
EE 308 Spring 2012

EE 308 – Homework 4

Due Feb. 15, 2012

1. Find the values of the N, Z, C, and V bits of the CCR register, and the value of ACCA, after
execution of each of the following instructions, given that (A) = $B7 and the condition flags
are N=1, C=1, Z=0, and V=1 before the instruction. (Assume these are the values before
each instruction starts e.g., do not use the flag state resulting from the instruction in part (a)
as the initial state for part (b).)

(a) ADDA #$7A

(b) ADCA #$3A

(c) LSRA

(d) ASRA

(e) ROLA

(f) CMPA #$20

(g) SUBA #$CC

2. Suppose you started with the following register contents:
PC=201A Y=1234 X=AA55 A=23 B=AC SP=1E56

What address will be in the stack pointer, what values will be in the registers (A, B, X, Y,
SP and PC), and exactly what is in the stack after the following instructions sequence is
executed:

PSHA
PSHY
PSHB
PULX
JSR $2572

3. Below are some data in the MC9S12 memory:

0 1 2 3 4 5 6 7 8 9 A B C D E F
1000 D6 05 35 CF E0 00 FE 08 20 A6 00 47 6A 05 08 53
1010 26 F7 34 C6 C8 CD 9C 40 03 26 FD 53 26 F7 3D 3F
1020 07 C2 3A 68 F3 09 C2 67 9A 0F AA 55 08 40 CD CF

Indicate the values in the registers after the MC9S12 executes the following instructions. Also
write down the number of cycles needed to execute each instruction. Show what will be in the
registers (in hex) after each of the instructions. If the instruction does not change a register,
you may leave that entry blank. Note that the first instruction is located at address 0x2000.

1

EE 308 Spring 2012

D
Instruction A B X Y SP N Z V C Addressing Effective

Mode Address
0A BB 1018 1028 0A00 1 0 1 0

lds #$1010
cpd $101D
pulx
rolb
stab $1013
adda 2,-y

4. Suppose that we have the following instruction sequence to be executed by the MC9S12,
what will be the contents of the topmost four bytes of the stack after the execution of these
instructions?

lds #$2000
ldaa #$12
ldab #$23
std 2,-SP
ldx #$5678
stx 2,-SP

5. Write a subroutine to display a counting pattern on PORTB, and return the next number (the
number passed to the subroutine plus 1). The number to display is passed in accumulator
A. Store this number into PORTB and return the next pattern in the sequence in accumulator
A. The subroutine should return with all registers expect A the same as when the subroutine
was called, so use the stack to save and restore any registers you need to use to implement
the subroutine.

6. Write a subroutine to display the pattern shown below on PORTB. There is an easy way to do
this. Start with two variables, one with a value of 0x80 and the other with a value of 0x01.
OR the two variables together to get 0x81, the first pattern in the sequence. Then rotate the
first variable to the right by one (to get 0x40), and rotate the second variable to the left by
one (to get 0x02). ORing these two together to get 0x42, the second pattern in the sequence.
Continue rotating the first variable to the right and the second to the left, and ORing the
two togther.

2

EE 308 Spring 2012

7. Write a subroutine to generate the next pattern in the sequence for an eight-bit Johnson
counter. The procedure to do this is as follows: Shift the present pattern to the right by one
bit. The most significant bit of the next pattern is the inverse of the least significant bit of
the present pattern. The number to convert is in accumulator A, and the next pattern in
the sequence is returned in accumulator A. The subroutine should return with all registers
expect A the same as when the subroutine was called, so use the stack to save and restore
any registers you need to use to implement the subroutine.

8. Write a subroutine to take the next entry out of a table, write it to PORTB, and update the
index into the table. Here is an example of what the table might look like:

table_len: equ (table_end-table)

org data

table: dc.b $00, $01, $02, $04, $08, $10, $20, $40, $80
table_end:

The index of the number to be displayed is passed in accumulator A. Your code should write
the table entry corresponding to that index to PORTB. Return the index to the next table
element in accumulator A. (For example, if accumulator A were 5, you would write the fifth
element of the table, $10, to PORTB, and return a 6.) Make sure that the index stays between
0 and table_len - 1. The subroutine should return with all registers expect A the same as
when the subroutine was called, so use the stack to save and restore any registers you need
to use to implement the subroutine.

The pattern to display is shown below:

9. Write the program for Part 3 of Lab 2. The program will display four different patterns on
the LED display connected to Port B. You will use the state of bits 1 and 0 of the onboard
DIP switch to select which of the four patterns to display. Write a program to set up Port
B as an eight bit output port (be sure to disable the seven-segment displays, and to enable
the individual LEDs), and to implement (i) a binary up counter, (ii) a shifting bit, (iii) a
Johnson counter, and (iv) a Ford Thunderbird style turn signal based on the state of the

3

EE 308 Spring 2012

DIP switches. (These are the four subroutines from Problems 6 to 9.) Insert a 100 ms delay
between updates of the display. Write the delay as a subroutine. Be sure to initialize the
stack pointer in you program.

Use variables to hold information on the four patterns. (You will need one variable for the
binary counter and Johnson counter patterns, two variables to genertate Pattern 2, and one
variable to hold the sequence number for the TBird Taillight pattern.) Initialize these four
variables to the first pattern in the sequence.

You should have a loop which checks the DIP switches connected to Port H. If bit 7 of the
DIP switches is high, end the loop and exit back to DBug-12 with a SWI instruction. If bit 7
of the DIP switches is low, check bits 0 and 1 to determine what pattern to display:

PH1 PH0 Pattern
0 0 Binary Up Counter
0 1 Pattern 2
1 0 Johnson Counter
1 1 TBird Turn Signal

For example, if bits 1 and 0 of Port H are 10, load accumulator A with the Johnson Counter
variable, call the Johnson Counter subroutine, and save the returned accumulator A into
the Johnson Counter variable. Call the Delay subroutine, then loop back to check the DIP
switches again.

4

