
low (active). The memory will put the data at that address on its output lines, which are the input
lines to the INST register. On the next clock edge, the data from memory will be latched into the
INST register, and the PC will be incremented to the next memory address. What the control unit
does next will depend on the data loaded into the INST register. Here are a couple of examples:

Example 1:
Consider the instruction LDAA addr where addr = 0xF5. We will further assume that the
instruction is in memory address 0x00 and 0x01, and the that the code for LDAA addr is 0x01.

PC Memory Address Memory Data
→ 00 01

01 F5
02 Next instruction

INST = ??
MAR = ??

C1: During the Fetch Cycle the instruction register must be loaded with the instruction op code,
0x01. To do this the MUX must select the PC as the address source, memory address 0x00 must
be read which causes its value to be placed on the DATA lines. The value on the DATA ines must
be latched into the INST register, and the PC must be incremented. Thus during C1 you should
have PC_I, INST_L and READ active, and MEM_SEL set to PC. Now the situation is as below:

PC Memory Address Memory Data
00 01

→ 01 F5
02 Next instruction

INST = 01 (LDAA addr op code)
MAR = ??

C2: During C2, you must read the memory address that the PC is pointing at. By reading address
0x01 the value 0xF5 is placed on the DATA line. Then 0xF5 needs to be stored in the MAR
register. Finally the program counter should be incremented. Thus during C2 you should have
PC_I, MAR_L and READ active, and MEM_SEL set to PC. After these steps the situation should be as
shown below:

4



EE 231L Fall 2006

PC Memory Address Memory Data
00 01
01 F5

→ 02 Next instruction
INST = 01 (LDAA addr op code)

MAR = F5

C3: Now that MAR contains the value 0xF5, the multiplexer should select MAR as the source of
the address. This address should then be read which causes the memory contents of address 0xF5
to be placed onto the DATA line. Then the ALU can load this value into ACCA. During C3 you
should have ACCA_L and READ active, MEM_SEL set to MAR, and ALU_CTL set to LOAD. When the
control lines are set up like this, the value 0f 0xF5 will be on the address lines of the memory unit,
and the data lines out of the memory will contain the data in address 0xF5. This data will be
passed through the ALU to the input of ACCA. On the next clock cycle, the value will be latched
into ACCA. Note that you do not want PC_I active because PC is already pointing to the next
instruction to be executed.

Example 2:
The next instruction in the program is LDAA #num where #num = 0xF5 This instruction
translates as ”load accumulator A with the value F5”. Assume the the op code for LDAA #num
is 0x02. Before the program begins, the situation is as below:

PC Memory Address Memory Data
→ 02 02

03 F5
04 Next instruction

INST = ??
MAR = ??

C1: The fetch cycle is the same for this command as it was in Example 1 (The fetch cycle is the
same for all commands). After the fetch cycle the situation should be:

PC Memory Address Memory Data
02 02

→ 03 F5
04 Next instruction

INST = 02 (LDAA #num op code)
MAR = ??

C2: During C2 the PC is pointing at memory address 0x03. By reading this address, the value
0xF5 is placed on the DATA line. READ, ACCA_L and PC_I, should be active, MEM_SEL should be
set to select PC, and the ALU_CTL lines should select the function which loads ACCA. When the
control lines are set up like this, the value 0x03 will be on the address lines of the memory unit,
and the data lines out of the memory unit will contain the data in address 0x03 (which, in this
example, is 0xF5). This data will be passed through the ALU to the input of ACCA. On the next
clock cycle the data will be latched into ACCA. There is no C3 cycle.

5



EE 231L Fall 2006

Shown below is some code to implement the LDAA addr and LDAA #num instructions.
This is just one possible implementation. (NOTE this is not a complete program, just a portion
of code) Here the op code for LDAA addr is represented by the constant LDAA, and the op code
for LDAA #num is represented by the constant LDAA_IMM:

VARIABLE
Control: MACHINE WITH STATES (RESET, C1, C2, C3);

BEGIN
DEFAULTS

%Enter default values here%
END DEFAULTS;

Control.clk = CLOCK;
Control.reset = !reset;

CASE Control IS
WHEN RESET =>

MEM_SEL = PROG_ADDR;
IF reset_in == GND THEN

Control = RESET;
ELSE

Control = C1;
ENDIF;

WHEN C1 =>
INST_L = GND;
MEM_SEL[] = PC;
READ = GND;
PC_I = GND;
Control = C2;

WHEN C2 =>
CASE INST[] IS

WHEN LDAA =>
MEM_SEL[] = PC;
READ = GND;
MAR_L = GND;
PC_I = GND;
Control = C3;

WHEN LDAA_IMM =>
MEM_SEL[] = PC;
ALU_CTL[] = ALU_LOAD;
ACCA_L = GND;
PC_I = GND;
Control = C1;

% Add other instructions here %

6



EE 231L Fall 2006

WHEN OTHERS =>
Control = C1;

END CASE;

WHEN C3=>
CASE INST[] IS

WHEN LDAA =>
MEM_SEL[] = MAR;
READ = GND;
ALU_CTL[] = ALU_LOAD;
ACCA_L = GND;
Control = C1;

% Add other instructions here %
WHEN OTHERS =>

Control = C1;
END CASE;

END CASE;
END;

Example 3:
The next instruction in the program is JMP addr where addr = 0xF5. Assume the the op code
for JMP addr is 0x12. Before the program begins, the situation is as below:

PC Memory Address Memory Data
→ 04 12

05 F5
06 Next instruction

INST = ??
MAR = ??

C1: The fetch cycle is the same for this command as it was in Example 1 (The fetch cycle is the
same for all commands). After the fetch cycle the situation should be:

PC Memory Address Memory Data
04 12

→ 05 F5
06 Next instruction

INST = 12 (JMW addr)
MAR = ??

C2: During C2 the PC is pointing at memory address 0x05. By reading this address, the value
0xF5 is placed on the DATA line. READ, ACCA_L and PC_L, should be active, and MEM_SEL should be
set to select PC. When the control lines are set up like this, the value 0x05 will be on the address
lines of the memory unit, and the data lines out of the memory unit will contain the data in address
0x05 (which, in this example, is 0xF5). This data be on the input lines to PC. On the next clock
cycle the data will be latched into PC. There is no C3 cycle.

7



EE 231L Fall 2006

Implement the Control Unit:

1. Assign opcodes to each instruction in the instruction set.

2. Draw the state diagram for the control unit.

3. Write an Altera program to implement the control unit. If you are unsure about an instruction
or how to implement an instruction, ask a TA or lab instructor. It is vital for the functioning
of the final computer that each command be implemented properly by the control unit.

• This is a complex program. To improve readability you should assign CONSTANTs
to values that are frequently used in your program (such as the opcodes.) For more on
CONSTANT select the Quartus II Help menu, Search ..., type Constant keyword, then
choose Constant Statement (AHDL).

• You should also provide default values for the control signals.

4. Simulate the control unit in Altera. What happens when RESET is low? Test with different
values for INST and check that the control unit cycles through the appropriate states for that
instruction and that the control signals are what you expect. Test the JCS command both
when the carry is set and when the carry is not set.

8


