EE 308 Exam 2 April 1, 1999

Name:

You may use one page of notes and any of the Motorola data books. Show all work. Partial credit will be given. No credit will be given if an answer appears with no supporting work.

For all the problems in this exam, assume you are using an HC12 with a 16 MHz crystal, resulting in a 8 MHz processor clock.

Also assume that hc12.h has been included, so you can refer any register in the HC12 by name rather than by address.

- 1. The following questions concern writing C code.
 - (a) Write some C code which will write the number 0x5a to the byte at address 0x0402.
 - (b) Write some C code which will write the number 0x5aa5 to the two bytes at addresses 0x0400 and 0x0401.
 - (c) Write some C code which will wait until the TOF bit of TFLG2 is set.
- 2. Below are the contents of the memory of an HC12:

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
09D0	10	23	ЗB	7C	10	04	86	80	B7	10	25	ЗB	FC	10	18	F3
09E0	12	50	FD	10	18	86	40	B7	10	23	ЗB	FC	10	12	DD	02
09F0	86	02	B7	10	23	ЗB	7C	10	03	86	40	Β7	10	25	ЗB	86
FFCO	CC	05	9F	CD	99	03	84	9C	01	9B	CC	90	66	FC	93	30
FFDO	7E	E3	4B	7E	E5	38	21	54	05	83	09	34	2A	38	ЗC	03
FFEO	41	38	66	F2	7C	13	37	OC	25	F2	OC	38	5F	1B	42	1 A
FFFO	7 A	26	21	13	6A	AA	20	1F	4B	38	33	38	45	38	08	00

(a) What is the address of the first instruction the HC12 will execute when coming out of reset?

- (b) What is the address of the first instruction of the timer overflow interrupt service routine?
- (c) What is the address of the first instruction of the pulse accumulator input edge interrupt service routine?

3. Below are the contents of the memory of an HC12:

	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
09D0	10	23	ЗB	7C	10	04	86	80	B7	10	25	ЗB	FC	10	18	F3
09E0	12	50	FD	10	18	86	40	B7	10	23	ЗB	FC	10	12	DD	02
09F0	86	02	B7	10	23	ЗB	7C	10	03	86	40	B7	10	25	ЗB	86
FFCO	CC	05	9F	CD	99	03	84	9C	01	9B	CC	90	66	FC	93	30
FFDO	7E	E3	4B	7E	E5	38	21	54	05	83	09	34	2A	38	ЗC	03
FFEO	41	38	66	F2	7C	13	37	0C	25	F2	0C	38	5F	1B	42	1A
FFFO	7A	26	21	13	6A	AA	20	1F	4B	38	33	38	45	38	08	00

The HC12 registers have the following values:

Reg	-	_							
	SXHI	NZVC							
CCR	1 1 0 0	0 1 0 1							
A:B	A3	92							
Х	82F2								
Y	12F7								
SP	09E7								
PC	08	24							

Assume that the TOI interrupt has been enabled.

- (a) List at least five things you need to do before enabling interrupts.
- (b) Describe what happens to the HC12 between the time that the timer overflows and the HC12 starts executing the first instruction of the timer overflow interrupt service routine.
- (c) Fill in any values in memory or registers which have changed in the HC12 gets to the first instruction in the timer overflow interrupt service routine. Leave blank any memory or register which has not changed value.

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
09D0																
09E0																
09F0																

Reg		-				-		
	S	Х	H	Ι	N	Ζ	V	С
CCR								
A:B								
Х								
Y								
SP								
PC								

4. From the time the timer overflows to the time the HC12 starts executing the first instruction in the interrupt service routine, about how much time has elapsed.

5. Below are the values of some timer registers in the HC12:

TIOS	TSCR	TCTL1	TCTL2	TCTL3	TCTL4	TMSK1	TMSK2	TFLG1	TFLG2
32	80	A4	C2	5F	76	2C	84	52	00

- (a) Which timer channels are being used for output compare?
- (b) Which timer channel interrupts are enabled?
- (c) What action is timer channel 2 set to perform? (I.e., if it is set up as input capture, which edge will it capture; if it is set up as output compare ; if it is set up as output compare what action will occur when TCNT equals TC2?)
- (d) What action is timer channel 3 set to perform?
- (e) What action is timer channel 4 set to perform?
- (f) What action is timer channel 5 set to perform?
- (g) Which timer flags are set?
- (h) What is the timer prescaler set at i.e., by what factor will the processor be divided before driving the TCNT register?
- (i) How long (in seconds) will it take for the TCNT register to overflow?

- 6. The following questions pertain the the HC12 timer subsystem.
 - (a) Timer channels 1 and 2 are both set up to capture the time of a falling edge. The timer prescaler is set to 3. When a falling edge occurs on channel 1, the number 0xD852 is latched into TC1. When a falling edge occurs on channel 2, the number 0x2712 is latched into TC2. How much time (in seconds) elapsed between the falling edge on channel 1 and the falling edge on channel 2?
 - (b) How do you clear a flag in the timer subsystem?
 - (c) Write some C code to clear C5F, the flag for timer channel 5. Be sure your code does not clear any other timer flag which may be set.
 - (d) What should you do to set the timer prescaler to a value of 3?
 - (e) Write some C code to set the timer prescaler to a value of 3.
 - (f) What should you do to set up timer channel 5 to function as an output compare, to toggle the output pin on a successful compare, and to generate an interrupt on a successful compare?
 - (g) Write some C to set up timer channel 5 to function as an output compare, to toggle the output pin on a successful compare, and to generate an interrupt on a successful compare. Be sure your code does not change the function of any other timer channel.
 - (h) The timer prescaler is set to 3. You are using timer channel 6 to generate a 2 kHz square wave. Timer channel 6 is set up to toggle the output on a successful compare. What number should you add to TC6 after each successful compare to get the 2 kHz square wave?
 - (i) You are using the input capture function of the HC12 to measure a time difference of about 75 ms. What is the smallest value of the prescaler you can use to measure this time without TCNT wrapping around?
 - (j) Write some C code to set the prescaler to the value of the above part?

7. The following items concern the pulse width modulation subsystem of the HC12.

Use the values of the selected PWM registers below for Parts a-d.

PWCLK	PWPOL	PWEN	PWSCALO	PWSCAL1	PWPERO	PWPER1	PWDTYO	PWDTY1	PWCTL
2D	5F	03	35	57	C7	63	31	4F	00

(a) What is the period of the pulse width modulated signal generated on PWM channel 0?

- (b) What is the duty cycle of the pulse width modulated signal on PWM channel 0?
- (c) What is the period of the pulse width modulated signal generated on PWM channel 1?
- (d) What is the duty cycle of the pulse width modulated signal on PWM channel 1?
- (e) You want to set up PWM channel 3 to generate a pulse width modulated signal with a frequency of 600 Hz and a duty cycle of 40%. How will you set up the HC12 PWM registers to do this?
- (f) Write some C code to set up PWM channel 3 to generate a pulse width modulated signal with a frequency of 600 Hz and a duty cycle of 40%. Be sure your code does not change the function of any other PWM channel?
- (g) What is the advantage of using the PWM subsystem to generate a pulse width modulated signal rather than using timer channel 7 together with another of the timer output compare channels?