
EE 308 Spring 2012

Lecture 9

February 6, 2012

Writing Assembly Language Programs

• Use flow charts to lay out structure of program

• Use common flow structures

– if-then

– if-then-else

– do-while

– while

• Plan structure of data in memory

• Top-down Design

– Plan overall structure of program

– Work down to more detailed program structure

– Implement structure with instructions

• Optimize program to make use of instruction efficiencies

• Do not sacrifice clarity for efficiency or speed

Input and Output Ports

• How to get data into and out of the MC9S12

1

EE 308 Spring 2012

Example Program: Divide a table of data by 2

Problem: Start with a table of data. The table consists of 5 values, with
the first value at $1000. Each value is between 0 and 255. Create a new
table whose contents are the original table divided by 2. Start the new table
immediately after the original table.

1. Determine where code and data will go in memory.
Code at $2000, data at $1000.

2. Determine type of variables to use.
Because data will be between 0 and 255, can use unsigned 8-bit numbers.

3. Draw a picture of the data structures in memory:

COUNT

table1:

table2:

$1000

2

EE 308 Spring 2012

4. Strategy: Because we are using a table of data, we will need pointers to
each table so we can keep track of which table element we are working
on.
Use the X and Y registers as pointers to the tables.

5. Use a simple flow chart to plan structure of program.

START

Divide
by 2

Store
Result

Pointers
Inc

Init

Entry
Get

Pointers

COUNT

table1

table2

X

Y

3

EE 308 Spring 2012

6. Need a way to determine when we reach the end of the table.
One way: Use a counter (say, register A) to keep track of how many
elements we have processed.

More?
YES

L1:

NO

START

STOP

Divide
by 2

Store
Result

Pointers
Inc

Init

Entry
Get

Pointers

COUNT

table1

table2

X

Y

Init
Counter

Dec
Counter

4

EE 308 Spring 2012

7. Add code to implement blocks:

More?
YES

L1:

NO

LDAA #COUNT

LDX #TABLE1
LDY #TABLE2

LDAB 0,X

STAB 0,Y

INX
INY

DECA

LSRB ; unsigned divide

START

STOP SWI

BNE L1

Divide
by 2

Store
Result

Pointers
Inc

Init

Entry
Get

Pointers

COUNT

table1

table2

X

Y

Init
Counter

Dec
Counter

5

EE 308 Spring 2012

8. Write program:

; Program to divide a table by two

; and store the results in memory

prog: equ $2000

data: equ $1000

count: equ 5

org prog ;set program counter to 0x1000

ldaa #count ;Use A as counter

ldx #table1 ;Use X as data pointer to table1

ldy #table2 ;Use Y as data pointer to table2

l1: ldab 0,x ;Get entry from table1

lsrb ;Divide by two (unsigned)

stab 0,y ;Save in table2

inx ;Increment table1 pointer

iny ;Increment table2 pointer

deca ;Decrement counter

bne l1 ;counter != 0 => more entries to divide

swi ;Done

org data

table1: dc.b $07,$c2,$3a,$68,$F3

table2: ds.b count

6

EE 308 Spring 2012

9. Advanced: Optimize program to make use of instructions set efficiencies:

; Program to divide a table by two

; and store the results in memory

prog: equ $1000

data: equ $2000

count: equ 5

org prog ;set program counter to 0x1000

ldaa #count ;Use B as counter

ldx #table1 ;Use X as data pointer to table1

ldy #table2 ;Use Y as data pointer to table2

l1: ldab 1,x+ ;Get entry from table1; then inc pointer

lsrb ;Divide by two (unsigned)

stab 1,y+ ;Save in table2; then inc pointer

dbne a,l1 ;Decrement counter; if not 0, more to do

swi ;Done

org data

table1: dc.b $07,$c2,$3a,$68,$F3

table2: ds.b count

7

EE 308 Spring 2012

TOP-DOWN PROGRAM DESIGN

• PLAN DATA STRUCTURES IN MEMORY

• START WITH A LARGE PICTURE OF PROGRAM STRUCTURE

• WORK DOWN TO MORE DETAILED STRUCTURE

• TRANSLATE STRUCTURE INTO CODE

• OPTIMIZE FOR EFFICENCY —
DO NOT SACRIFICE CLARITY FOR EFFICIENCY

8

EE 308 Spring 2012

Input and Output Ports

• How do you get data into a computer from the outside?

If TRI is active, the switch is closed
OUT will be the same as IN

OUT IN

OUT IN

D

D

DD

D

D

D

0

3

4

5

6

1

2

0x0000

7

Read from

S
i
g
n
a
l
s

F
r
o
m

O
u
t
s
i
d
e

LDAA $00

Puts data from outside
into accumulator A.

Data from outside looks
like a memory location

gets signals from outside
Any read from address $0000

A Tri−State Buffer acts like a switch

OUT IN

TRI

If TRI is not active, the switch is open
OUT will not be driven by IN
Some other device can drive OUT

D

D

H
C
1
2

D
a
t
a

L
i
n
e
s

SIMPLIFIED INPUT PORT

9

EE 308 Spring 2012

• How do you get data out of computer to the outside?

D

D

DD

D

D

D

D

D 0

3

4

5

6

7

1

2

Write to

S
i
g
n
a
l
s

T
o

O
u
t
s
i
d
e

0x0001

Any write to address $01 latches
data into flip−flops, so data
goes to external pins

When a port is configured as output
and you read from that port, the
data you read is the data which was

LDAA $01
MOVB #$AA,$01

Accumulator A will have $AA after this

written to that port:

MOVB #$AA,$01

puts $AA on the external pins
H
C
1
2

D
a
t
a

L
i
n
e
s

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

SIMPLIFIED OUTPUT PORT

10

EE 308 Spring 2012

• Most I/O ports on MC9S12 can be configured as either input or output

7
PA

is an output port. Data written to

D
7

DDRA

Read from Address 0x0000

Write to Address 0x0000

If Bit 7 of DDRA is 1, the port

A read from address 0x0000 reads data on pin

through tri−state buffer

A write to address 0x0000 writes data to the flip−flop

DDRA (Data Direction Register A) is located at 0x0002

If Bit 7 of DDRA is 0, the port

is an input port. Data written to

through tri−state buffer

flip−flop does not get to pin

7

flip−flop does get to pin

D Q

SIMPLIFIED INPUT/OUTPUT PORT

11

EE 308 Spring 2012

MC9S12DP256B Device User Guide — V02.13

21

Figure 1-1 MC9S12DP256B Block Diagram

256K Byte Flash EEPROM

12K Byte RAM

Enhanced Capture

RESET

EXTAL
XTAL

VDD1,2
VSS1,2

SCI0

4K Byte EEPROM

BKGD

R/W

MODB

XIRQ

NOACC/XCLKS

System
Integration

Module
(SIM)

VDDR

CPU12

Periodic Interrupt
COP Watchdog
Clock Monitor

Single-wire Background

Breakpoints

PLLVSSPLL

XFC
VDDPLL

Multiplexed Address/Data Bus

VDDA
VSSA

VRH
VRLATD0

Multiplexed
Wide Bus

Multiplexed

VDDX
VSSX

Internal Logic 2.5V

Narrow Bus

PPAGE

VDDPLL
VSSPLL

PLL 2.5V

IRQ

LSTRB
ECLK
MODA

PA
4

PA
3

PA
2

PA
1

PA
0

PA
7

PA
6

PA
5

TEST

A
D

D
R

12
A

D
D

R
11

A
D

D
R

10
A

D
D

R
9

A
D

D
R

8

A
D

D
R

15
A

D
D

R
14

A
D

D
R

13
D

AT
A

12
D

AT
A

11
D

AT
A

10
D

AT
A

9
D

AT
A

8

D
AT

A
15

D
AT

A
14

D
AT

A
13

P
B

4
P

B
3

P
B

2
P

B
1

P
B

0

P
B

7
P

B
6

P
B

5
A

D
D

R
4

A
D

D
R

3
A

D
D

R
2

A
D

D
R

1
A

D
D

R
0

A
D

D
R

7
A

D
D

R
6

A
D

D
R

5
D

AT
A

4
D

AT
A

3
D

AT
A

2
D

AT
A

1
D

AT
A

0

D
AT

A
7

D
AT

A
6

D
AT

A
5

D
AT

A
4

D
AT

A
3

D
AT

A
2

D
AT

A
1

D
AT

A
0

D
AT

A
7

D
AT

A
6

D
AT

A
5

PE3
PE4
PE5
PE6
PE7

PE0
PE1
PE2

AN2

AN6

AN0

AN7

AN1

AN3
AN4
AN5

PAD03
PAD04
PAD05
PAD06
PAD07

PAD00
PAD01
PAD02

IOC2

IOC6

IOC0

IOC7

IOC1

IOC3
IOC4
IOC5

PT3
PT4
PT5
PT6
PT7

PT0
PT1
PT2

VRH
VRL

VDDA
VSSA

VRH
VRLATD1

AN2

AN6

AN0

AN7

AN1

AN3
AN4
AN5

PAD11
PAD12
PAD13
PAD14
PAD15

PAD08
PAD09
PAD10

VDDA
VSSA

RXD
TXD

MISO
MOSI

PS3
PS4
PS5

PS0
PS1
PS2SCI1

RXD
TXD

PP3
PP4
PP5
PP6
PP7

PP0
PP1
PP2

PIX2

PIX0
PIX1

PIX3

ECS

PK3

PK7

PK0
PK1

XADDR17

ECS

XADDR14
XADDR15
XADDR16

SCK
SS

PS6
PS7

SPI0

IIC
SDA
SCL

PJ6
PJ7

CAN0
RXCAN
TXCAN

PM1
PM0

CAN1
RXCAN
TXCAN

PM2
PM3

CAN2
RXCAN
TXCAN

PM4
PM5

CAN3
RXCAN
TXCAN

PM6
PM7

KWH2

KWH6

KWH0

KWH7

KWH1

KWH3
KWH4
KWH5

PH3
PH4
PH5
PH6
PH7

PH0
PH1
PH2

KWJ0
KWJ1

PJ0
PJ1

I/O Driver 5V

VDDA
VSSA

A/D Converter 5V &

DDRA DDRB

PTA PTB

D
D

R
E

P
T

E

A
D

1

A
D

0

P
T

K

D
D

R
K

P
T

T

D
D

R
T

P
T

P

D
D

R
P

P
T

S

D
D

R
S

P
T

M

D
D

R
M

P
T

H

D
D

R
H

P
T

J

D
D

R
J

PK2

BDLC RXB
TXB

Clock and
Reset
Generation
Module

Voltage Regulator
VSSR

Debug Module

VDD1,2
VSS1,2

VREGEN

VDDR
VSSR

Voltage Regulator 5V & I/O

CAN4
RXCAN
TXCAN

MISO
MOSI
SCK

SS

SPI2

MISO
MOSI
SCK

SS

SPI1

PIX4
PIX5

PK4
PK5

XADDR18
XADDR19

Voltage Regulator Reference

KWP2

KWP6

KWP0

KWP7

KWP1

KWP3
KWP4
KWP5

KWJ6
KWJ7

Timer

(J1850)

Si
gn

al
s

sh
ow

n
in

Bo
ld

 a
re

 n
ot

 a
va

ila
bl

e
on

 th
e

80
 P

in
 P

ac
ka

ge

M
od

ul
e

to
 P

or
t R

ou
tin

g

PWM2

PWM6

PWM0

PWM7

PWM1

PWM3
PWM4
PWM5

PWM

12

EE 308 Spring 2012

Ports on the MC9S12

• How do you get data out of computer to the outside?

• A Port on the MC9S12 is a device the MC9S12 uses to control some
hardware.

• Many of the MC9S12 ports are used to communicate with hardware
outside of the MC9S12.

• The MC9S12 ports are accessed by the MC9S12 by reading and writing
memory locations $0000 to $03FF.

• Some of the ports we will use in this course are PORTA, PORTB, PTJ and
PTP

• PORTA is accessed by reading and writing address $0000.

– DDRA is accessed by reading and writing address $0002.

• PORTB is accessed by reading and writing address $0001.

– DDRB is accessed by reading and writing address $0003.

• PTJ is accessed by reading and writing address $0268.

– DDRJ is accessed by reading and writing address $026A.

• PTP is accessed by reading and writing address $0258.

– DDRP is accessed by reading and writing address $025A.

• On the DRAGON12-Plus EVB, eight LEDs and four seven-segment
LEDs are connected to PTB.

– Before you can use the eight individual LEDs or the seven-segment
LEDs, you need to enable them.

– Bit 1 of PTJ must be low to enable the eight individual LEDs

∗ To make Bit 1 of PTJ low, you must first make Bit 1 of PTJ an
output by writing a 1 to Bit 1 of DDRJ.

∗ Next, write a 0 to Bit 1 of PTJ.

– Bits 3-0 of PTP are used to enable the four seven-segment LEDs

13

EE 308 Spring 2012

– To use the seven-segment LEDs, first write 1’s to Bits 3-0 of DDRP to
make Bits 3-0 of PTP outputs.

∗ A low PTP0 enables the left-most (Digit 3) seven-segment LED

∗ A low PTP1 enables the second from the left (Digit 2) seven-
segment LED

∗ A low PTP2 enables the third from the left (Digit 1) seven-segment
LED

∗ A low PTP3 enables the right-most (Digit 0) seven-segment LED

– To use the eight individual LEDs and turn off the seven-segment
LEDs, write ones to Bits 3-0 of PTP, and write a 0 to Bit 1 of PTJ:

BSET DDRP,#$0F ; Make PTP3 through PTP0 outputs

BSET PTP,#$0F ; Turn off seven-segment LEDs

BSET DDRJ,#$02 ; Make PTJ1 output

BCLR PTJ,#$02 ; Turn on individual LEDs

• On the DRAGON12-Plus EVB, the LCD display is connected to PTK

• When you power up or reset the MC9S12, PORTA, PORTB, PTJ and PTP

are input ports.

• You can make any or all bits of PORTA, PORTB PTP and PTJ outputs by
writing a 1 to the corresponding bits of their Data Direction Registers.

– You can use DBug-12 to manipulate the IO ports on the MC9S12.

∗ To make PTB an output, use MM to change the contents of address
$0003 (DDRB) to an $FF.

∗ You can now use MM to change contents of address $0001 (PORTB),
which changes the logic levels on the PORTB pins.

∗ If the data direction register makes the port an input, you can
use MD to display the values on the external pins.

14

EE 308 Spring 2012

Using Port A of the MC9S12

and PORTB is at address 0x0001.

DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0

0 0 0 0 0 0 0 0RESET

$0002

Port B works the same, except DDRB is at address 0x0003

To make a bit of Port A an output port, write

the corresponding bit of DDRA.

On reset, DDRA is set to $00, so Port A is an
input port.

For example, to make bits 3−0 of Port A input, and
bits 7−4 output, write a 0xf0 to DDRA.
To send data to the output pins, write to

PORTA (address 0x0000). When you read from PORTA

input pins will return the value of the signals on them

(0 => 0V, 1 => 5V); output pins will return the value

written to them.

RESET

PA6 PA5 PA4 DP3 PA2 PA1 PA0PA7 $0000

To make a bit of Port A an input port, write a 0 to
a 1 to the corresponding bit of DDRA (address 0x0002).

15

EE 308 Spring 2012

;A simple program to make PORTA output and PORTB input,

;then read the signals on PORTB and write these values

;out to PORTA

prog: equ $1000

PORTA: equ $00

PORTB: equ $01

DDRA: equ $02

DDRB: equ $03

org prog

movb #$ff,DDRA ; Make PORTA output

movb #$00,DDRB ; Make PORTB input

ldaa PORTB

staa PORTA

swi

• Because DDRA and DDRB are in consecutive address locations, you could
make PORTA and output and PORTB and input in one instruction:

movw #$ff00,DDRA ; FF -> DDRA, 00 -> DDRB

16

EE 308 Spring 2012

GOOD PROGRAMMING STYLE

1. Make programs easy to read and understand.

• Use comments

• Do not use tricks

2. Make programs easy to modify

• Top-down design

• Structured programming – no spaghetti code

• Self contained subroutines

3. Keep programs short BUT do not sacrifice items 1 and 2 to do so

TIPS FOR WRITING PROGRAMS

1. Think about how data will be stored in memory.

• Draw a picture

2. Think about how to process data

• Draw a flowchart

3. Start with big picture. Break into smaller parts until reduced to indi-
vidual instructions

• Top-down design

4. Use names instead of numbers

17

EE 308 Spring 2012

Another Example of an Assembly Language Program

• Find the average of the numbers in an array of data.

• The numbers are 8-bit unsigned numbers.

• The address of the first number is $E000 and the address of the final
number is $E01F. There are 32 numbers.

• Save the result in a variable called answer at address $2000.

Start by drawing a picture of the data structure in memory:

FIND AVERAGE OF NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE000

0xE01F

 5

 1

 8

 6

11

 4

Treat numbers as 8−bit unsigned numbers

18

EE 308 Spring 2012

Start with the big picture

FIND AVERAGE OF 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE000

0xE01F

START

Process

Entries

Init

Save

Answer

Done

5

1

8

6

11

4

19

EE 308 Spring 2012

Add details to blocks

0 −> Sum

Init

Done

Addr −>

Pointer

0xE000

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE01F

4

5

1

8

6

11

START

Process

Entries

Init

Done

Save

Answer

20

EE 308 Spring 2012

Decide on how to use CPU registers for processing data

FIND AVERAGE OF 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

Init

Done

0 −> Sum

Addr −>

Pointer

0xE000

0xE01F

4

5

1

8

6

11

Pointer: X or Y −− use X

Sum: 16−bit register

 D or Y

 No way to add 8−bit number to D

 Can use ABY to add 8−bit number to Y

START

Process

Entries

Init

Done

Save

Answer

21

EE 308 Spring 2012

Add more details: Expand another block

Yes

Done

Init

Done

0 −> Sum

Addr −>

Pointer

0xE000X −>

0xE01F

4

5

11

8

1

6

Process

Entries

Get

Num

loop:

START

Process

Entries

Init

Done

Save

Answer

FIND AVERAGE OF 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

Inc

Pointer

Add Num

to Sum

More

to do?

No

22

EE 308 Spring 2012

More details: How to tell when program reaches end of array

IDIV

Init

Done

0 −> Sum

Addr −>

Pointer

LDY #0

START

Process

Entries

Init

Init

Done

0 −> Sum

Addr −>

Pointer

Find

Average

FIND AVERAGE OF 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

How to check if more to do?

If X < 0xE020, more to do.

LDX #ARRAY

Process

Entries

Num
Get

loop:

Inc

Pointer

Add Num

to Sum

More

to do?

Yes

Done

Answer
Save

No

Done

Addresses are unsigned, so BLO

BLT or BLO?

X −> 4

 5

 1

 8

 6

11

0xE000

0xE01F

How to find average? Divide by LEN

To divide, use IDIV

LDX #LEN ; divisor in X
TFR Y,D ; dividend in D

23

EE 308 Spring 2012

Convert blocks to assembly code

TFR Y,D

X −> 4

 5

 1

 8

 6

11

0xE000 ARRAY

0xE01F ARRAY_END

Init

Done

0 −> Sum

Addr −>

Pointer

LDY #0

START

Process

Entries

Init

Init

Done

0 −> Sum

Addr −>

Pointer

Find

Average

FIND AVERAGE OF 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

LDX #ARRAY

Process

Entries

Num
Get

loop:

Inc

Pointer

Add Num

to Sum

More

to do?

Yes

Done

Answer
Save

No

LDAB 0,X

ABY

INX

CMPX #ARRAY_END

BLO loop

Done

STD ANSWER

IDIV
LDX #LEN

24

EE 308 Spring 2012

Write program

;Program to average 32 numbers in a memory array

prog: equ $2000

data: equ $1000

array: equ $E000

len: equ 32

org prog

ldx #array ; initialize pointer

ldy #0 ; initialize sum to 0

loop: ldab 0,x ; get number

aby ; odd - add to sum

inx ; point to next entry

cpx #(array+len) ; more to process?

blo loop ; if so, process

tfr y,d ; To divide, need dividend in D

ldx #len ; To divide, need divisor in X

idiv ; D/X quotient in X, remainder in D

stx answer ; done -- save answer

swi

org data

answer: ds.w 1 ; reserve 16-bit word for answer

• Important: Comment program so it is easy to understand.

25

EE 308 Spring 2012

The assembler output for the above program

Freescale HC12-Assembler

(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj. code Source line

---- ---- ------ --------- -----------

1 1 ;Program to average 32 numbers in a memory array

2 2

3 3 0000 2000 prog: equ $2000

4 4 0000 1000 data: equ $1000

5 5

6 6 0000 E000 array: equ $E000

7 7 0000 0020 len: equ 32

8 8

9 9 org prog

10 10

11 11 a002000 CEE0 00 ldx #array ; initialize pointer

12 12 a002003 CD00 00 ldy #0 ; initialize sum to 0

13 13 a002006 E600 loop: ldab 0,x ; get number

14 14 a002008 19ED aby ; odd - add to sum

15 15 a00200A 08 inx ; point to next entry

16 16 a00200B 8EE0 20 cpx #(array+len) ; more to process?

17 17 a00200E 25F6 blo loop ; if so, process

18 18

19 19 a002010 B764 tfr y,d ; To divide, need dividend in D

20 20 a002012 CE00 20 ldx #len ; To divide, need divisor in X

21 21 a002015 1810 idiv ; D/X quotient in X, remainder in D

22 22 a002017 7E10 00 stx answer ; done -- save answer

23 23 a00201A 3F swi

24 24

25 25 org data

26 26 a001000 answer: ds.w 1 ; reserve 16-bit word for answer

27 27

28 28

And here is the .s19 file:

S11E2000CEE000CD0000E60019ED088EE02025F6B764CE002018107E10003FAB

S9030000FC

26

