
EE 308 Spring 2010

Lecture 19

March 2, 2012

The MC9S12 Timer Input Capture Function

• Capturing the time of an external event

• The MC9S12 Input Capture Function

• Registers used to enable the Input Capture Function

• Using the MC9S12 Input Capture Function

• A program to use the MC9S12 Input Capture in polling mode

• Using the keyword volatile in C

• A program to use the MC9S12 Input Capture in interrupt mode

1

EE 308 Spring 2010

Capturing the Time of an External Event

• One way to determine the time of an external event is to wait for the event to occur,
the read the TCNT register:

• For example, to determine the time a signal on Bit 0 of PORTB changes from a high to
a low:

while ((PORTB & 0x01) != 0) ; /* Wait while Bit 0 high */

time = TCNT; /* Read time after goes low */

• Two problems with this:

1. Cannot do anything else while waiting

2. Do not get exact time because of delays in software

• To solve problems use hardware which latches TCNT when event occurs, and generates
an interrupt.

• Such hardware is built into the MC9S12 — called the Input Capture System

2

EE 308 Spring 2010

Measure the time between two events

+5V

∆ t

PB0

PB1

+5V

PB0 PB1

How to measure ∆t?

Wait until signal goes low, then measure TCNT

while ((PORTB & 0x01) == 0x01) ;

start = TCNT;

while ((PORTB & 0x02) == 0x02) ;

end = TCNT;

dt = end - start;

3

EE 308 Spring 2010

Measure the time between two events

+5V

∆ t

PB0

PB1

+5V

PB0 PB1

How to measure

∆t?

Wait until signal goes low, then measure TCNT

while ((PORTB & 0x01) == 0x01) ;

start = TCNT;

while ((PORTB & 0x02) == 0x02) ;

end = TCNT;

dt = end - start;

Problems: 1) May not get very accurate time

2) Can’t do anything while waiting for signal

level to change.

4

EE 308 Spring 2010

Measure the time between two events

+5V

∆ t

PB0

PB1

+5V

TCNT

INTERRUPT

Solution: Latch TCNT on falling edge of signal

Read latched values anytime later and get exact value

Can have MC9S12 generate interrupt when event occurs, so can do

other things while waiting

5

EE 308 Spring 2010

The MC9S12 Input Capture Function

• The MC9S12 allows you to capture the time an external event occurs on any of the
eight Port T PTT pins

• An external event is either a rising edge or a falling edge

• To use the Input Capture Function:

– Enable the timer subsystem (set TEN bit of TSCR1)

– Set the prescaler

– Tell the MC9S12 that you want to use a particular pin of PTT for input capture

– Tell the MC9S12 which edge (rising, falling, or either) you want to capture

– Tell the MC9S12 if you want an interrupt to be generated when the cature occurs

6

E
E

308
S
p
rin

g
2010

A Simplified Block Diagram of the MC9S12 Input Capture Subsystem

Write

Read

TFLG1

TFLG1

D Q

VCC
00: Disable

TCNT

16 Bit Counter

Capture

01: Rising
10: Falling
11: Either

 Edge

RegisterEDGx B:A

(TCTL 3:4)

INPUT CAPTURE

TCx

CxI

CxF

CxF

Interrupt

I Bit

CCR

Prescaler

Port T Pin x set up as Input Capture (IOSx = 0 in TOIS)

Bus Clock

TIE

PTT Pin x

7

EE 308 Spring 2010

Registers used to enable Input Capture Function

To turn on the timer subsystem: TSCR1 = BIT7;

TSWAI TSBCK TFFCA

 you want to measure

TOI TCRE PR2 PR1 PR0

PR2 PR1 PR0

0

0 1

1 0

1 1

0

0

0 1

1 0

1 1

0

0

0

0

0

1

1

1

1

Period Overflow

(s) (ms)µ

Make sure the overflow time is greater than the time difference

TEN

0

Write a 1 to Bit 7 of TSCR1 to turn on timer

0x0046 TSCR1

Set the prescaler in TSCR2

0x004D TSCR2 0 0

0.0416

0.0833

0.1667

0.3333

0.6667

1.3333

2.6667

5.3333

2.73

 5.46

10.92

21.84

 43.69

 86.38

174.76

349.53

To have overflow rate of 21.84 ms:

TSCR2 = 0x03;

8

EE 308 Spring 2010

TCTL4 = (TCTL4 | BIT6) & ~BIT7;

Write a 0 to the bits of TIOS to make those pins input capture

Write to TCTL3 and TCTL4 to choose edge(s) to capture

EDGnB EDGnA Configuration

0 0 Disabled

0 1 Rising

1 0 Falling

1 1 Any

To have Pin 3 capture a rising edge:

IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0

EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A

EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A

0x0040 TIOS

0x004A TCTL3

0x004B TCTL4

To make Pin 3 an input capture pin: TIOS = TIOS & ~BIT3;

To enable interrupt on Pin 3: TIE = TIE | BIT3;

CF7 CF6 CF4 CF3 CF2 CF0CF5 CF1 0x008E TFLG1

When specified edge occurs, the corresponding bit in TFLG1 will be set.

To clear the flag, write a 1 to the bit you want to clear (0 to all others)

C4I C2IC5I

bit in TIE register

To enable interrupt when specified edge occurs, set corresponding

C7I C6I C3I C1I C0I

To determine time of specified edge, read 16−bit result registers TC0 thru TC7

To read time of edge on Pin 3:

unsigned int time;

time = TC3;

4

0x004C TIE

To wait until rising edge on Pin 3: while ((TFLG1 & BIT3) == 0) ;

To clear flag bit for Pin 3: TFLG1 = BIT3;

9

EE 308 Spring 2010

USING INPUT CAPTURE ON THE MC9S12

Input Capture: Connect a digital signal to a pin of Port T. Can capture the time of an
edge (rising, falling or either) – the edge will latch the value of TCNT into TCx register.
This is used to measure the difference between two times.

To use Port T Pin x as an input capture pin:

1. Turn on timer subsystem (1 -> Bit 7 of TSCR1 reg)

2. Set prescaler (TSCR2 reg). To get most accuracy set overflow rate as small as possible,
but larger than the maximum time difference you need to measure.

3. Set up PTx as IC (0 -> bit x of TIOS reg)

4. Set edge to capture (EDGxB EDGxA of TCTL 3-4 regs)

EDGxB EDGxA

0 0 Disabled
0 1 Rising Edge
1 0 Falling Edge
1 1 Either Edge

5. Clear flag (1 -> bit x of TFLG1 reg, 0 -> all other bits of TFLG1)

6. If using interrupts

(a) Enable interrupt on channel x (1 -> bit x of TIE reg)

(b) Clear I bit of CCR (cli or enable())

(c) In interrupt service routine,

i. Read time of edge from TCx

ii. Clear flag (1 -> bit x of TFLG1 reg, 0 -> all other bits of TFLG1)

7. If polling in main program

(a) Wait for Bit x of TFLG1 to become set

(b) Read time of edge from TCx

(c) Clear flag (1 -> bit x of TFLG1 reg, 0 -> all other bits of TFLG1)

10

EE 308 Spring 2010

/* Program to determine the time between two rising edges using the *

* MC9S12 Input Capture subsystem

*/

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

#include <stdio.h>

#include <termio.h>

unsigned int first, second, time;

void main(void)

{

TSCR1 = 0x80; /* Turn on timer subsystem */

TSCR2 = 0x05; /* Set prescaler for divide by 32 */

/* 87.38 ms overflow time */

/* Setup for IC1 */

TIOS = TIOS & ~0x02; /* IOC1 set for Input Capture */

TCTL4 = (TCTL4 | 0x04) & ~0x08; /* Capture Rising Edge */

TFLG1 = 0x02; /* Clear IC1 Flag */

/* Setup for IC2 */

TIOS = TIOS & ~0x04; /* IOC2 set for Input Capture */

TCTL4 = (TCTL4 | 0x10) & ~0x20; /* Capture Rising Edge */

TFLG1 = 0x04; /* Clear IC2 Flag */

while ((TFLG1 & 0x02) == 0) ; /* Wait for 1st rising edge; */

first = TC1; /* Read time of 1st edge; */

while ((TFLG1 & 0x04) == 0) ; /* Wait for 2nd rising edge; */

second = TC2; /* Read time of 2nd edge; */

time = second - first; /* Calculate total time */

printf("time = %d cycles\n",time);

__asm(swi);

}

11

EE 308 Spring 2010

Using the Keyword volatile in C

• Consider the following code fragment, which waits until an event occurs on Pin 2 of
PTT:

#define TRUE 1

#define FALSE 0

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

#include "vectors12.h"

#define enable() __asm(cli)

#define disable() __asm(sei)

interrupt void tic2_isr(void);

unsigned int time, done;

void main(void)

{

disable();

/* Code to set up Input Capture 2 */

TFLG1 = 0x04; /* Clear CF2 */

UserTimerCh2 = (short) &tic2_isr; /* Set interrupt vector */

enable(); /* Enable Interrupts */

done = FALSE;

while (!done) ;

__asm(swi);

}

interrupt void tic2_isr(void)

{

time = TC2;

TFLG1 = 0x04;

done = TRUE;

}

12

EE 308 Spring 2010

• An optimizing compiler knows that done will not change in the main() function. It
may decide that, since done is FALSE in the main() function, and nothing in the main()
function changes the value of done, then done will always be FALSE, so there is no need
to check if it will ever become TRUE.

• An optimizing comiler might change the line

while (!done) ;

to

while (TRUE) ;

and the program will never get beyond that line.

• By declaring done to be volatile, you tell the compiler that the value of done might
change somewhere else other than in the main() function (such as in an interrupt
service routine), and the compiler should not optimize on the done variable.

volatile unsigned int time, done;

• If a variable can change its value outside the normal flow of the program (i.e., inside
an interrupt service routine), declare the variable to be of type volatile.

13

EE 308 Spring 2010

USING INTERRUPTS ON THE MC9S12

What happens when the MC9S12 receives an unmasked interrupt?

1. Finish current instruction

2. Push all registers onto the stack

3. Set I bit of CCR

4. Load Program Counter from interrupt vector for particular interrupt

Most interrupts have both a specific mask and a general mask. For most interrupts the
general mask is the I bit of the CCR. For the TOF interrupt the specific mask is the TOI
bit of the TSCR2 register.

Before using interrupts, make sure to:

1. Load stack pointer

• Done for you in C by the C startup code

2. Write Interrupt Service Routine

• Do whatever needs to be done to service interrupt

• Clear interrupt flag

• Exit with RTI

– Use the interrupt definition in the CodeWarrior compiler

3. Load address of interrupt service routine into interrupt vector

4. Do any setup needed for interrupt

• For example, for the TOF interrupt, turn on timer and set prescaler

5. Enable specific interrupt

6. Enable interrupts in general (clear I bit of CCR with cli instruction or enable()

function

Can disable all (maskable) interrupts with the sei instruction or disable() function.

14

EE 308 Spring 2010

Program to measure the time between two rising edges, and print out the result

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

#include <stdio.h>

#include <termio.h>

#include "vectors12.h"

#define enable() __asm(cli)

#define disable() __asm(sei)

#define TRUE 1

#define FALSE 0

/* Function Prototypes */

interrupt void tic1_isr(void);

interrupt void tic2_isr(void);

/* Declare things changed inside ISRs as volatile */

volatile unsigned int first, second, time, done;

void main(void)

{

disable();

done = FALSE;

/* Turn on timer subsystem */

TSCR1 = 0x80;

/* Set prescaler to 32 (87.38 ms), no TOF interrupt */

TSCR2 = 0x05;

/* Setup for IC1 */

TIOS = TIOS & ~0x02; /* Configure PT1 as IC */

TCTL4 = (TCTL4 | 0x04) & ~0x08; /* Capture Rising Edge */

TFLG1 = 0x02; /* Clear IC1 Flag */

/* Set interrupt vector for Timer Channel 1 */

UserTimerCh1 = (short) &tic1_isr;

TIE = TIE | 0x02; /* Enable IC1 Interrupt */

/* Setup for IC2 */

TIOS = TIOS & ~0x04; /* Configure PT2 as IC */

TCTL4 = (TCTL4 | 0x10) & ~0x20; /* Capture Rising Edge */

TFLG1 = 0x04; /* Clear IC2 Flag */

/* Set interrupt vector for Timer Channel 2 */

UserTimerCh2 = (short) &tic2_isr;

TIE = TIE | 0x04; /* Enable IC2 Interrupt */

15

EE 308 Spring 2010

/* Enable interrupts by clearing I bit of CCR */

enable();

while (!done)

{

__asm(wai); /* Low power mode while waiting */

}

time = second - first; /* Calculate total time */

printf("time = %d cycles\r\n",time); /* print */;

}

interrupt void tic1_isr(void)

{

first = TC1;

TFLG1 = 0x02;

}

interrupt void tic2_isr(void)

{

second = TC2;

done = TRUE;

TFLG1 = 0x04;

}

16

EE 308 Spring 2010

Letting the MC9S12 convert cycles to time

You can let the MC9S12 convert clock cycles to time, and display the time between two
edges on the seven-segment LEDs:

• Need to divide the number of clock cycles by (24,000,000/prescaler)

• Easiest to do this using floating point numbers

• Need to convert back to fixed-point number to display on seven-segment LEDs

• Can display number of milliseconds on seven segment LEDs

• This will display time in hexadecimal. It makes for sense to humans to display time in
decimal – convert hexadecimal to BCD

• To use floating-point numbers, select ”float is IEEE32” when you create a CodeWarrior
project.

#define clock_freq 24000000.0

#define prescaler ((float) (1 << (TSCR2&0x07)))

unsigned int t_first, t_second, dt;

unsigned int value; // Value to display on seven-segment LEDs

...

dt = ((float)(t_second - t_first))*prescaler)/clock_freq * 1000.0;

value = hex2bcd(dt);

...

unsigned int hex2bcd(unsigned int x)

{

unsigned int d3,d2,d1,d0;

if (x > 9999) return 0xFFFF;

d3 = x/1000;

x = x-d3*1000;

d2 = x/100;

x = x-d2*100;

d1 = x/10;

x = x-d1*10;

d0 = x;

return d3*16*16*16 + d2*16*16 + d1*16 + d0;

}

17

