
EE 308 Spring 2010

Lecture 18

February 29, 2012

The MC9S12 Timer Output Compare Function

• Making an event happen at a specific time on the HC12

• The MC9S12 Output Compare Function

• Registers used to enable the Output Compare Function

• Using the MC9S12 Output Compare Function

• A program to use the MC9S12 Output Compare to generate a square wave

• Setting and clearing bits in the Timer Subsystem

1

EE 308 Spring 2010

Ways to implement delays

• Software Delay

void delay (unsigned int ms) {

unsigned int i;

while (ms > 0) {

i = D_1MS;

while (i > 0) {

i = i - 1;

}

ms = ms - 1;

}

}

Cannot do anything while waiting

• Timer Overflow or Real Time Interrupt

Only limited number of fixed delays

2

EE 308 Spring 2010

The MC9S12 Output Compare Function

;

PORTA = PORTA & ~BIT0;

while (TCNT != T) ;

PORTA = PORTA | BIT0;

Want event to happen at a certain time

Want to produce pulse pulse with width T

PA0

T

while (TCNT != 0x0000) ;

Wait until TCNT == 0x0000, then bring PA0 high

Wait until TCNT == T, then bring PA0 low

3

EE 308 Spring 2010

Want to produce pulse pulse with width T

PA0

T

while (TCNT != 0x0000) ;

while (TCNT != T) ;

PORTA = PORTA | BIT0;

PORTA = PORTA & ~BIT0;

Want event to happen at a certain time

3) Cannot do anything else while waiting

Wait until TCNT == 0x0000, then bring PA0 high

Wait until TCNT == T, then bring PA0 low

2) Time not exact −− software delays

Problems:

1) May miss TCNT == 0x0000 or TCNT == T

4

E
E

308
S
p
rin

g
2010

Want event to happen at a certain time

Want to produce pulse pulse with width T

T

TCNT

0x0000

CMP

CMP

T

PT0

PT0CLK

When TCNT == 0x0000, the output goes high
When TCNT == T, the output goes low

=

=

S Q
R

Now pulse is exaclty T cycles long

5

E
E

308
S
p
rin

g
2010

D Q

VCC

Write

Read

TFLG1

TFLG1

Register

TCNT

16 Bit Counter

COMPARATOR

16 Bit

D Q

OUTPUT COMPARE PORT T 0−7
To use Output Compare, you must set IOSx to 1 in TIOS

11 => VCC

10 => GND
01 => Q

00 => Not Used

OMx OLx (TCTL 1:0)

TCx
Interrupt

I Bit

CCR

CxI

CxF

PTx Pin

Write time you want event

to happen to TCx Register

Tell HC12 what type

of event you want

TIE

CxF

Time Clock

Set rate with prescaler

Enable with TEN

PTT

6

EE 308 Spring 2010

The MC9S12 Output Compare Function

• The MC9S12 allows you to force an event to happen on any of the eight PTT pins

• An external event is a rising edge, a falling edge, or a toggle

• To use the Output Compare Function:

– Enable the timer subsystem (set TEN bit of TSCR1)

– Set the prescaler

– Tell the MC9S12 that you want to use Bit x of PTT for output compare

– Tell the MC9S12 what you want to do on Bit x of PTT (generate rising edge, falling
edge, or toggle)

– Tell the MC9S12 what time you want the event to occur

– Tell the MC9S12 if you want an interrupt to be generated when the event is forced
to occur

• There are some more complicated features of the output compare subsystem which are
activated using registers CFORC, OC7M, OC7D and TTOV.

– Writing a 1 to the corresponding bit of CFORC forces an output compare event to
occur, the same as if a successful comparison has taken place (Section 8.6.5 of
Huang).

– Using OC7M and OC7D allow Timer Channel 7 to control multiple output compare
functions (Section 8.6.4 of Huang).

– Using TTOV allows you to toggle an output compare pin when TCNT overflows. This
allows you to use the output compare system to generate pulse width modulated
signals.

– We will not discuss these advanced features in this class.

7

EE 308 Spring 2010

TSWAI TSBCK TFFCA

TOI TCRE PR2 PR1 PR0

PR2 PR1 PR0

0

0 1

1 0

1 1

0

0

0 1

1 0

1 1

0

0

0

0

0

1

1

1

1

Period Overflow

(s) (ms)µ

TEN

0

Write a 1 to Bit 7 of TSCR1 to turn on timer

To turn on the timer subsystem: TSCR1 = 0x80;

0x0046 TSCR1

Set the prescaler in TSCR2

0x004D TSCR2 0 0

0.0416

0.0833

0.1667

0.3333

0.6667

1.3333

2.6667

5.3333

2.73

 5.46

10.92

21.84

 43.69

 86.38

174.76

349.53

To have overflow rate of 21.84 ms:

TSCR2 = 0x03;

Make sure the overflow time is greater than the width of the pulse

 you want to generate

8

EE 308 Spring 2010

TCTL1 = (TCTL1 | BIT0) & ~BIT1;

IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 0x0080 TIOS

0 0

0 1

1 0

1 1

Write a 1 to the bits of TIOS to make those pins output compare

To make Pin 4 an output compare pin: TIOS = TIOS | 0X10;

Write to TCTL1 and TCTL2 to choose action to take

OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4

OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0

OMn OLn To have Pin 4 toggle on compare:

Disconnected

Toggle

Clear

Set

Configuration

0x0048 TCTL1

0x0049 TCTL2

To enable interrupt when TCNT == TC4: TIE = TIE | BIT4;

C4I C2IC5IC7I C6I C3I C1I C0I

To clear the flag, write a 1 to the bit you want to clear (0 to all others)

To enable interrupt when compare occurs, set corresponding

Write time you want event to occur to TCn register.

To have event occur on Pin 4 when TCNT == 0x0000: TC4 = 0x0000;

To have next event occur T cycles after last event, add T to TCn.

To have next event occur on Pin 4 500 cycles later: TC4 = TC4 + 500;

When TCNT == TCn, the specified action will occur, and flag CFn will be set.

CF7 CF6 CF4 CF3 CF2 CF0CF5 CF1 0x004E TFLG1

bit in TIE register

0x004C TIE

To wait until TCNT == TC4: while ((TFLG1 & BIT4) == 0) ;

To clear flag bit for Pin 4: TFLG1 = BIT4;

9

EE 308 Spring 2010

USING OUTPUT COMPARE ON THE MC9S12

1. In the main program:

(a) Turn on timer subsystem (set bit TEN of TSCR1 reg)

(b) Set prescaler (write to bits PR2-0 of TSCR2 reg)

(c) Set up PTx as OC (set IOSx bit of TIOS reg)

(d) Set action on compare (TCTL 1-2 regs, OMx OLx bits)

OMx OLx Action
0 0 Disconnected
0 1 Toggle
1 0 Clear
1 1 Set

(e) Clear Flag (write 1 to bit CFx of TFLG1 reg)

(f) Enable int (set bit CxI of the TIE reg)

2. In interrupt service routine

(a) Set time for next action to occur (write TCx reg)

• For periodic events add time to TCx register

(b) Clear flag (write 1 to bit CFx of TFLG1 reg, 0 to all other bits)

10

EE 308 Spring 2010

Program to implement a 100 Hz square wave on output pin PT2. Make output toggle
ever 5 ms, for a 10 ms period: 5 ms ∗ 24 × 106 cycles/s = 120, 000 cycles. TCNT can only
count up to 65,536 cycles. Need to use prescaler to get correct frequency. A prescaler of 4
divides the clock by 16, so: 5 ms ∗ (24× 106 cycles/s / 16) = 7, 500 cycles.

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

#include "vectors12.h"

/* Need 10 ms period. Set prescaler to 4, to divide 24 MHz clock by 16.

10 ms * (24,000,000 cycles/sec / 16) = 15,000 */

#define PERIOD 15000

#define HALF_PERIOD (PERIOD/2)

#define disable() __asm(sei)

#define enable() __asm(cli)

interrupt void toc2_isr(void);

void main(void)

{

disable();

TSCR1 = 0x80; /* Turn on timer subsystem */

TSCR2 = 0x04; /* Set prescaler to 16 (0.666 us) */

TIOS = TIOS | 0x04; /* Configure PT2 as Output Compare */

TCTL2 = (TCTL2 | 0x10) & ~0x20; /* Set up PT2 to toggle on compare */

TFLG1 = 0x04; /* Clear Channel 2 flag */

/* Set interrupt vector for Timer Channel 2 */

UserTimerCh2 = (unsigned short) &toc2_isr;

TIE = TIE | 0x04; /* Enable interrupt on Channel 2 */

enable();

while (1)

{

__asm(wai);

}

}

interrupt void toc2_isr(void)

{

TC2 = TC2 + HALF_PERIOD;

TFLG1 = 0x04;

}

11

EE 308 Spring 2010

Capturing the Time of an External Event

• One way to determine the time of an external event is to wait for the event to occur,
then read the TCNT register:

• For example, to determine the time a signal on Bit 0 of PORTB changes from a high to
a low:

while ((PORTB & BIT0) != 0) ; /* Wait while Bit 0 high */

time = TCNT; /* Read time after goes low */

• Two problems with this:

1. Cannot do anything else while waiting

2. Do not get exact time because of delays in software

• To solve problems use hardware which latches TCNT when event occurs, and generates
an interrupt.

• Such hardware is built into the MC9S12 — called the Input Capture System

12

EE 308 Spring 2010

Measure the time between two events

+5V

∆ t

PB0

PB1

+5V

PB0 PB1

How to measure ∆t?

Wait until signal goes low, then measure TCNT

while ((PORTB & BIT0) == BIT0) ;

start = TCNT;

while ((PORTB & BIT0) == BIT1) ;

end = TCNT;

dt = end - start;

13

EE 308 Spring 2010

Measure the time between two events

+5V

∆ t

PB0

PB1

+5V

PB0 PB1

How to measure

∆t?

Wait until signal goes low, then measure TCNT

while ((PORTB & BIT0) == BIT0) ;

start = TCNT;

while ((PORTB & BIT1) == BIT1) ;

end = TCNT;

dt = end - start;

Problems: 1) May not get very accurate time

2) Can’t do anything while waiting for signal

level to change.

14

EE 308 Spring 2010

Measure the time between two events

+5V

∆ t

PB0

PB1

+5V

TCNT

INTERRUPT

Solution: Latch TCNT on falling edge of signal

Read latched values anytime later and get exact value

Can have MC9S12 generate interrupt when event occurs, so can do

other things while waiting

15

EE 308 Spring 2010

The MC9S12 Input Capture Function

• The MC9S12 allows you to capture the time an external event occurs on any of the
eight Port T PTT pins

• An external event is either a rising edge or a falling edge

• To use the Input Capture Function:

– Enable the timer subsystem (set TEN bit of TSCR1)

– Set the prescaler

– Tell the MC9S12 that you want to use a particular pin of PTT for input capture

– Tell the MC9S12 which edge (rising, falling, or either) you want to capture

– Tell the MC9S12 if you want an interrupt to be generated when the cature occurs

16

E
E

308
S
p
rin

g
2010

A Simplified Block Diagram of the MC9S12 Input Capture Subsystem

Write

Read

TFLG1

TFLG1

D Q

VCC
00: Disable

TCNT

16 Bit Counter

Capture

01: Rising
10: Falling
11: Either

 Edge

RegisterEDGx B:A

(TCTL 3:4)

INPUT CAPTURE

TCx

CxI

CxF

CxF

Interrupt

I Bit

CCR

Prescaler

Port T Pin x set up as Input Capture (IOSx = 0 in TOIS)

Bus Clock

TIE

PTT Pin x

17

EE 308 Spring 2010

Registers used to enable Input Capture Function

To turn on the timer subsystem: TSCR1 = BIT7;

TSWAI TSBCK TFFCA

 you want to measure

TOI TCRE PR2 PR1 PR0

PR2 PR1 PR0

0

0 1

1 0

1 1

0

0

0 1

1 0

1 1

0

0

0

0

0

1

1

1

1

Period Overflow

(s) (ms)µ

Make sure the overflow time is greater than the time difference

TEN

0

Write a 1 to Bit 7 of TSCR1 to turn on timer

0x0046 TSCR1

Set the prescaler in TSCR2

0x004D TSCR2 0 0

0.0416

0.0833

0.1667

0.3333

0.6667

1.3333

2.6667

5.3333

2.73

 5.46

10.92

21.84

 43.69

 86.38

174.76

349.53

To have overflow rate of 21.84 ms:

TSCR2 = 0x03;

18

EE 308 Spring 2010

TCTL4 = (TCTL4 | BIT6) & ~BIT7;

Write a 0 to the bits of TIOS to make those pins input capture

Write to TCTL3 and TCTL4 to choose edge(s) to capture

EDGnB EDGnA Configuration

0 0 Disabled

0 1 Rising

1 0 Falling

1 1 Any

To have Pin 3 capture a rising edge:

IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0

EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A

EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A

0x0040 TIOS

0x004A TCTL3

0x004B TCTL4

To make Pin 3 an input capture pin: TIOS = TIOS & ~BIT3;

To enable interrupt on Pin 3: TIE = TIE | BIT3;

CF7 CF6 CF4 CF3 CF2 CF0CF5 CF1 0x008E TFLG1

When specified edge occurs, the corresponding bit in TFLG1 will be set.

To clear the flag, write a 1 to the bit you want to clear (0 to all others)

C4I C2IC5I

bit in TIE register

To enable interrupt when specified edge occurs, set corresponding

C7I C6I C3I C1I C0I

To determine time of specified edge, read 16−bit result registers TC0 thru TC7

To read time of edge on Pin 3:

unsigned int time;

time = TC3;

4

0x004C TIE

To wait until rising edge on Pin 3: while ((TFLG1 & BIT3) == 0) ;

To clear flag bit for Pin 3: TFLG1 = BIT3;

19

EE 308 Spring 2010

USING INPUT CAPTURE ON THE MC9S12

Input Capture: Connect a digital signal to a pin of Port T. Can capture the time of an
edge (rising, falling or either) – the edge will latch the value of TCNT into TCx register.
This is used to measure the difference between two times.

To use Port T Pin x as an input capture pin:

1. Turn on timer subsystem (1 -> Bit 7 of TSCR1 reg)

2. Set prescaler (TSCR2 reg). To get most accuracy set overflow rate as small as possible,
but larger than the maximum time difference you need to measure.

3. Set up PTx as IC (0 -> bit IOx of TIOS reg)

4. Set edge to capture (EDGxB EDGxA of TCTL 3-4 regs)

EDGxB EDGxA

0 0 Disabled
0 1 Rising Edge
1 0 Falling Edge
1 1 Either Edge

5. Clear flag (1 -> bit CFx of TFLG1 reg, 0 -> all other bits of TFLG1)

6. If using interrupts

(a) Enable interrupt on channel x (1 -> bit CxI of TIE reg)

(b) Clear I bit of CCR (cli or enable())

(c) In interrupt service routine,

i. Read time of edge from TCx

ii. Clear flag (1 -> bit CFx of TFLG1 reg, 0 -> all other bits of TFLG1)

7. If polling in main program

(a) Wait for Bit x of TFLG1 to become set

(b) Read time of edge from TCx

(c) Clear flag (1 -> bit CFx of TFLG1 reg, 0 -> all other bits of TFLG1)

20

EE 308 Spring 2010

/* Program to determine the time between two rising edges using the *

* MC9S12 Input Capture subsystem

*/

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

#include <stdio.h>

#include <termio.h>

unsigned int first, second, time;

void main(void)

{

TSCR1 = 0x80; /* Turn on timer subsystem */

TSCR2 = 0x05; /* Set prescaler for divide by 32 */

/* 87.38 ms overflow time */

/* Setup for IC1 */

TIOS = TIOS & ~0x02; /* IOC1 set for Input Capture */

TCTL4 = (TCTL4 | 0x04) & ~0x08; /* Capture Rising Edge */

TFLG1 = 0x02; /* Clear IC1 Flag */

/* Setup for IC2 */

TIOS = TIOS & ~0x04; /* IOC2 set for Input Capture */

TCTL4 = (TCTL4 | 0x10) & ~0x20; /* Capture Rising Edge */

TFLG1 = 0x04; /* Clear IC2 Flag */

while ((TFLG1 & 0x02) == 0) ; /* Wait for 1st rising edge; */

first = TC1; /* Read time of 1st edge; */

while ((TFLG1 & 0x04) == 0) ; /* Wait for 2nd rising edge; */

second = TC2; /* Read time of 2nd edge; */

time = second - first; /* Calculate total time */

printf("time = %d cycles\n",time);

__asm(swi);

}

21

EE 308 Spring 2010

Using the Keyword volatile in C

• Consider the following code fragment, which waits until an event occurs on Pin 2 of
PTT:

#define TRUE 1

#define FALSE 0

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

#include "vectors12.h"

#define enable() __asm(cli)

#define disable() __asm(sei)

interrupt void tic2_isr(void);

unsigned int time, done;

void main(void)

{

disable();

/* Code to set up Input Capture 2 */

TFLG1 = 0x04; /* Clear CF2 */

UserTimerCh2 = (short) &tic2_isr; /* Set interrupt vector */

enable(); /* Enable Interrupts */

done = FALSE;

while (!done) ;

__asm(swi);

}

interrupt void tic2_isr(void)

{

time = TC2;

TFLG1 = 0x04;

done = TRUE;

}

22

EE 308 Spring 2010

• An optimizing compiler knows that done will not change in the main() function. It
may decide that, since done is FALSE in the main() function, and nothing in the main()
function changes the value of done, then done will always be FALSE, so there is no need
to check if it will ever become TRUE.

• An optimizing comiler might change the line

while (!done) ;

to

while (TRUE) ;

and the program will never get beyond that line.

• By declaring done to be volatile, you tell the compiler that the value of done might
change somewhere else other than in the main() function (such as in an interrupt
service routine), and the compiler should not optimize on the done variable.

volatile unsigned int time, done;

• If a variable can change its value outside the normal flow of the program (i.e., inside
an interrupt service routine), declare the variable to be of type volatile.

23

EE 308 Spring 2010

Program to measure the time between two rising edges, and print out the result

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

#include <stdio.h>

#include <termio.h>

#include "vectors12.h"

#define enable() __asm(cli)

#define disable() __asm(sei)

#define TRUE 1

#define FALSE 0

/* Function Prototypes */

interrupt void tic1_isr(void);

interrupt void tic2_isr(void);

/* Declare things changed inside ISRs as volatile */

volatile unsigned int first, second, time, done;

void main(void)

{

disable();

done = FALSE;

/* Turn on timer subsystem */

TSCR1 = 0x80;

/* Set prescaler to 32 (87.38 ms), no TOF interrupt */

TSCR2 = 0x05;

/* Setup for IC1 */

TIOS = TIOS & ~0x02; /* Configure PT1 as IC */

TCTL4 = (TCTL4 | 0x04) & ~0x08; /* Capture Rising Edge */

TFLG1 = 0x02; /* Clear IC1 Flag */

/* Set interrupt vector for Timer Channel 1 */

UserTimerCh1 = (short) &tic1_isr;

TIE = TIE | 0x02; /* Enable IC1 Interrupt */

/* Setup for IC2 */

TIOS = TIOS & ~0x04; /* Configure PT2 as IC */

TCTL4 = (TCTL4 | 0x10) & ~0x20; /* Capture Rising Edge */

TFLG1 = 0x04; /* Clear IC2 Flag */

/* Set interrupt vector for Timer Channel 2 */

UserTimerCh2 = (short) &tic2_isr;

TIE = TIE | 0x04; /* Enable IC2 Interrupt */

24

EE 308 Spring 2010

/* Enable interrupts by clearing I bit of CCR */

enable();

while (!done)

{

__asm(wai); /* Low power mode while waiting */

}

time = second - first; /* Calculate total time */

printf("time = %d cycles\r\n",time); /* print */;

}

interrupt void tic1_isr(void)

{

first = TC1;

TFLG1 = 0x02;

}

interrupt void tic2_isr(void)

{

second = TC2;

done = TRUE;

TFLG1 = 0x04;

}

25

