
COSMIC 68HC12 C Compiler – Evaluation Guidelines.

1

APPLICATION NOTE:
COSMIC V4.1x 68HC12 C COMPILER PACKAGE

This application note is intended to aid understanding of how to get the best results from an evaluation of
the COSMIC 68HC12 V4.1x C compiler package.

APPLICATION NOTE : .. 1

EVALUATION CRITERI A .. 3

RELIABILIT Y ... 3
LANGUAGE EXTENSIONS... 3
LANGUAGE PRAGMAS.. 4
COMPILER PERFORMANCE... 4

Performance Oriented Compile-Time Options.. 5
PERFORMANCE SUMMARY ... 6
EASE OF USE.. 6
CHECKING APPLICATION CODE SIZES .. 7
CHECKING APPLICATION CODE SPEED ... 8

PROGRAM SECTION NAME S... 9

USER DEFINED PROGRAM SECTIONS.. 9

INITIALIZATION OF STATIC DAT A ..13

BATTERY BACKED RAM..14

OTHER USEFUL COMPILER FEATURE S..16

VERSION AND FLAG OPTIONS: ..16
LISTING FILES..17
GENERATING EFFICIENT BIT-ADDRESSING INSTRUCTIONS..17
USE OF THE EMUL/EMULS INSTRUCTIONS..19
USE OF THE EMACS INSTRUCTION...21
EEPROM SUPPORT...22
BANK-SWITCHING SUPPORT ...25

Compiler Support for Bank-Switching...25
Linker Support for Bank-Switching ...28

BANK PACKING UTILITY ...31
IN-LINE ASSEMBLER STATEMENTS..33
INTERRUPT HANDLERS AT THE C LEVEL..35
FLOATING POINT SUPPORT ...39

ASSEMBLER CONSIDERATION S..41

INVOKING CA6812 ...41
LANGUAGE SYNTAX...41
INSTRUCTIONS...42
LABELS...43
CONSTANTS...43
EXPRESSIONS...43
MACRO INSTRUCTIONS...44
CONDITIONAL DIRECTIVES...45

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

2

INCLUDES..45
SECTIONS..45
BRANCH OPTIMIZATION ...46
OLD SYNTAX ...46
ASSEMBLER DIRECTIVES..46

LINKER CONSIDERATIONS ..49

EXAMPLE LINKER COMMAND FILES..49
68HC812A4 Target...49
68HC912B32 Target...50

SUPPORT FOR P&E DEBUGGER...51
LIBRARIES CONSIDERATIONS..52
IEEE695 OBJECT FILE FORMAT SUPPORT...53

DISCLAIMER ..54

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

3

Evaluation Criteria
In general, most evaluations follow the same form and have similar criteria and below we list the criteria
which are most often specified as being of primary importance to end-users.

Reliability
1. The C compiler package must give reliable operation. The COSMIC 68HC12 compiler has been in

the marketplace for three years and is field-tested at hundreds of sites worldwide. Reliability is a key
feature of the COSMIC compiler. However, there are an infinite number of test cases needed to
exhaustively remove all possible defects; if you find a defect during your evaluation, please report it
via email to: support@cosmic-us.com or call (+) 781 932-2556 and ask for technical support.

2. It must build your application code; we cannot guarantee it will immediately compile your C code or
assemble your assembly language code without errors. If you are migrating C code from a different
microcontroller and your code compiled with a COSMIC V4 compiler, it should be a relatively simple
job to recompile using the COSMIC V4 68HC12 compiler. If, however, you have been using another
vendor’s C compiler, do not expect to be able to recompile without changes. Most embedded compilers
have added language “extensions” to support features not supported in ANSI C that are important to
embedded systems programmers. The table below lists the current extensions supported in the
COSMIC 68HC12 C compiler:

Language Extensions

Extension Syntax Description 6812
_asm() in-line assembler function. Can be used in C

expressions In-line code must be inside a C function. �

@<address> specify code/data at absolute address, address
�

@bool function returning with condition codes already set
�

@builtin in-lined or intrinsic function (not supported in V4.1C)
�

@dir force direct page addressing for static data. This can be
forced as a compile-time option using the +zpage option
at compile-time

�

@eeprom special write sequence (if EEPROM available)
�

@far 32-bit addresses (or bank switching)
�

@fast Fast function calling. This can be forced as a compile-
time option using the +fast option at compile-time

�

@interrupt C interrupt function
�

@near 16-bit addresses (default except for 68HC05)
�

@nostack function using static model instead of stack. This can be
forced as a compile-time option using the +nostk +st?
options at compile-time

[[

@pack pack structures or locals when even alignment (6816) [[

@port I/O (not memory-mapped, or need special mode)
�

@regsafe don’t save/restore registers on function entry/exit [[

short float Fixed-point DSP support (6816 only) [[

@tiny 8-bit addressing (zero page, default for 68HC05) [[

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

4

Language Pragmas

Pragma Description 6812
#pragma asm
#pragma endasm

In-line assembly language. Assembler code can be
inside or outside a C function. �

#asm
#endasm

alias for #pragma asm
�

#pragma section <name> Place code/data in new program section name
�

#pragma debug [on/off] specify debugging to be on or off [[

#pragma space <sc> set default space modifiers
�

�-- feature is supported [[– feature is not supported

If you are going to make use of language extensions, we recommend you define the extensions as a series
of macros in a separate source file; this will help you keep your application code portable and compiler
independent. For example:

#ifdef COSMIC
#define INTERRUPT @interrupt
#endif
..
INTERRUPT void isr();

{
...

}

Note that by using the @keyword syntax to represent special things to the compiler, you are still free to use
keyword as an identifier in your source code. Also, use #pragma very carefully! Most C compilers will, if
they don’t recognize the #pragma syntax, simply ignore it and if your code relies on the pragma being
recognized, you can get a successful compile but your application won’t run.

The COSMIC 68HC12 assembler, ca6812, conforms to the Motorola MCUasm standard assembly
language format, the current Motorola standard. Unfortunately, there has typically been no defined
industry standard for assembly language format, so if you are migrating assembly language code into
COSMIC format, you may have to invest some time and effort translating your code.

Most of the conversion effort will involve pseudo-ops, things like storage directives and macro formats.
The actual assembler instructions will most likely need no conversion. If you make extensive use of
(complex) relocatable arithmetic in your assembly source code, you may have to re-code this part of your
application.

Tools to help you convert from your old assembler format to COSMIC V4 format are: PERL, sed or awk.
Most of these utilities are available free on the Internet.

Compiler Performance
3. It must give good performance. Some compiler vendors will tell you they have lots of different
optimization levels available, that you can control; while this may be true, the net effect of these levels on a
limited architecture, like the 68HC12, may be minimal or, even worse, detrimental to correct operation!
COSMIC’s approach to optimization is to let the C compiler do most of the work and give the user control
over very few options, to reduce complexity and improve reliability.

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

5

Performance Oriented Compile-Time Options

The compile-time options that will make a difference to application performance are:

-no do not use the optimizer. If you want to compile code with this option, be aware that your code
 will not be optimized, resulting in larger size and slower execution. By default, the optimizer is

enabled. If you are wary of optimizers, because of previous experiences with highly optimizing
 compilers, this flag may be a good starting point for you. We recommend you do not use this
 option, unless you are certain the optimizer is the source of problems.

+nowiden this flag disables the widening of char values to int values and float to double across
function calls. By default the compiler will widen, to adhere to ANSI C. If your code
makes heavy use of char-sized or float-sized function arguments, compile with this flag.
It is safe to compile with this option all of the time.

 +fast In-line machine library calls for long integer arithmetic and integer switches. This flag can cause
your code to execute faster at the expense of larger code size. If application execution speed is
more important than application size, try compiling with this option.

+sprec if you need floating point support, but can make do with float precision (32-bits total), this
flag will force all floating point arithmetic to be done in strict single-precision. By default,
the compiler will promote float (32-bit) to double (64-bit) in expressions where floats and
doubles are mixed and such arithmetic is carried out in double precision, which is typically 3 to
4 times slower than single precision.

+zpage this flag causes all static data, declared outside a C function body, to be allocated storage in
the direct or zero page (usually the first 256 bytes of address space), where it can be
addressed using direct addressing. Direct address access is one byte shorter than addressing data
outside direct page memory. Note the 68HC12 I/O register block usually occupies all of direct
page memory, so you will not be able to use this flag unless you have mapped the I/O block to a
different 2kb boundary other than 0x00.

If you can make use of direct page memory for application data, but you aren’t sure how big
your static data is, you can compile with the +zpage option and at link time you tell the linker to
check for zero page overflow by specifying the maximum size of the zero page program section,
which is named the .bsct section. In you linker command file you need to have the following
line:

+seg .bsct -m256

which will cause the linker to generate an error message when more than 256 bytes of data are
being allocated into the .bsct section.

The advantage of using the +zpage compile-time flag, is you don’t need to modify your source
code to get the desired effect. If, however, you want fine control over which data is placed in
direct page memory or if you get an overflow error message from the linker, you should use the
@dir type qualifier attached to the data declaration to selectively place commonly used data into
direct page memory:

For example,

#define FASTMEM @dir

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

6

unsigned char count = 1; /* count is in the regular .data section */
FASTMEM unsigned char fastcount = 1; /* fastcount is in .bsct section */

For a description of default program section names used by the compiler/linker see Program Section Names
description below.

Performance Summary

In summary, you should evaluate your use of the following compile-time options:

> cx6812 +nowiden test.c /* use +nowiden all the time */
> cx6812 +nowiden +sprec test.c /* use +sprec if using floating point, and single-precision

 (32-bit) floating point is adequate */
> cx6812 +nowiden +fast test.c /* use +fast if speed is more important than size */
> cx6812 +nowiden +zpage test.c /* use +zpage if you need to speed up access to most

 frequently used static data by placing it in direct page
*/

Ease Of Use
4. Ease of Use. How easy is it to use the compiler package? A question often asked is “does the

compiler run under Windows?” The answer is “yes!” but compilers are not graphical user interfaces;
most users decide what compile-time options are required and will use a Make utility and Make file to
build the application, so the compiler just becomes a “black-box” that either compiles application code
without error or it generates an error file if there are errors.

 There are two versions of the C compiler package available; one version runs on Windows
 3.1/3.11/95/NT systems and under DOS and runs as a 16-bit application; the other version runs as a
 32-bit application and provides support for long filenames, so it will only run under Windows 95 or
 Window NT.

If you want to run a Make utility or the C compiler directly, without leaving Windows, what you really
need is a good Windows-based code/project editor. There are a couple of options:

(a) Premia Corporation’s Codewright Professional editor is an excellent code/project editor
 and I.D.E. that supports programming in Assembly, ADA, C, C++, Cobol, Java, HTML,
 Pascal, Perl, and Visual Basic, so it serves your wider programming needs. It also offers
 vi, Brief or CUA emulation modes, so if you are used to using MultiEdit, you will find
 Codewright easy to use.

 COSMIC has integrated all it’s C compilers with Codewright, so that any compile/assemble/link-
 time error messages are automatically detected and displayed; a simple mouse-click on the error
 line will put you right at the offending line in your original source code. You can
 compile/assemble and link your code without leaving Windows, or you can invoke a Make to
 build your application.

 You can get a full, time-limited Codewright demonstration at Premia’s web-site:
 http://www.premia.com. Or call them at 1 888 477-3642 or (+) 503 641-6001.

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

7

 If you decide to use Codewright, you can buy it directly from COSMIC.

(b) The GNU Emacs editor is now also available for Windows 95/NT. Emacs is widely used on UNIX

workstations and is available free from the Free Software Foundation. You can get pre-built
binaries and complete source code for Emacs from a number of Internet sites (check your local
university web or ftp sites). Take a look at
http://www.cs.washington.edu/homes/voelker/ntemacs.html where you will find a lot of
information about Emacs. A couple of COSMIC customers have implemented Emacs error
parsers, so that compile-time errors are automatically detected by Emacs. The lack of commercial
grade technical support service for Emacs is it’s biggest drawback.

 If you need a high quality Make utility, we recommend you look at Opus Software Make. You can
 download a demo from http://www.opussoftware.com or call them on 1 800 248-6787. You can also
 use Microsoft Make (Nmake) or virtually any other Make you are used to using.

Checking Application Code Sizes
You are at the point of having your application built and running OK. Now you want to collect some data
on program sizes. Here you have to be sure you are looking at real program section sizes. To look at the
sizes of object files (.o files) or executable files (.h12 files), use the cobj utility program included with the
compiler. This utility is an object file inspector and can print out lots of useful information about your
object files, including the constituent program section sizes.

The option that is of most interest in determining program section sizes is the -n option. We suggest you
look at object file (.o) section sizes first as this gives you a good indication of compiler code efficiency.
Then you need to look at the executable file (.h12) section sizes as this is the final linked executable that
will be going into your product. Remember that the combined sizes of the .text, .const and .init sections
must fit into your ROM/EPROM and the combined sizes of the .data, .bsct and .bss sections must fit into
available RAM and you must have space for a stack.

To print out the sizes of the program sections defined in the relocatable object file prog.o:

> cobj -n prog.o

sections:

.text: hilo
 111 data bytes at 108
 48 reloc bytes at 219
.bss: bss hilo
 516 reserved bytes

The above tells you there are 111 bytes in the .text section and 516 bytes in the .bss section of the object
file. There are no other program sections defined in this example.

Now if the object file is linked with the start-up file, crts.o, and with run-time libraries, we can create the
fully linked executable file, prog.h12 using the linker command file prog.lkf:

> clnk -o prog.h12 prog.lkf
> cobj -n prog.h12

sections:

.text: hilo code, at address 0xf000
 133 data bytes at 284

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

8

.const: no attribute, at address 0xf085
 0 data bytes at 417
.data: no attribute (init), at address 0x0
 0 data bytes at 417
.bss: bss hilo, at address 0x0
 516 reserved bytes

The above data tells you the .text section has grown to 133 bytes and the .bss section is still at 516 bytes.
The .text section is bigger because prog.o was linked with the C runtime startup file, crts.o, which contains
exactly 22 bytes of code. There were no unresolved references to library routines in this example.

A common mistake is to look at the sizes of the .o, .h12 or .hex files at the DOS or Windows directory
level. These sizes include additional information, such as debugging and relocation information and are
therefore misleading. The only meaningful, and easiest to obtain, results are those generated by the cobj
utility.

Checking Application Code Speed
To perform a full real-time analysis of target code execution speed, you probably need to run your
application on real target hardware or on an in-circuit emulator. If however, you need to perform a quick
timing analysis and you have an evaluation copy of COSMIC’s ZAP/SIM12 simulator/debugger, you can
use the simulator to get timing information. When single-stepping or when running to a breakpoint,
ZAP/SIM12 will provide a cycle count in the Register window which can be converted to a time figure
based on the target system CPU bus speed. If your application is not entirely I/O driven, you can stub out
code that relies on hardware being present, and run the whole application under the simulator; the
ZAP/SIM12 Analyze/Performance menu system gives a histogram of cycle counts for the whole application
on a function or source file basis.

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

9

The remainder of this application note supplements the current COSMIC compiler user documentation.

Program Section Names

The following program section names are defined by the compiler as defaults:

Default Program Section
Names

Description

.text Function code which normally resides in ROM/EPROM

.const Literal data: strings, constants, switch tables, C data declared as const. This
default can be overridden using the -nocst flag at compile time to force all
constant data into the .text section. This program section is normally located
right after the .text section

.data Initialized static C data which is normally resident in RAM, but whose
initial values are normally held in ROM; this includes static data that is
initialized to zero. This program section is normally located in RAM, but not
in direct page RAM

.bss Un-initialized static C data which is normally resident in RAM. The .bss
section (block started by symbol) is really just a 32-bit counter that counts
the number of bytes of un-initialized data, and at start-up time, the C run-
time start-up files, crts.s or crtsi.s, initializes the .bss section to zeros.
.bss data can be forced into the .data section at compile-time using the
+nobss option.

.bsct Initialized or un-initialized static C data declared using @dir type qualifier
or static data contained in source files compiled with +zpage flag. This
program section is normally located in direct page RAM (first 256 bytes of
the address space)

.eeprom Reserved for data declared using @eeprom

.init Copy of initialized data sections (.data & .bsct sections) to be located in
ROM and copied to RAM at start-up using crtsi.o ; by default .init is
appended after the first .text section (see description below entitled
“Initialization of Static Data”). This section is created by the linker when
you link with crtsi.o or reference the symbol __idesc__ in your code

.debug Debugging section. Used by the ZAP C source-level debugger or other third
party debuggers. Not of interest to most users.

User Defined Program Sections
It is possible to redirect the default program sections to any user defined section, at the C level, using the
following pragma syntax, which is only supported in the V4.1x compiler releases:

#pragma section <attribute> <qualified_name>

where <attribute> is either empty or one of the following sequences:

const
@dir

and <qualified_name> is a section name enclosed as follows:

(name) -- parenthesis indicate a code section

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

10

[name] -- square brackets indicate un-initialized data
{ name} -- curly braces indicate initialized data

A section name is a plain C identifier which does not begin with a period (.) and which is no longer than
thirteen characters. The compiler will automatically prefix the section name with a period when passing
the section name to the assembler. To switch back to the default section names, just omit the section name
in the <qualified_name> sequence:

#pragma section () /* switch back to default .text section */

Examples:

#pragma section (.code) /* executable instructions redirected to section named .code */
#pragma section const {string} /* constant strings and data redirected to section named .string */
#pragma section [.udata] /* un-initialized static data redirected to section named .udata */
#pragma section {.idata} /* initialized static data redirected to section named .idata */
#pragma section @dir [.zpage] /* initialized & uninitialized direct page data redirected to section .zpage */

Note that {name} and [name] are equivalent for the const section as it is always considered initialized.

A practical C example involves defining a program section for interrupt vectors, which have to be placed at
a specific location in target system memory. The C source file, test-vec.c:

#include <stdlib.h>

extern void _stext(); /* startup routine */
extern void sci_rcv(); /* SCI character receive handler */
extern void spi_rcv(); /* SPI receive handler */

#pragma section const {vectors} /* define a new section for constants
 called vectors */

void (* const _vectab[])() = { /* 0xFFCE */
0, /* Key Wake Up H */
0, /* Key Wake Up J */
0, /* ATD */
0, /* SCI 2 */
sci_rcv, /* SCI 1 */
spi_rcv, /* SPI */
0, /* Pulse acc input */
0, /* Pulse acc overf */
0, /* Timer overf */
0, /* Timer channel 7 */
0, /* Timer channel 6 */
0, /* Timer channel 5 */
0, /* Timer channel 4 */
0, /* Timer channel 3 */
0, /* Timer channel 2 */
0, /* Timer channel 1 */
0, /* Timer channel 0 */
0, /* Real time */
0, /* IRQ */
0, /* XIRQ */
0, /* SWI */
0, /* illegal */
0, /* cop fail */
0, /* cop clock fail */
_stext, /* RESET */
};

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

11

#pragma section const {} /* now switch back to the default section
 name for constants, .const */

const int a = 255; /* variable ‘a’ is in .const section */

void main() /* do nothing example */
 {
 int b;

 b = a;
}

When compiled, test-vec.c generates the following assembly language listing file (test-vec.ls) and object
file test-vec.o; note that the vector table, vectab, is defined in its own program section, named .vectors,
which can be located to the proper location in target memory using the linker.

 1 ; C Compiler for MC68HC12 [COSMIC Software]
 2 ; Version V4.1f - 03 Nov 1997
 3 .vectors: section
 4 0000 __vectab:
 5 0000 0000 dc.w 0
 6 0002 0000 dc.w 0
 7 0004 0000 dc.w 0
 8 0006 0000 dc.w 0
 9 0008 0000 dc.w _sci_rcv
 10 000a 0000 dc.w _spi_rcv
 11 000c 0000 dc.w 0
 12 000e 0000 dc.w 0
 13 0010 0000 dc.w 0
 14 0012 0000 dc.w 0
 15 0014 0000 dc.w 0
 16 0016 0000 dc.w 0
 17 0018 0000 dc.w 0
 18 001a 0000 dc.w 0
 19 001c 0000 dc.w 0
 20 001e 0000 dc.w 0
 21 0020 0000 dc.w 0
 22 0022 0000 dc.w 0
 23 0024 0000 dc.w 0
 24 0026 0000 dc.w 0
 25 0028 0000 dc.w 0
 26 002a 0000 dc.w 0
 27 002c 0000 dc.w 0
 28 002e 0000 dc.w 0
 29 0030 0000 dc.w __stext
 30 .const:section
 31 0000 _a:
 32 0000 00ff dc.w 255
 33 ; 1 #include <stdlib.h>
 33 ; 2
 33 ; 3 extern void _stext(); /* startup routine */
 33 ; 4 extern void sci_rcv(); /* SCI character receive handler */
 33 ; 5 extern void spi_rcv(); /* SPI receive handler */
 33 ; 6
 33 ; 7 #pragma section const {vectors} /* define a new section for constants,
 33 ; 8 called vectors */

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

12

 33 ; 9
 33 ; 10 void (* const _vectab[])() = { /* 0xFFCE */
 33 ; 11 0, /* Key Wake Up H */
 33 ; 12 0, /* Key Wake Up J */
 33 ; 13 0, /* ATD */
 33 ; 14 0, /* SCI 2 */
 33 ; 15 sci_rcv, /* SCI 1 */
 33 ; 16 spi_rcv, /* SPI */
 33 ; 17 0, /* Pulse acc input */
 33 ; 18 0, /* Pulse acc overf */
 33 ; 19 0, /* Timer overf */
 33 ; 20 0, /* Timer channel 7 */
 33 ; 21 0, /* Timer channel 6 */
 33 ; 22 0, /* Timer channel 5 */
 33 ; 23 0, /* Timer channel 4 */
 33 ; 24 0, /* Timer channel 3 */
 33 ; 25 0, /* Timer channel 2 */
 33 ; 26 0, /* Timer channel 1 */
 33 ; 27 0, /* Timer channel 0 */
 33 ; 28 0, /* Real time */
 33 ; 29 0, /* IRQ */
 33 ; 30 0, /* XIRQ */
 33 ; 31 0, /* SWI */
 33 ; 32 0, /* illegal */
 33 ; 33 0, /* cop fail */
 33 ; 34 0, /* cop clock fail */
 33 ; 35 _stext, /* RESET */
 33 ; 36 };
 33 ; 37
 33 ; 38 #pragma section const {} /* now switch back to the default section
 33 ; 39 name for constants, .const */
 33 ; 40
 33 ; 41 const int a = 255; /* variable 'a' is in .const section */
 33 ; 42
 33 ; 43 void main() /* do nothing example */
 33 ; 44 {
 34 switch .text
 35 0000 _main:
 36 00000002 OFST: set 2
 38 ; 45 int b;
 38 ; 46
 38 ; 47 b = a;
 39 0000 fc0000 ldd _a
 40 ; 48 }
 41 0003 3d rts
 42 xdef _main
 43 xdef _a
 44 xdef __vectab
 45 xref _spi_rcv
 46 xref _sci_rcv
 47 xref __stext
 48 end

To locate the .vectors program section at link time, include the following line in your link command file:

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

13

+seg .text -b 0xf000 -n .text # code section, .text, starts at 0xf000
+seg .const -a .text # constants section, .const, follows .text section
+seg .data -b 0 # initialized data section, .data, located at 0
+seg .vectors -b 0xffce # interrupt vectors section, .vectors, located at 0xffce
test-vec.o

Initialization of Static Data

Static data (data defined outside a function) which is also given an initial value is handled separately from
static data which is un-initialized:

Examples

int i = 3; /* i is initialized to 3 */
int j = 0; /* j is initialized to 0 */
int k; /* k is un-initialized */
char obuff[4] = {‘a’,’b’,’c’,’d’}; /* obuff is a 4-byte initialized character

array */
char ibuff[4]; /* ibuff is a 4-byte un-initialized character array */

Why do you need to be aware of how the compiler/linker handles static data? The main reason is that a real
embedded system has to be initialized somehow after a power on reset, for example, and important initial
values have to be stored somewhere in non-volatile storage. Some embedded systems can initialize
themselves by downloading the application across some sort of link and run out of RAM, but most
embedded applications run out of ROM or EPROM. In a ROM-based system there must be RAM available
to hold data values that can be written to, and to hold the stack. If your application code explicitly
initializes static data, as with data items i, j and obuff above, then when the embedded system is initialized
the initialized static data must be set to the initialized values otherwise the application will not run
correctly. How is this done? The system has to get these initialized values from somewhere, and the
obvious place is to keep a copy of them in ROM or EPROM and to copy them into RAM upon initialization
of the system.

The compiler puts initialized static data, which is not in the direct page, into the .data section – all the data
defined in this section is initialized to the initial values you specified in your code. Static data which is
defined using @dir or compiled using +zpage is placed in the .bsct section, and unlike .data, contains both
initialized and un-initialized data.

If your application defines initialized static data, you have to reference the symbol __idesc__ somewhere in
your application code, or you need to link in the modified C run-time start-up file crtsi.o instead of the
default start-up file crts.o. This causes the linker to create a program section, named .init, into which it
makes a copy of the .data and .bsct sections and any other used-defined segments (see -id linker option)
which contain initialized static data. The linker locates a .text section, which by default is the first defined
.text section but which can be over-ridden using the -it option to the linker, to act as a host for the .init
section. After it has scanned the whole executable file to identify all initialized data sections which it has to
copy, it also builds a descriptor containing the starting address and length of each such section; this
descriptor is placed at the end of the host .text section and the copied sections are placed after the
descriptor.

The process is completed by the crtsi.o code which copies the initialized static data from ROM into RAM.

So what? Well, what the above means is that if your application defines 2K of initialized static data, a copy
of this 2K area has to be held in your ROM or EPROM, so you need to make sure your ROM is large

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

14

enough to hold program code, constants and initialized data. If you are short on ROM space, you may need
to minimize your use of initialized static data.

Battery Backed RAM
In a ROM-based system, battery backup is commonly used to preserve certain areas of RAM. In this
situation the embedded system has to differentiate between a “cold boot” and a “warm boot” when it starts
up; on a cold boot, all data segments are initialized including battery backed RAM; on a warm boot, battery
backed RAM is not initialized, but all other data segments are initialized. How is this accomplished using
the COSMIC tools?

The crtsi.s startup code file allows you to always or never initialize a data segment at program startup and
so we have to establish conditions that allow crtsi.s to recognize the two boot situations. There are a
number of possibilities, but a simple one is to use a byte inside battery backed RAM, say the first byte,
which contains a magic number; the magic number will be used to determine if the system should perform
a cold or warm boot.

Once this is defined, crtsi.s has to be modified to test the magic byte before doing the initialization loop.
Unfortunately, you may also have more than one program segment to initialize, so the problem is: how do
you find which segment is the battery backed segment? The linker will help you here; when a segment is
selected for initialization, either automatically by its section name (e.g. .data) or explicitly (with the -id
linker option), it is entered in the descriptor created by the linker along with a flag byte, whose value is the
ASCII code of the first significant letter of the segment name (either the section name, or the segment
name given by the -n linker option, if this was used). The first significant letter means that any ‘.’ prefix
character is ignored. Because the letter is encoded in the descriptor, the crtsi.s file can now test it against
the expected character and thus locate the battery-backed segment. Here is a segment definition which can
be used for battery backed data:

+seg .data -b 0x2000 -n .backed

Here the -id option is not necessary as the .data section name is directly recognized by the linker as a
predefined initialized section name. The above line will encode the letter ‘b’ as the flag byte in the
descriptor for the battery backed segment.

In the standard crtsi.s file, the flag is only tested against zero, to detect the end of the descriptor, using the
following algorithm:

while (flag != 0)
{
copy_segment;
skip to next segment;
}

To handle battery backed RAM we need to modify this algorithm as follows:

while (flag != 0)
{
if (flag != ‘b’ || first_byte != magic)

copy_segment;
skip to next segment;
}

So on a system boot, the battery backed area of RAM will NOT be initialized if its first byte is equal to the
magic value. Note that it is easy to find the location of this first byte as this address is encoded in the
descriptor which contains the destination address for the segment.

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

15

Below is a listing for a modified crtsi.s, for 68HC12 target, with the code added to handle a battery backed
data segment:

; C STARTUP FOR MC68HC12
; WITH AUTOMATIC DATA INITIALISATION
; Copyright (c) 1996 by COSMIC Software
;

xdef _exit, __stext
xref _main, __memory, __idesc__, __stack

;
switch .bss

__sbss:
;

switch .text
__stext:

lds #__stack ; initialize stack pointer
ldx #__idesc__ ; descriptor address
ldy 2,x+ ; start address of prom data

ibcl:
ldaa 5,x+ ; test flag byte
beq zbss ; no more segment
bpl nopg ; page indicator
leax 2,x ; skip it

; start of extra code to support battery backed RAM
nopg:
 cmpa #'b' ; compare flag to 'b' code
 bne cok ; not equal, do copy
 ldab [-4,x] ; load first byte of ram
 cmpb #MAGIC ; compare with expected value
 beq ibcl ; found, do not copy and skip to next
cok:
; end of extra code to support battery backed RAM

pshx ; save pointer
tfr y,d ; start address
subd -2,x ; minus end address
ldx -4,x ; destination address

dbcl:
movb 1,y+,1,x+ ; copy from prom to ram
ibne d,dbcl ; count up and loop
pulx ; reload pointer to desc
bra ibcl ; and loop

zbss:
ldx #__sbss ; start of bss
clrb ; complete zero
bra loop ; start loop

zbcl:
std 2,x+ ; clear byte

loop:
cpx #__memory ; end of bss
blo zbcl ; no, continue
jsr _main ; execute main

_exit:
bra _exit ; stay here

;
end

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

16

Other Useful Compiler Features

Version and Flag Options:
If you want to find out what flag options a particular compiler package utility supports, just run the utility
by itself without any options specified. For example, to list the C command driver options:

> cx6812

COSMIC Software Compiler Driver V4.1f
usage: cx6812 [options] files
 -a*> assembler options
 -ce* path for error files
 -cl* path for listing files
 -co* path for object files
 -d*> define symbol
 -ex prefix executables
 -e create error file
 -f* configuration file
 -g*> code generator options
 -i*> path for include
 -l create listing
 -no do not use optimizer
 -o*> optimizer options
 -p*> parser options
 -sp create only preprocessor file
 -s create only assembler file
 -t* path for temporary files
 -v verbose
 -x do not execute
 +*> select compiler option

The -vers option generates the version number of the executable program. To list the version and date of
the compiler driver:

> cx6812 -vers

To get a version number list for all the executables included in the compiler package:

> version

68HC12 C Compiler
Version: 4.1f
Date: 04 Nov 1997

COSMIC Software Compiler Driver V4.1f - 03 Nov 1997
COSMIC Software C Cross Compiler V4.1g - 23 Oct 1997
COSMIC Software M68HC12 Code Generator V4.1f - 03 Nov 1997
COSMIC Software 68HC12 Optimizer V4.1e - 03 Nov 1997
COSMIC Software Macro-Assembler V4.1f - 03 Nov 1997
COSMIC Software Linker V4.1d - 03 Nov 1997
COSMIC Software Hexa Translator V4.1c - 23 Oct 1997
COSMIC Software Absolute Listing V4.1c - 23 Oct 1997
COSMIC Software Librarian V4.1c - 23 Oct 1997
COSMIC Software Absolute C Listing V4.1c - 23 Oct 1997
COSMIC Software Object Inspector V4.1c - 23 Oct 1997
COSMIC Software Print Debug Info V4.1c - 23 Oct 1997
COSMIC Software Bank Packing V4.1c - 23 Oct 1997

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

17

This last feature is designed to make it easier for COSMIC’s support group to provide more efficient end-
user technical support, by allowing for quick verification that you are using versions of the utilities that
have been qualified as a full release. If your version numbers do not match up to a full qualified release, it
may be a source of problems.

Listing Files
By default, the interspersed C/ASM listing file generated by the compiler includes only C source lines that
cause executable assembler code to be generated; these are short-form relocatable listings.

> cx6812 -l test.c /* generate short-form listing in test.ls */

 If you want a full listing with all your original C source lines included, compile as:

> cx6812 -l -gf test.c /* generate full interspersed C/ASM listing */

If you want to see an absolute interspersed listing rather than a relocatable listing, you need to compile,
assemble and link your test code, to produce an executable file test.h12; when you compile make sure you
specify the “-l” option to generate the relocatable listing file, test.ls. To generate the absolute listing file,
just run the clabs utility program:

> clabs test.h12

The absolute listing is now in a file called test.abs.

You can specify an absolute pathname for output listing files using the “-cl *” flag at compile-time.

> cx6812 -l -cl \c\6812\tests test.c

causes the listing file test.ls to be placed in the directory \c\6812\tests, which must exist.

Generating Efficient Bit-addressing Instructions
The compiler makes extensive use of 68HC12 bit instructions (bclr, bita, bitb,bset, brclr, brset), where
possible. Bit instructions have been enhanced on the 68HC12, compared to the 68HC11, and work well in
direct page, indexed and extended addressing modes. For most 68HC12 family devices, the memory-
mapped I/O register block is mapped at address 0x0000 and the C compiler will use direct page addressing
for accessing bits in the control registers. If you map the register block outside of direct page memory (first
256 bytes of the address space), the compiler will use extended addressing to access bits; extended
addressing is one byte longer than direct page or indexed addressing.

If you are using the 68HC812A4 you should include the header file ioa4.h or the header file iob32.h if you
are using the 68HC912B32 variant.

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

18

#include <ioa4.h> /* ioa4.h contains symbolic names for the A4 memory-mapped locations.
 The base address for the I/O registers defaults to 0x0000 */

/* IO DEFINITIONS FOR MC68HC12A4
 * Copyright (c) 1996 by COSMIC Software
 */
#define _BASE 0
#define _IO(x) @_BASE+x
#if _BASE == 0
#define _PORT @dir
#else
#define _PORT
#endif

_PORT volatile char PORTA _IO(0x00); /* port A */
_PORT volatile char PORTB _IO(0x01); /* port B */
_PORT volatile char DDRA _IO(0x02); /* data direction port A */
_PORT volatile char DDRB _IO(0x03); /* data direction port B */
_PORT volatile char PORTC _IO(0x04); /* port C */
_PORT volatile char PORTD _IO(0x05); /* port D */
_PORT volatile char DDRC _IO(0x06); /* data direction port C */
_PORT volatile char DDRD _IO(0x07); /* data direction port D */
_PORT volatile char PORTE _IO(0x08); /* port E */
.. etc

#include <iob32.h> /* iob32.h contains symbolic names for the B32 memory-mapped locations.
 The base address for the I/O registers defaults to 0x0000 */

/* IO DEFINITIONS FOR MC68HC12B32
 * Copyright (c) 1997 by COSMIC Software
 */
#define _BASE 0
#define _IO(x) @_BASE+x
#if _BASE == 0
#define _PORT @dir
#else
#define _PORT
#endif

_PORT volatile char PORTA _IO(0x00); /* port A */
_PORT volatile char PORTB _IO(0x01); /* port B */
_PORT volatile char DDRA _IO(0x02); /* data direction port A */
_PORT volatile char DDRB _IO(0x03); /* data direction port B */
_PORT volatile char PORTE _IO(0x08); /* port E */
_PORT volatile char DDRE _IO(0x09); /* data direction port E */
_PORT volatile char PEAR _IO(0x0a); /* port E assignment register */
_PORT volatile char MODE _IO(0x0b); /* mode register */
_PORT volatile char PUCR _IO(0x0c); /* pull-up control register */
_PORT volatile char RDRIV _IO(0x0d); /* reduced drive of I/O lines */
..etc

If you have re-mapped the I/O register block to another address, say 0x2000, you should modify the value
of _BASE in the appropriate header file, ioa4.h or iob32.h, to, in this example, address 0x2000.

The following simple example shows code generation of 68HC12 bit instructions

 1 ; C Compiler for MC68HC12 [COSMIC Software]
 2 ; Version V4.1f - 03 Nov 1997

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

19

 3 ; 1 /* Here is a very simple example showing how the HC12 compiler uses the
 3 ; 2 bit instructions:
 3 ; 3 */
 3 ; 4
 3 ; 5 @dir char byte; /* @dir forces direct page addressing */
 3 ; 6
 3 ; 7 @dir struct { /* ditto */
 3 ; 8 char b0:1;
 3 ; 9 char b1:1;
 3 ; 10 } bit;
 3 ; 11
 3 ; 12 void f(void)
 3 ; 13 {
 4 0000 _f:
 6 ; 14 if (byte & 4) /* bit test */
 7 0000 4f010403 brclr _byte,4,L3
 8 ; 15 bit.b0 = 0; /* clear bit */
 9 0004 4d0001 bclr _bit,1
 10 0007 L3:
 11 ; 16 if (!(byte & 0x80)) /* bit test */
 12 0007 4e018003 brset _byte,128,L5
 13 ; 17 bit.b1 = 1; /* set bit */
 14 000b 4c0002 bset _bit,2
 15 000e L5:
 16 ; 18 if (bit.b0) /* bit test */
 17 000e 4f000103 brclr _bit,1,L7
 18 ; 19 byte &= ~1; /* bit clear */
 19 0012 4d0101 bclr _byte,1
 20 0015 L7:
 21 ; 20 if (!bit.b1) /* bit test */
 22 0015 4e000203 brset _bit,2,L11
 23 ; 21 byte |= 2; /* bit set */
 24 0019 4c0102 bset _byte,2
 25 001c L11:
 26 ; 22 if (bit.b0 == 1)
 27 001c 4f000103 brclr _bit,1,L31
 28 ; 23 bit.b1 = 0;
 29 0020 4d0002 bclr _bit,2
 30 0023 L31:
 31 ; 24 }
 32 0023 3d rts
 33 xdef _f
 34 bsct
 35 0000 _bit:
 36 0000 00 ds.b 1
 37 xdef _bit
 38 0001 _byte:
 39 0001 00 ds.b 1
 40 xdef _byte
 41 end

Use of the EMUL/EMULS instructions
The 68HC12 compiler can produce the emul and emuls instruction, but the C syntax has to be carefully
checked. Here is a simple example:

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

20

 1 ; C Compiler for MC68HC12 [COSMIC Software]
 2 ; Version V4.1f - 03 Nov 1997
 3 ; 1 long l;
 3 ; 2 int i,j,k;
 3 ; 3
 3 ; 4 void main(void)
 3 ; 5 {
 4 0000 _main:
 6 ; 6
 6 ; 7 i = j * k; /* int = int * int */
 7 0000 fc0002 ldd _j
 8 0003 fd0000 ldy _k
 9 0006 13 emul
 10 0007 7c0004 std _i
 11 ; 8 l = i * j; /* long = int * int */
 12 000a fd0002 ldy _j
 13 000d 13 emul
 14 000e b704 sex a,d
 15 0010 b701 tfr a,b
 16 ; 9 l = (long) i * j; /* long = long * int */
 17 0012 fc0004 ldd _i
 18 0015 fd0002 ldy _j
 19 0018 1813 emuls
 20 001a 7c0008 std _l+2
 21 001d 7d0006 sty _l
 22 ; 10 }
 23 0020 3d rts
 24 xdef _main
 25 switch .bss
 26 0000 _k:
 27 0000 0000 ds.b 2
 28 xdef _k
 29 0002 _j:
 30 0002 0000 ds.b 2
 31 xdef _j
 32 0004 _i:
 33 0004 0000 ds.b 2
 34 xdef _i
 35 0006 _l:
 36 0006 00000000 ds.b 4
 37 xdef _l
 38 end

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

21

Use of the EMACS instruction
The 68HC12 compiler can produce the emacs instruction, but the C syntax has to be carefully checked.
Here is a simple example:

 long lv;
 int i1, i2;

 f()
 {
 lv += (long)i1 * i2;
 }

which produces the following code:

 4 0000 _f:
 6 ; 6 lv += (long)i1 * i2;
 7 0000 ce0002 ldx #_i1
 8 0003 cd0000 ldy #_i2
 9 0006 18120004 emacs _lv
 10 ; 7 }
 11 000a 3d rts

You can also expand the += operator and write:

 lv = lv + (long)i1 * i2;

or even apply the (long) cast to i2, or both, but if the cast is applied to the result of the multiplication, such
as (long)(i1 * i2), it does not work, because of C evaluation rules. In such a case, the multiplication is done
with an int resolution, and the 16 bit result is then promoted to a 32 bit value, which does not give the
same result of course as a 16x16->32 operation as implemented in the emacs instruction. Note that lv can
be an unsigned long, but i1 and i2 have to be signed ints (default for a plain int), or char's (whatever
signed or not), or mixed of course.

You have the same constraint if you want to get a full 32 bit result in a long from the multiplication of two
ints. Writing:

 lv = i1 * i2;

does a 16x16->16 operation, by using the emul instruction (which in fact produces a full 32 bit result), and
the 16 bit result is promoted to a long, thus breaking the upper part of the intermediate result.

The proper syntax is:

 lv = (long)i1 * i2;

In such a case, the evaluation rules force the compiler to:

 1) promote i1 to a long
 2) because now the operation * is between a long and an int, the second int i2 is promoted to a long
 (this is why one cast is enough on i1 or i2)
 3) perform a 32x32->32 operation
 4) store the 32 bit result

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

22

This sequence is recognized by the compiler as a pattern for optimization, because this operation clearly
wants a 32 bit result from the product of two ints, and then the rule allowing a C compiler to shorten the
basic operations can be applied, as the final result will always be the same whatever the method used is.

EEPROM Support
If you are using a version of the 68HC12 family, such as the 68HC812A4, that has on-chip EEPROM, the
C compiler supports a useful feature to support writing into EEPROM space. If you declare an object as:

@eeprom char version[15] = “V4.1C 7/22/97” /* version is array of chars in EEPROM
space */

void main()
{
version[4] = ‘D’; /* write a char into EEPROM */
}

The resulting listing file is:

 1 ; C Compiler for MC68HC12 [COSMIC Software]
 2 ; Version V4.1f - 03 Nov 1997
 3 .eeprom: section
 4 0000 _version:
 5 0000 56342e314320 dc.b "V4.1C 7/22/97",0
 6 000e 00 ds.b 1
 7 ; 1 @eeprom char version[15] = "V4.1C 7/22/97"; /* version is array of chars in EEPROM space */
 7 ; 2
 7 ; 3 void main()
 7 ; 4 {
 8 switch .text
 9 0000 _main:
 11 ; 5 version[4] = 'D'; /* write a char into EEPROM */
 12 0000 c644 ldab #68
 13 0002 cd0004 ldy #_version+4
 14 0005 160000 jsr c_eewrc
 15 ; 6 }
 16 0008 3d rts
 17 xdef _main
 18 xdef _version
 19 xref c_eewrc
 20 end

Line 5 of the C source is attempting to write into EEPROM space, which normally requires you to
implement a special write sequence to burn the EEPROM. COSMIC C does this automatically for you; the
assembly language generated makes a call to c_eewrc which actually writes the character into the
EEPROM. You can attach @eeprom to any standard C data type, including complex data types like arrays
and structures and the compiler will automatically handle the write sequence for you.

Note that @eeprom data declarations, like for the array version[] in the above example, cause the compiler
to generate the data into the .eeprom program section which must be located at link time for the correct
address as in:
..
+seg .eeprom -b 0x1000 -m4096 # HC812A4 4kb EEPROM is located at address 0x1000
..

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

23

Note: If you change the default location of the 68HC12 I/O register block from 0x0000 or you map the
EEPROM from its default address of 0x1000 or your system bus-speed is not 8MHz, and you are using the
@eeprom type qualifier, you also need to modify the file eeprom.s which is included in the libm source
directory that came with the C compiler (library source modules are not installed during compiler
installation, so you will have to install directly from the original distribution media). You need to edit
some of the assembly language definitions at the top of eeprom.s:

; EEPROM WRITE ROUTINES
; Copyright (c) 1995 by COSMIC Software
; - eeprom address in Y
; - value in D and 2,X for longs
;

xdef c_eewrc, c_eewrw, c_eewra, c_eewrl
xdef _eepera

;
; the following values have to be modified
; depending on the processor type and speed
;
EEPROG:equ $F3 ; control register (change this if EEPROG is mapped to another
address)
EBASE: equ $1000 ; eeprom starting address (change this if the EEPROM is located at a

; different base address)
TWAIT:equ 20000 ; wait value for 10ms @8Mhz (change this for different bus speeds)
;
; program one word
..
..

Some example declarations of data that is located in EEPROM or which points at data in EEPROM::

Example 1

@eeprom char c; /* c is a char-sized object in EEPROM */
@eeprom int i; /* i is an int-sized object in EEPROM */
@eeprom int *ptr_eeint; /* ptr_eeint is a pointer to an int-sized object in EEPROM */
int * @eeprom eeptr_int; /* eeptr_int is located in EEPROM and is a pointer to an int-sized
object */
@eeprom int * @eeprom eeptr_eeint; /* eeptr_eeint is located in EEPOM and is a pointer to an

 int-sized object which is also located in EEPROM (!!)

Apart from ptr_eeint, data declared in Example 1 above will be allocated space in the .eeprom program
section which can be located at 0xb600 at link time; ptr_eeint is allocated space in the .bss section.

Example 2
You can also use the C compiler’s absolute addressing capability to declare each variable to an explicit
address. Note that in this case, the compiler generates code to reference the absolute addresses directly but
that no space reservations are made for the @eeprom data:

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

24

@eeprom char c @0x1000; /* c is in EEPROM at address 0x1000 */
@eeprom int i @0x1001; /* i is in EEPROM at address 0x1001 */
@eeprom int *ptr_eeint @0x1003; /* ptr_eeint points at an int-sized object at 0x1003 in EEPROM */
int * @eeprom eeptr_int @0x1005; /* eeptr_int is located in EEPROM at address 0x1005 */
@eeprom int * @eeprom eeptr_eeint @0x1007;/* eeptr_eeint is located in EEPOM at address 0x1007 */

void main(void)
{

c = ‘a’;
i = 256;
*ptr_eeint = 256;
eeptr_int = (int *)0x1001;
eeptr_int = 512; / i = 512 */
eeptr_eeint = (int *)0x1040;
eeptr_eeint = 1024; / write 1024 as an int into address 0x1040 */

}

The resulting listing file is:

 1 ; C Compiler for MC68HC12 [COSMIC Software]
 2 ; Version V4.1f - 03 Nov 1997
 15 ; 1 @eeprom char c @0x1000;/* c is in EEPROM at address 0x1000 */
 15 ; 2 @eeprom int i @0x1001; /* i is in EEPROM at address 0x1001 */
 15 ; 3 @eeprom int *ptr_eeint @0x1003; /* ptr_eeint points at an int-sized object at 0x1003 in
EEPROM */
 15 ; 4 int * @eeprom eeptr_int @0x1005; /* eeptr_int is located in EEPROM at address 0x1005 */
 15 ; 5 @eeprom int * @eeprom eeptr_eeint @0x1007;/* eeptr_eeint is located in EEPOM at
address 0x1007 */
 15 ; 6
 15 ; 7 void main(void)
 15 ; 8 {
 16 0000 _main:
 18 ; 9 c = 'a';
 19 0000 c661 ldab #97
 20 0002 cd1000 ldy #_c
 21 0005 160000 jsr c_eewrc
 22 ; 10 i = 256;
 23 0008 cc0100 ldd #256
 24 000b cd1001 ldy #_i
 25 000e 160000 jsr c_eewrw
 26 ; 11 *ptr_eeint = 256;
 27 0011 fd1003 ldy _ptr_eeint
 28 0014 160000 jsr c_eewrw
 29 ; 12 eeptr_int = (int *)0x1001;
 30 0017 cc1001 ldd #4097
 31 001a cd1005 ldy #_eeptr_int
 32 001d 160000 jsr c_eewrw
 33 ; 13 *eeptr_int = 512; /* i = 512 */
 34 0020 cc0200 ldd #512
 35 0023 fd1005 ldy _eeptr_int
 36 0026 6c40 std 0,y
 37 ; 14 eeptr_eeint = (int *)0x1040;
 38 0028 cc1040 ldd #4160
 39 002b cd1007 ldy #_eeptr_eeint

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

25

 40 002e 160000 jsr c_eewrw
 41 ; 15 *eeptr_eeint = 1024; /* write 1024 as an int into address 0x1040 */
 42 0031 cc0400 ldd #1024
 43 0034 fd1007 ldy _eeptr_eeint
 44 0037 160000 jsr c_eewrw
 45 ; 16 }
 46 003a 3d rts
 47 xdef _main
 48 xref c_eewrw
 49 xref c_eewrc
 50 end

In Example 2 the addresses for reads and writes are resolved by the compiler before link time, so you need
to reserve space for the @eeprom data at link time to prevent the linker from using the EEPROM addresses
for ordinary variables. Declarations that use absolute addressing cannot be externed in other source
modules, but may be duplicated and included as a header file. To reserve space in your link command file:
..
+seg .data -b0x1000 +spc .data=4096 #reserve 4096 bytes at 0x1000 for @eeprom data
..

Bank-Switching Support
The @far type modifier is used throughout COSMIC’s suite of C compilers to uniformly represent an
object that requires greater than 16-bit i.e. 32-bit addressing. The core 68HC12 architecture has 16 address
lines, which gives it a logical address space of 64kb, so the @far mechanism allows addressing of
expanded physical memory which may extend well beyond the 64kb logical address space. The expanded
memory system employed by some 68HC12 devices uses fast on-chip logic to implement a transparent
bank-switching scheme, which improves code efficiency and reduces system complexity. MCUs with
expanded memory treat 16Kbytes of memory space from 0x8000 to 0xBFFF as a program memory
window. Expanded memory devices also have an 8-bit program page register (PPAGE), which allows up to
256 16-Kbyte program memory pages to be switched into and out of the program memory window. This
provides for up to 4 Mbytes of paged program memory.

Note that the C compiler supports bank-switching of code only; it does not directly support bank-switching
of data i.e. @far cannot be used on data declarations.

There are two main considerations when dealing with bank switching:

1. How to use the C compiler to make use of the bank-switching scheme. By default the compiler
supports the 68HC12A4 variant,

2. How to set up the linker to support the bank-switching scheme.

Compiler Support for Bank-Switching
Let’s compile a C module that contains a call to a bank switched function to examine how the compiler
handles such functions:

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

26

extern void @far putstr(char *str); /* declare putstr() as a bank-switched function */

void main(void)
 {

putstr(“hello, world\n”);
}

Notice that the function declaration for putstr() declares putstr() as a bank-switched function using the
@far modifier; when putstr() is called from main(), the compiler will generate a different calling sequence,
using the call instruction, from the normal calling sequence. Notice also that the called function, putstr() in
this example, must be compiled as an @far function, so that the correct rtc instruction is used to return
from the call.

The definition for putstr() is:

void putstr(char *str)
{

while (*str != ‘\0’)
{
outch(*str);
str++;

}
}

Notice that the definition of putstr() is a standard C definition. You can compile this module using the
+modf compile-time option to force the compiler to generate code for putstr() as an @far function.

The code for outch.c is:

#include <ioa4.h>
#define TDRE 0x80

void outch(char c)
{
while (!(SC1SR1 & TDRE)) /* wait for READY */

;
SC1DRL = c; /* send it */
}

Now compile main.c:

> cx6812 -l -gf main.c

The resulting listing file (main.ls) is:

 1 ; C Compiler for MC68HC12 [COSMIC Software]
 2 ; Version V4.1f - 03 Nov 1997
 3 ; 1 extern void @far putstr(char *str); /* declare
putstr() as a bank-switched function */
 3 ; 2
 3 ; 3 void main(void)
 3 ; 4 {
 4 0000 _main:
 6 ; 5 putstr("hello, world\n");
 7 0000 cc0000 ldd #L3
 8 0003 4a000000 call f_putstr
 10 ; 6 }

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

27

 11 0007 3d rts
 12 xdef _main
 13 xref f_putstr
 14 .const: section
 15 0000 L3:
 16 0000 68656c6c6f2c dc.b "hello, world",10,0
 17 end

Notice the call f_putstr generates a 24-bit address for the call instruction and that the function name has
been prefixed with “f_” to indicate it is an @far function call.

Now we have to compile putstr.c as an @far function:

> cx6812 -l -gf +modf putstr.c

The resulting listing file (putstr.ls) is:

 1 ; C Compiler for MC68HC12 [COSMIC Software]
 2 ; Version V4.1f - 03 Nov 1997
 3 xref f_outch
 4 ; 1 void putstr(char *str)
 4 ; 2 {
 5 0000 f_putstr:
 6 0000 3b pshd
 7 00000000 OFST: set 0
 9 0001 b746 tfr d,y
 10 0003 200e bra L5
 11 0005 L3:
 12 ; 3
 12 ; 4 while (*str != '\0')
 12 ; 5 {
 12 ; 6 outch(*str);
 13 0005 e6f30000 ldab [OFST+0,s]
 14 0009 87 clra
 15 000a 4a000000 call f_outch
 17 ; 7 str++;
 18 000e ed80 ldy OFST+0,s
 19 0010 02 iny
 20 0011 6d80 sty OFST+0,s
 21 0013 L5:
 22 ; 4 while (*str != '\0')
 23 0013 e640 ldab 0,y
 24 0015 26ee bne L3
 25 ; 8 }
 25 ; 9 }
 26 0017 31 puly
 27 0018 0a rtc
 28 xdef f_putstr
 29 end

Note that the “f_” string has been prefixed to the function names and that an rtc instruction terminates
f_putstr().

If, however, +modf was not specified at compile time as in:

> cx6812 -l -gf putstr.c

The resulting listing file is different:

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

28

 1 ; C Compiler for MC68HC12 [COSMIC Software]
 2 ; Version V4.1f - 03 Nov 1997
 3 xref _outch
 4 ; 1 void putstr(char *str)
 4 ; 2 {
 5 0000 _putstr:
 6 0000 3b pshd
 7 00000000 OFST: set 0
 9 0001 b746 tfr d,y
 10 0003 200d bra L5
 11 0005 L3:
 12 ; 3
 12 ; 4 while (*str != '\0')
 12 ; 5 {
 12 ; 6 outch(*str);
 13 0005 e6f30000 ldab [OFST+0,s]
 14 0009 87 clra
 15 000a 160000 jsr _outch
 17 ; 7 str++;
 18 000d ed80 ldy OFST+0,s
 19 000f 02 iny
 20 0010 6d80 sty OFST+0,s
 21 0012 L5:
 22 ; 4 while (*str != '\0')
 23 0012 e640 ldab 0,y
 24 0014 26ef bne L3
 25 ; 8 }
 25 ; 9 }
 26 0016 31 puly
 27 0017 3d rts
 28 xdef _putstr
 29 end

There is no “f_” prefix added to function names – just the standard “_” prefix character and putstr()
terminates with an rts instruction.

The standard run-time libraries (libd.h12, libf.h12, libi.h12, libm.h12) are not built as @far libraries. The
machine library, libm.h12, should only be linked into a root segment and should not be placed in paged
memory; common library functions should also only be located in the root segment. To create libraries of
banked library functions, you need to recompile the sources with the +modf option specified.

Linker Support for Bank-Switching
The linker provides some important link-time options required for bank switching support. The options
are:

Global Command Line Options:

-bs# which sets the window size to 2**# (2 to the power #). When # has the value 13, this yields a
value of 8 Kbytes for the window size; a value of 14 yields a 16 Kbytes bank size; a value of 15
yields a 32 Kbytes bank size. The value of # for the 68HC12 should be set to 14.

Segment Control Options:

-b## set the physical start address of the segment to the 32-bit address ##.

-m# set the maximum size of each banked segment.

-o# set the logical start address of the segment to the 16-bit address #. This address is the starting

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

29

address of the window.

Example
Assume you need a root (non-banked) segment at 0xC000 and you have an 16 Kbyte window origined at
0x8000, so the window appears at logical addresses 0x8000 to 0xBFFF – any addresses seen in this range
will address banked external memory. To keep things simple, let’s say you have one external 16 Kbyte
bank at physical address 0x20000, although in a real banked system it is likely you will employ multiple
banks;
Let’s say you only want the function putstr() placed in banked memory.

The linker command file, banked.lkf, to do this follows:

LINK COMMAND FILE FOR BANKED EXAMPLE PROGRAM
Copyright (c) 1991, 1995 by COSMIC Software (France)
#
first link the root (non-banked) segment
+seg .text -b 0xC000 -n .EPROM# Root segment is located at 0xC000
+seg .const -a .EPROM # constants follow code
+seg .data -b 0x800 # initialized data is located at 0x800
crtsi.o # startup file goes in root segment
main.o # so does main C function (interrupt handlers also have to be in root)
outch.o # and the character output routine
c:/c/6811/lib/libi.h11 # so does the integer C run-time library
c:/c/6811/lib/libm.h11 # and C machine assist library
#
now link banked segments
+seg .text -b0x20000 -o0x8000 -m0x4000 -nBANK1 # bank is at physical location 0x20000; window is at 0x8000
putstr.o # module containing banked function
#
+seg .const -b0xFFC0 -nvectors# vectors start address
vector.o # interrupt vector file
+def __memory=@.bss # symbol used by library
+def __stack=0xBFF # set stack at 0xBFF initially

The linker command line follows:

> clnk -o banked.h12 -bs14 -mbanked.map banked.lkf
> type banked.map

Map of banked.h12 from link file banked.lkf

Segments:

start 0000c000 end 0000c0a6 length 166 segment .EPROM
start 0000c0a9 end 0000c0bb length 18 segment .const
start 00000800 end 00000800 length 0 segment .data, initialized
start 00000800 end 00000802 length 2 segment .bss
start 00020000 end 00020018 length 24 segment BANK1
start 0000ffc0 end 0000fff2 length 50 segment vectors
start 0000c0a6 end 0000c0a9 length 3 segment .init

Modules:

crtsi.o:
start 0000c000 end 0000c02e length 46 section .EPROM

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

30

start 00000800 end 00000800 length 0 section .bss

main.o:
start 0000c02e end 0000c040 length 18 section .EPROM
start 0000c0a9 end 0000c0bb length 18 section .const

outch.o:
start 0000c040 end 0000c047 length 7 section .EPROM

(c:/c/6811/lib/libm.h11)msp.o:
start 0000c047 end 0000c05c length 21 section .EPROM

(c:/c/6811/lib/libm.h11)wcalk.o:
start 0000c05c end 0000c0a6 length 74 section .EPROM
start 00000800 end 00000802 length 2 section .bss

putstr.o:
start 00020000 end 00020018 length 24 section BANK1

vector.o:
start 0000ffc0 end 0000fff2 length 50 section vectors

Stack usage:

_main > 10 (2)
_outch 4 (4)
_putstr 8 (4)

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

31

Bank Packing Utility
The bank packing utility program cbank is intended to aid the user, who is using bank switching, to
optimize bank filling. Suppose you have an application with two banks and a list of object files. In order to
create a linker command file, you need to start the first bank, then specify the objects for the first bank,
then open the second bank and fill it with the remaining object files. Where do you decide to open the
second bank? Mainly when the first bank is filled, but there is no easy way to know when this happens,
unless you link your whole application and get an error message from the linker when the first bank
overflows. Also, as your application evolves, some object files will grow and will reach a size where your
bank design no longer works. You will then have to modify it, by moving one or more objects from the first
to the second bank; this process can be cumbersome and error prone.

To avoid such a process during application design, the COSMIC linker allows the -w option which allows
it to automatically switch to the next bank when the current bank overflows, assuming that the available
banks are contiguous in memory. But, when the linker detects an overflow, it does not reorganize the object
files already linked, which means there will be a ‘hole’ left in the current bank which is unfilled.

The cbank utility solves this problem by creating a (subset of) linker command file with the object files
ordered so that the linker will optimize memory usage and minimize the amount of unused memory, thus
minimizing the number of necessary banks. In order to work, you first compile all your code down to object
files, with all function calls declared as @far (bank-switched) calls, because at this stage you do not know
into which bank they will be allocated. Once this is done, you create a file containing all the object file
names and pass this file, as an argument, to the cbank utility. You also must specify the bank size, and you
can specify which program section is to be packed (by default, cbank uses the .text section). Cbank reads
all the object files, looking at their sizes, and will sort the objects in order to produce, as its output, a list of
objects files sorted so as to give the best fit, for your bank-switched design.

At this point you may decide to let the linker work on the sorted list of object files in conjunction with the
-w option, or you may ask cbank to also include the segment directives in its output file. In this latter case,
you need to specify, at the top of cbank’s input file, the list of available banks. Cbank will move those
directives to the correct place in its output file.

Cbank’s output file can be read directly by your link command file using the +inc directive, which acts just
like an ‘include’ directive to the linker, loading the contents of the file into the linking process.

Most of the time, a banked application has one or more non-banked segments containing the C run-time
startup code (crtsi.o), interrupt handlers and common libraries. So the input file for cbank contains only
the object files which are to be loaded into banked memory. Note that there is also a problem with constant
data (which is general to any bank-switching scheme); if constants are output to a separate section, they
should be linked in any non-banked area to allow direct access from anywhere. If constants are generated
into the .text section (see +nocst compile-time option), this means that they will be loaded with the code
into a bank, and any const variable becomes ‘static’ because it cannot be accessed outside the allocated
bank.

To use the cbank utility correctly you must perform the following operations:

1. Set up an input file with the named object files (say a file called object.txt)
2. Run cbank to create an output file (say a file called banks.txt)

cbank -o banks.txt -w0x2000 object.txt

3. Insert the resulting file into your linker command file after the first bank opening:

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

32

+ seg .text -b 0x10000 -o 0x4000 -w 0x2000
+inc banks.txt

The options which may be specified to cbank are:

usage: cbank [options] <file>
-m# maximum available banks
-n* name of section to pack
-o* output file name
-w## bank size

The -m options allows a definition of the maximum number of wanted banks. Accurate definition of this
option will enhance the efficiency of cbank. Note that if this option is not specified, cbank will compute an
upper limit by first filling the banks without packing.

The -n option specifies the name of the section which is to be packed and, by default, this is the .text
section. It is not possible to pack several sections together, so the compiler should be used with the +nocst
option to force constants into the .text section.

The -o option specifies the output filename for cbank output. If not specified, the result is sent to standard
output (your terminal screen).

The -w option specifies the bank size. This information can also be found in the cbank command file, but if
both are specified, the cbank utility will use the value specified with -w in the command line. This
information must be specified, otherwise cbank will generate an arror message.

The cbank command file starts with a description of the banks and continues with a list of object filenames.
A bank description uses the same options as a linker command file:

-o logical start address of a bank. This can be specified only once as all banks start at the
logical address

-w bank size. This can be specified only once as all banks have the same size. This may be
overwritten by the -w## command line option

-b physical start address of one bank. This can be entered as many times as there are
available banks

-p page value of a bank (if the -bs option is not used). This can be entered as many times as
there are available banks

-n segment name. This can be entered as many times as there are available banks.

Note that there must be the same number of -b, -p and -n entries and that the -p and -n options are not
mandatory. Except for the -w option, which requires a numerical value, all other options accept text strings
in order to be compatible with the expression syntax of the COSMIC linker.

If at least one -b option is specified, cbank will create the +seg directives between bank definitions and in
such a case the -o option is manditory. If no -b option is specified, the result contains only the object
filenames separated by comments, and the +seg directives have to be specified in the linker command file
with the -w option specified to activate the automatic filling feature of the linker.

Example:

global definitions
#
-w 0x4000 # bank size is 16kb
-o 0x2000 # logical start address

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

33

#
definition of banks
#
-b 0x2000 -n bank0 # bank 0 parameters
-b 0x10000 -n bank1 # bank 1 parameters
-b 0x14000 -n bank2 # bank 2 parameters
-b 0x18000 -n bank3 # bank 3 parameters
-b 0x1c000 -n bank4 # bank 4 parameters
#
object files
#
file1.o file2.o file3.o
file4.o file5.o file6.o

The resultant file will contain, after the +seg directives or after the comment separated list of filenames, a
description of the bank filling, using the syntax (used/available), where used is the number of bytes used in
the bank and available is the bank capacity.

In-line Assembler Statements
The C compiler supports two methods for in-lining assembly language statements into C source code.

Method 1 (only available in V4.1x releases)
The first method uses preprocessor directives to enclose assembly language instructions. This is the most
convenient method to use if large sequences of code are to be in-lined, but there is no provision to interface
with C data.

The compiler accepts the following sequences to start and finish assembly language blocks of code:

#pragma asm /* start assembler block */
#pragma endasm /* finish assembler block */

The following sequences are also accepted:

#asm /* start assembler block */
#endasm /* finish assembler block */

Assembly language inserts may be located anywhere, inside or outside of a C function. Outside a C
function, it behaves syntactically as a C declaration, which means that an assembler block cannot split a C
declaration. When used inside a C function, it behaves syntactically as one C instruction. This means that
there is no trailing semicolon at the end and no need for enclosing braces. This also implies that an
assembly block cannot split a C instruction or expression.

Example:
#pragma asm
tpa
#pragma endasm

or
#asm
tpa
#endasm

Method 2.
The _asm() method only works inside a C function but it acts just like a C function, so it can be used in
expressions, it can pass arguments and it can return a value, provided the assembly language code follows

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

34

the C compiler’s function return value conventions (see C Compiler documentation for function calling
conventions). The syntax is:

_asm(“string_constant”, arguments …);

where “string_constant” is the assembly language code to be embedded in your C code and arguments
follow the standard C rules for passing arguments. “string_constant” must be shorter than 255 characters
– if you need to insert longer assembly language code sequences you will have to split your input among
several calls to _asm(). Arguments follow the C compiler conventions for passing arguments, where the
first argument is passed in register D if it is int sized or smaller, and subsequent arguments are passed on
the stack. This means that C data local to a function can also be passed as an argument into the assembly
language code for easy access to local C data.

Example: to produce the following assembly language sequence:

txs
jsr _main

you would write:

_asm(“txs\n jsr _main\n”);

Example: to transfer a copy of the conditions codes from a global C variable named ”varcc” to the ccr
register:

 1 ; C Compiler for MC68HC12 [COSMIC Software]
 2 ; Version V4.1f - 03 Nov 1997
 3 ; 1 unsigned char varcc;
 3 ; 2
 3 ; 3 main() {
 4 0000 _main:
 6 ; 4 _asm("tap\n", varcc);
 7 0000 f60000 ldab _varcc
 8 0003 87 clra
 9 0004 b702 tap
 10 ; 5 }
 11 0006 3d rts
 12 xdef _main
 13 switch .bss
 14 0000 _varcc:
 15 0000 00 ds.b 1
 16 xdef _varcc
 17 end

Example: to test the overflow bit:

 1 ; C Compiler for MC68HC12 [COSMIC Software]
 2 ; Version V4.1f - 03 Nov 1997
 3 ; 1 main() {
 4 0000 _main:
 6 ; 2 if (_asm("tpa\n") & 0x80)
 7 0000 b720 tpa
 8 0002 c580 bitb #128
 9 ; 3 ;
 9 ; 4 }
 10 0004 3d rts
 11 xdef _main
 12 end

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

35

Example: to pass local variable b into assembly language code, the arguments are passed first, then the
assembler code sequences are in-lined:

 1 ; C Compiler for MC68HC12 [COSMIC Software]
 2 ; Version V4.1f - 03 Nov 1997
 3 ; 1 main() {
 4 0000 _main:
 5 0000 3b pshd
 6 00000002 OFST: set 2
 8 ; 2 volatile char a,b;
 8 ; 3
 8 ; 4 b = 2;
 9 0001 c602 ldab #2
 10 0003 6b80 stab OFST-2,s
 11 ; 5 a = _asm("incb\n",b); /* a = 3 */
 12 0005 e680 ldab OFST-2,s
 13 0007 52 incb
 14 0008 6b81 stab OFST-1,s
 15 ; 6 }
 16 000a 31 puly
 17 000b 3d rts
 18 xdef _main
 19 end

With both methods, the assembler source code is added “as is” to the C code during compilation. The C
compiler optimizer does not modify the specified instructions, unless the -a option is specified to the C
code generator (cg6812). The assembly language instructions may be specified in upper or lower case
letters and may include comments. You cannot, however, specify an assembler-level label and an
instruction on the same line i.e. labels must be entered on a line by themselves.

Interrupt Handlers at the C Level
The compiler supports function definitions for C functions that service interrupts using the special
identifier @interrupt. This causes the compiler to generate an rti instruction instead of an rts instruction
when the function returns. The use of C functions as interrupt service routines does not require the user to
do anything special, such as saving other CPU registers.

@interrupt functions should only be called from interrupts, however, and not directly from user
application code. Most interrupt functions do not take function arguments and do not return a value, so a
typical definition is:

@interrupt void isr(void)
{
<body of function>

}

Example:
The example code below gives a simple example of the use of a C interrupt function, recept(), which is tied
to the interrupt vector for the SCI receive interrupt – interrupt vectors are defined in a separate file vector.c
not shown in this example. When an SCI receive interrupt occurs, recept() is called to store the character
into a buffer, defined to be a 512 byte array of char. Recept() signals receipt of a char to the C standard
character receive function getch(), by incrementing the buffer write pointer, ptecr. The main() function sets
up the SCI parameters and starts an endless loop of outch(getch()) which receives and transmits characters
from/to the SCI.

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

36

#include <ioa4.h> /* header file with 68HC812A4 I/O register block definitions */

#define SIZE 512 /* buffer size */
#define TDRE 0x80 /* transmit ready bit */

/* Authorize interrupts.
 */
#define cli() _asm("andcc #$EF\n")

/* Some variables.
 */
char buffer[SIZE]; /* buffer used to store characters received from SCI */
char *ptlec; /* read pointer */
char *ptecr; /* write pointer */

/* Main function. Sets up the SCI and starts an infinite loop of SCI receive transmit.
 */
void main(void)

{
ptecr = ptlec = buffer; /* initialize buffer pointers */
SC1BDL = 55; /* initialize SCI */
SC1CR2 = 0x2c; /* parameters for interrupt */
cli(); /* authorize interrupts */
for (;;) /* loop */

outch(getch()); /* get and put a char */
}

/* Standard C character receive function. Loops until a character is received.
 */
char getch(void)

{
char c; /* character to be returned */

while (ptlec == ptecr) /* are the buffer pointers equal? */
; /* yes; this means recept() has not received a new

 character from the SCI, so just loop */
c = *ptlec++; /* no; get the received char pointed at by ptlec and

 increment the buffer read pointer */
if (ptlec >= &buffer[SIZE]) /* check for buffer read overflow */

ptlec = buffer;
return (c);
}

/* Send a char to the SCI.
 */
void outch(char c)

{
while (!(SC1SR1 & TDRE)) /* wait for READY */

;
SC1DRL = c; /* send it */
}

/* Interrupt handler. This routine is called on SCI interrupt. It puts the received char into buffer

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

37

 and signals to getch() that a character has been received by incrementing the buffer write
 pointer, ptecr. It also checks for write overflow of the buffer.
 */

@interrupt void recept(void)
{
SC1SR1; /* clear interrupt */
ptecr++ = SC1DRL; / get the char from SCI Data Register, store it in buffer

 and increment the buffer write pointer */
if (ptecr >= &buffer[SIZE]) /* check for write buffer overflow */

ptecr = buffer;
}

The resultant output listing file from the C compiler is as follows:

 1 ; C Compiler for MC68HC12 [COSMIC Software]
 2 ; Version V4.1f - 03 Nov 1997
 265 xref _getch
 266 xref _outch
 267 ; 1 #include <ioa4.h> /* header file with 68HC812A4 I/O register block definitions */
 267 ; 2
 267 ; 3 #define SIZE 512 /* buffer size */
 267 ; 4 #define TDRE 0x80 /* transmit ready bit */
 267 ; 5
 267 ; 6 /* Authorize interrupts.
 267 ; 7 */
 267 ; 8 #define cli() _asm("andcc #$EF\n")
 267 ; 9
 267 ; 10 /* Some variables.
 267 ; 11 */
 267 ; 12 char buffer[SIZE];/* buffer used to store characters received from SCI */
 267 ; 13 char *ptlec; /* read pointer */
 267 ; 14 char *ptecr; /* write pointer */
 267 ; 15
 267 ; 16 /* Main function. Sets up the SCI and starts an infinite loop of SCI receive transmit.
 267 ; 17 */
 267 ; 18 void main(void)
 267 ; 19 {
 268 0000 _main:
 270 ; 20 ptecr = ptlec = buffer; /* initialize buffer pointers */
 271 0000 cc0004 ldd #_buffer
 272 0003 7c0002 std _ptlec
 273 0006 7c0000 std _ptecr
 274 ; 21 SC1BDL = 55; /* initialize SCI */
 275 0009 c637 ldab #55
 276 000b 5bc9 stab _SC1BDL
 277 ; 22 SC1CR2 = 0x2c; /* parameters for interrupt */
 278 000d c62c ldab #44
 279 000f 5bcb stab _SC1CR2
 280 ; 23 cli(); /* authorize interrupts */
 281 0011 10ef andcc #$EF
 282 0013 L3:
 283 ; 24 for (;;) /* loop */
 283 ; 25 outch(getch()); /* get and put a char */
 284 0013 0704 jsr _getch

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

38

 286 0015 0719 jsr _outch
 289 0017 20fa bra L3
 290 ; 26 }
 290 ; 27
 290 ; 28
 290 ; 29 /* Standard C character receive function. Loops until a character is received.
 290 ; 30 */
 290 ; 31 char getch(void)
 290 ; 32 {
 291 0019 _getch:
 292 00000001 OFST: set 1
 294 0019 fd0002 ldy _ptlec
 295 001c L11:
 296 ; 33 char c; /* character to be returned */
 296 ; 34
 296 ; 35 while (ptlec == ptecr) /* are the buffer pointers equal? */
 297 001c bd0000 cpy _ptecr
 298 001f 27fb beq L11
 299 ; 36 ; /* yes; this means recept() has not received a new
 299 ; 37 character from the SCI, so just
loop */
 299 ; 38 c = *ptlec++; /* no; get the received char pointed at by ptlec and
 300 0021 e670 ldab 1,y+
 301 ; 39 increment the buffer read pointer */
 301 ; 40 if (ptlec >= &buffer[SIZE]) /* check for buffer read overflow */
 302 0023 8d0204 cpy #_buffer+512
 303 0026 2503 blo L51
 304 ; 41 ptlec = buffer;
 305 0028 cd0004 ldy #_buffer
 306 002b L51:
 307 002b 7d0002 sty _ptlec
 308 ; 42 return (c);
 309 002e d7 tstb
 311 002f 3d rts
 312 ; 43 }
 312 ; 44
 312 ; 45 /* Send a char to the SCI.
 312 ; 46 */
 312 ; 47 void outch(char c)
 312 ; 48 {
 313 0030 _outch:
 314 00000000 OFST: set 0
 316 0030 L12:
 317 ; 49 while (!(SC1SR1 & TDRE)) /* wait for READY */
 318 0030 4fcc80fc brclr _SC1SR1,128,L12
 319 ; 50 ;
 319 ; 51 SC1DRL = c; /* send it */
 320 0034 5bcf stab _SC1DRL
 321 ; 52 }
 322 0036 3d rts
 323 ; 53
 323 ; 54 /* Interrupt handler. This routine is called on SCI interrupt. It puts the received char into buffer
 323 ; 55 and signals to getch() that a character has been received by incrementing the buffer write
 323 ; 56 pointer, ptecr. It also checks for write overflow of the buffer.
 323 ; 57 */
 323 ; 58

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

39

 323 ; 59 @interrupt void recept(void)
 323 ; 60 {
 324 0037 _recept:
 326 ; 61 SC1SR1; /* clear interrupt */
 327 0037 d6cc ldab _SC1SR1
 328 ; 62 *ptecr++ = SC1DRL; /* get the char from SCI Data Register, store it in buffer
 329 0039 d6cf ldab _SC1DRL
 330 003b fd0000 ldy _ptecr
 331 003e 6b70 stab 1,y+
 332 ; 63 and increment the buffer write pointer */
 332 ; 64 if (ptecr >= &buffer[SIZE]) /* check for write buffer overflow */
 333 0040 8d0204 cpy #_buffer+512
 334 0043 2503 blo L52
 335 ; 65 ptecr = buffer;
 336 0045 cd0004 ldy #_buffer
 337 0048 L52:
 338 0048 7d0000 sty _ptecr
 339 ; 66 }
 340 004b 0b rti
 341 xdef _recept
 342 xdef _outch
 343 xdef _getch
 344 xdef _main
 345 switch .bss
 346 0000 _ptecr:
 347 0000 0000 ds.b 2
 348 xdef _ptecr
 349 0002 _ptlec:
 350 0002 0000 ds.b 2
 351 xdef _ptlec
 352 0004 _buffer:
 353 0004 000000000000 ds.b 512
 354 xdef _buffer
 355 end

Floating Point Support
The compiler supports single precision (32-bit) and double precision (64-bit) floating point operations. By
default, ANSI C dictates that all floating point arithmetic be done at double precision. You can defeat this
default behavior using the +sprec compile-time flag as described above.

Double precision floating point arithmetic is typically two to three times slower than single precision
arithmetic. The following table gives some benchmark information.

SINGLE PRECISION

FLOAT T ypical Timing Range

addition 136 - 220 cycles

subtraction 164 - 248 cycles

multiply 163 - 177 cycles

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

40

division 911 - 1120 cycles

sin 2572 - 2658 cycles

cos 2420 - 2500 cycles

sqrt¹ 5795 - 5854 cycles

DOUBLE PRECISION

FLOAT T ypical Timing Range

addition 279 - 461 cycles

subtraction 327 - 509 cycles

multiply 850 - 950 cycles

division 4061 - 4673 cycles

sin 8560 - 9030 cycles

cos 9400 - 9911 cycles

sqrt¹ 20,320 - 23,061 cycles

*all figures quoted are executed machine cycles
¹ The timing figures for sqrt() are high due to the casting of integer i to a double (see source below)

The source code for the program used for the timing is as follows:

/* compile with +sprec option to force single precision (32-bit float) arithmetic for float benchmark
 and then without +sprec for double precision (64-bit) arithmetic */

#include <math.h>

#define _PI 3.1415

void main(void)
 {
 double x,y,z;
 double angle = _PI/4;
 int i;

 x = 12345.678912;
 y = 0.987654;

 for (i=0; i < 200; i++)
 {
 z = x + y; /* add timing – includes time to access x and y and store result in z */
 z = y - x; /* subtract – includes time to access x and y and store result in z */
 z = x * y; /* multiply – includes time to access x and y and store result in z */
 z = y / x; /* divide – includes time to access x and y and store result in z */
 z = sin(angle); /* timing includes time to access angle and store result in z */
 z = cos(angle); /* timing includes time to access angle and store result in z */
 z = sqrt((double) i); /* timing includes time to access angle and store result in z */
 x -= 10.0;
 y += 10.0;

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

41

 angle += 0.2 / (double) i++;
 }
}

Assembler Considerations
This part of the application note is intended to provide users who have existing 68HC12 assembly language
code, which assembles with their current assembler, with information about the assembly language syntax
accepted by the COSMIC 68HC12 assembler included in the V4.1x COSMIC C cross compiler package.
Users should use this note as a quick aid to understanding the amount of effort (if any) in converting
existing assembler code to assemble cleanly with the COSMIC 68HC12 assembler.

Invoking ca6812

The COSMIC 6812 assembler, ca6812, is an MCUASM compatible assembler for the 68HC12 family of
microcontrollers. It can generate listing (with or without cross-references), error and relocatable object files
and accepts the following command-line options:

>ca6812

COSMIC Software Macro-Assembler V4.1f
usage: ca6812 [options] files
 -a absolute assembler
 -b do not optimize branches
 -c output cross reference
 -d*> define symbol=value
 +e* error file name
 -ff use formfeed in listing
 -ft force title in listing
 -f# fill byte value
 -h* include header
 -i*> include path
 -l output a listing
 +l* listing file name
 -mi accept label syntax
 -m accept old syntax
 -o* output file name
 -pe all equates public
 -pl keep local symbols
 -p all symbols public
 -v verbose
 -xp no path in debug info
 -xx include full debug info
 -x include line debug info

Language Syntax

ca6812 conforms to the Motorola syntax as described in the document Assembly Language Input Standard
and consists of lines of text in the form:

[label:][command[operands]] [;comment]
or

; comment

where ‘:’ indicates the end of a label and ‘;’ defines the start of a comment. The end of a line terminates a
comment. The command field may be an instruction, a directive or a macro call. Instruction mnemonics

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

42

and assembler directives may be written in upper or lower case and a source file must end with the end
directive.

Instructions

ca6812 recognizes the following 68HC11 instructions:

aba abx aby adca adcb adda
addb addd anda andb asl asla
aslb asld asr asra asrb bcc
bclr bcs beq bge bgt bhi
bhs bita bitb ble blo bls
blt bmi bne bpl bra brclr
brn brset bset bsr bvc bvs
cba clc cli clr clra clrb
clv cmpa cmpb com coma comb
cpd cpx cpy daa dec deca
decb des dex dey eora eorb
fdiv idiv inc inca incb ins
inx iny jmp jsr ldaa ldab
ldd lds ldx ldy lsl lsla
lslb lsld lsr lsra lsrb lsrd
mul neg nega negb nop oraa
orab psha pshb pshx pshy pula
pulb pulx puly rol rola rolb
ror rora rorb rti rts sba
sbca sbcb sec sei sev staa
stab std stop sts stx sty
suba subb subd swi tab tap
tba test tpa tst tsta tstb
tsx tsy txs tys wai xgdx
xgdy

and the following additional 68HC12 instructions:

andcc bgnd call cps dbeq dbne
ediv edivs emacs emaxd emaxm emind
eminm emul emuls etbl exg ibeq
ibne idivs lbcc lbcs lbeq lbge
lbgt lbhi lbhs lble lblo lbls
lblt lbmi lbne lbpl lbra lbrn
lbsr lbvc lbvs leas leax leay
maxa maxm mem mina minm movb
movw orcc pshc pshd pulc puld
rev revw rtc sex tbeq tbl
tbne tfr wav

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

43

Labels

A source line may begin with a label. Some directives require a label on the same line, otherwise this field
is optional. A label begins with an alphabetic character, the underscore character ‘_’ or the dot character
‘.’. It is continued by alphabetic or numeric characters. Labels are case sensitive. The processor register
names ‘a’, ‘b’, ‘x’, and ‘y’ are reserved and cannot be used as labels.

When a label is used inside a macro it may be expanded more than once which will cause failure. To avoid
the problem, the special sequence ‘\@’ may be used as a label prefix. This sequence will be replaced by a
unique sequence for each macro expansion.

Constants

ca6812 accepts numeric and string constants; numeric constants are expressed in different bases depending
on a prefix character as follows:

10 decimal (no prefix)
%1010 binary
@12 octal
$A hexadecimal

String constants are a series of printable characters between single or double quote characters:

‘This is a string’
“This is also a string”

Expressions

Expressions are evaluated to 32-bit precision and operators have the same precedence as in the C language.
A special label ‘*’ is used to represent the current location address and when used as the operand of an
instruction, it has the value of the program counter before code generation for that instruction. Operators
are:

+ addition
- subtraction (negation)
* multiplication
/ division
% remainder (modulus)
& bitwise AND
| bitwise OR
^ bitwise EXCLUSIVE OR
~ bitwise complement
<< left shift
>> right shift
== equality
!= difference
< less than
<= less than or equal to
> greater than
>= greater than or equal to

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

44

&& logical AND
|| logical OR
! logical complement

These operators may be applied to constants without restrictions but are restricted when applied to
relocatable labels, in which case the addition and subtraction operators only are accepted and only in the
following cases:

label + constant
label - constant
label1 - label2

The difference of two relocatable labels is valid only if both symbols are not external symbols and are
defined in the same program section.

Additional expressions are:

high(expression) extract the upper byte of the 16-bit expression
low(expression) extract the lower byte of the 16-bit expression
page(expression) extract the page value of the expression

Macro Instructions

A macro begins with a macro directive and ends with an endm directive as in:

signex: macro ;sign extend
clra
tstb ;test sign
bpl \@pos ;if not negative
coma ;invert MSB

\@pos:
endm ;end of macro

The above macro is named signex. A macro can have up to nine parameters written \1, \2, \9 inside the
macro body and refers explicitly to the first, second,.... ninth argument in the invocation line, which are
placed after the macro name and separated by commas. An argument may be expressed as a string constant
if it contains a comma character.

Example:
signex: macro

clra ;prepare MSB
ldab \1+1 ;load LSB
bpl \@pos ;if not negative
coma ;invert MSB

\@pos:
std \1 ;store MSB
endm

and called:

signex char ;sign extend char

The special parameter written \0 is replaced by a numeric value corresponding to the number of arguments
actually found on the invokation line.

The directive mexit may be used at any time to stop the macro expansion.

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

45

A macro call may be used within another macro definition. A macro definition cannot contain another
macro definition.

Conditional Directives

The if directive allows parts of the program to be conditionally assembled depending on a specific
condition following the if directive, which cannot be relocatable and must evaluate to a numeric result. If
the condition is false (expression evaluated to zero), the lines following the if directive are skipped until an
endif or else directive.

Example:

if offset != 1 ;if offset too large
addptr offset ;call a macro
else
inx ;otherwise inc x reg
endif

If the symbol offset is not equal to one, the macro addptr is expanded with offset as an argument, otherwise
the inx instruction is directly assembled.

Conditional directives may be nested. An else directive refers to the closest previous if directive and an
endif refers to the closest previous if or else directive.

Includes

The include directive specifies a file to be included and assembled in place of the include directive. The
file name is written between double quotes, and may be any file describing a file on the host system. If the
file cannot be found using the given name, it is searched from all the include paths defined by the -i
command-line options, and from the paths defined by the environment symbol CXH6812, if such a symbol
has been defined. The -h options can specify a file to be included, which will be included as if the program
had an include directive at its very top.

Sections

Code and data can be split into sections using the section directive. A section is a set of code or data
referenced by a section name; to switch between program sections, the switch directive is used:

Example:

.data: section ; defines .data section

.text: section ; defines .text section (code)
start: ldx #value ; fills .text section

jmp print
switch .data ; switch to .data section

value: dc.b 1,2,3 ; fills .data section

The assembler allows up to 255 different program sections and a section name is limited to fifteen
characters.

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

46

Branch Optimization

Branch instructions are by default automatically optimized to generate the shortest code possible, but this
behaviour may be disabled by the -b command-line option. This optimization operates on conditional
branches, on jumps and jumps to subroutine.

A jmp or jsr instruction will be replaced by a bra or bsr instruction if the destination address is in the same
section as the current one, and if the displacement is in the range allowed by a relative branch. The bra
instruction will be replaced by a single jmp instruction if it cannot be encoded as a relative branch.

A conditional branch offset is limited to the range [-128,127] and if such an instruction cannot be encoded
properly, the assembler will replace it by a sequence containing an inverted branch to the next location
followed immediately by a jump to the original target address. The assembler keeps track of the last
replacement for each label, so if a long branch has already been expanded for the same label at a location
close enough to the current instruction, the target address of the short branch will be changed only to
branch on the already existing jump instruction to the specified label.

beq farlabel

becomes

bne *+5
jmp farlabel

Old Syntax

The -m option allows the assembler to accept old constructs which are now obsolete:

• a comment line may begin with a ‘*’ character
• a label starting in the first column does not need to end with the ‘:’ character
• no error message is issued if an operand of the dc.b directive is too large
• the section directive accepts numbered sections

Assembler Directives

The following table gives a brief description of the assembler directives supported in ca6812:

Directive Name Description Example
align <expression> align the next instruction on a given boundary align 3
base <expression> define the default base for numerical

constants; <expression> must be one of 2,8,10
or 16

base 2

bsct Switch to the predefined .bsect section, also
known as the zero page section

bsct

clist [on|off] turn listing of conditionally excluded code on
or off

clist on

dc[.size]
<expression>[,<expression>]

Allocate and initialize storage for constants. dc 10,’0123456789’
dc.b 10,’0123456789’
dc.w word
dc.l longword

dcb.<size> <count>,<value> Allocate a memory block and initialize
storage for constants. The size area is

dcb.b 10,5
dcb 10,5

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

47

<count> of <size> which can be initialized
with <value>

dcb.w 10,5
dcb.l 10,5

dlist [on|off] Turn listing of debug directives on or off dlist on
ds[.size] <space> allocate storage space for variables. <space>

must be an absolute expression. Bytes created
are set to the value of the filling byte defined
by the -f command-line option

ptlec: ds.b 2
ptecr: ds.b 2
chrbuf: ds.w 128

else conditional assembly
elsec alias for else
end halt assembly end
endc end conditional assembly. Alias for endif
endif end conditional assembly
endm end macro definition
equ <expression> give a permanent value to a symbol false: equ 0

true equ 1
tablen: equ tabfin - tabsta
nul equ $0

even assemble next byte at the next even address
relative to the start of a section

even

fail “string” generate error message fail “Value too large”
if <expression> or if <expression>
 instructions instructions
endif else
 instructions
 endif

Conditional assembly

ifc <string1>,<string2>
 instructions
elsec
 instructions
endc

ifc, else and endc directives allow conditional
assembly. If <string1> and <string2> are
equal, the following instructions are
assembled up to the next matching endc or
elsec directive

ifc “hello”, \2
ldab #45
elsec
ldab #0
endc

ifeq <expression>
 instructions
elsec
 instructions
endc

conditional assembly; test for equality to zero ifeq offset
tsta
elsec
adda #offset
endc

ifge <expression>
 instructions
elsec
 instructions
endc

conditional assembly; test for greater than or
equal to zero

ifge offset - 127
addptr offset
elsec
inx
endc

ifgt <expression>
 instructions
elsec
 instructions
endc

conditional assembly; test for greater than
zero

ifle <expression>
 instructions
elsec
 instructions
endc

conditional assembly; test for less than or
equal to zero

iflt <expression>
 instructions

conditional assembly; test for less than zero

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

48

elsec
 instructions
endc
ifne <expression>
 instructions
elsec
 instructions
endc

conditional assembly; test for not equal to
zero

ifne offset
adda #offset
elsec
tsta
endc

ifnc <string1>,<string2>
 instructions
elsec
 instructions
endc

conditional assembly; If <string1> and
<string2> are unequal, the following
instructions are assembled up to the next
matching endc or elsec directive

ifnc “hello”, \2
addptr offset
elsec
inx
endc

include include text from another text file include “datstr”
include “matmac”

list turn on listing during assembly list
label: macro
 <macro body>
 endm

define a macro ;define a macro that places
the
;length of a string in a byte in
;front of the string
ltext: macro
 dc.b \@2-\@1
\@1:
 dc.b \1 ; text
\@2:
 endm

mexit terminate a macro definition mexit
mlist [on|off] turn on or off listing of macro expansion mlist on
nolist turn off listing nolist
nopage disable pagination in the listing file nopage
offset <expression> start an absolute section that will be used to

define symbols and not to produce any code
or data. The section starts at the address
specified in <expression> and remains active
while no directive or instruction producing
code or data is entered.

 offset 0
next: ds.b 2
buffer:ds.b 80
size: ldy next,x ;end of
 ;offset
 ;section

org <expression> set the location counter to an offset from the
beginning of a program section. <expression>
must be a valid absolute expression and must
not contain any forward or external
references.

org $e000

page start a new page in the listing file page
plen <page_length> specify the number of lines per page in the

listing file
plen 58

<section_name>:section [<attributes>] define a new program section; attribute
keywords are: abs for absolute section, bss
for bss section (no data), hilo for values to be
stored in descending order or significance,
even for enforce even starting address and
size, zpage to enforce 8-bit relocation. When -
m is specified, this directive also accepts a
number as the operand.

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

49

label: set <expression> give a value to a symbol which can be reset OFST: set 10
spc <num_lines> insert a number of blank lines before the next

statement in the listing file.
spc 5
title “new file”

switch <section_name> switches output to the section defined with the
section directive named <section_name>

 switch .bss
buffer: ds.b 512
 xdef buffer

tabs <tab_size> specify the number of spaces for a tab
character in a listing file

tabs 6

title “name” set default page header title “My application”
xdef identifier[,identifier…] declare a variable to be visible. Asymbol may

only be declared as xdef in one module.
xdef sqrt ; allow sqrt to be
 ; called from
another
 ; module

xref[.b] identifier[,identifier…] declare a variable as being defined
elsewhere; symbols defined in other modules
must be declared as xref. A symbol may be
declared both xdef and xref in the same
module, to allow for usage in common header
files. The directive xref.b declares external
symbols located in the .bsct section.

xref otherprog
xref.b zpage

Linker Considerations
The V4.1x C compiler package now includes linker support for static stack analysis. If you run the linker
with the -m file.map option to generate a linker map file, the linker will include an analysis of stack usage
in all the functions that make up your application. This is a useful feature as it gives a rough estimate of
the size of the stack you will need to run the application.

The stack analysis includes the function name, a ‘>’ marker if the function is not called by any other
function (e.g. main() or functions marked with @interrupt), followed by the total number of bytes needed
on the stack when the function is called. The next number, in braces, shows the size of the locals on the
stack for the function, not including any internal calls which are generated by the compiler, so if there are
no internal calls the two figures match. This last field is replaced by a *** recursive *** message if the
function is recursive.

Example Linker Command Files
The linker is your primary tool to place code and data in pre-defined, absolute locations in the target
microcontroller’s memory.

68HC812A4 Target
As an example, let’s say the target is a Motorola MC68HC12A4 running in expanded mode with the
following configuration:

On-chip RAM sixe: 1024 bytes
On-chip RAM address: 0x800 to 0xBFF
On-chip EEPROM size: 4096 bytes
On-chip EEPROM address: 0x1000 to 0x1FFF
Off-chip ROM size: 32 Kbytes
Off-chip ROM address: 0x2000
Register block size: 512 bytes
Register block address: 0x000 to 0x1FF

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

50

Interrupt vectors size: 64 bytes
Interrupt vectors address: 0xFFC0 to 0xFFFF

To link your application code, test.o, for this configuration, the linker reads a linker command file, test.lkf,
which tells it where to place target code and data. Below is an example .lkf file for a MC68HC12A4 in
expanded mode:

link command file for MC68HC12A4
Copyright (c) 1995 by COSMIC Software
#
+seg .text -b 0x2000 -m32768 -n .ROM # 32kb ROM start address and size (.text section is program code.
+seg .const -a .ROM # constants follow .ROM section

.ROM and .const sections are located at target ROM
+seg .data -b 0x800 -m768 -n .IRAM # RAM start address and maximum allowable size for initialized

data. Allow 256 bytes for stack space (768+256 = 1024)
+seg .bss -a .IRAM # uninitialized static data
+seg .eeprom -b 0x1000 -m4096 # EEPROM start address and size
crts.o # C startup routine
test.o # application program
c:/c/6812/lib/libi.h12 # Integer C library (if needed)
c:/c/6812/lib/libm.h12 # machine support library
+seg .const -b 0xffc0 # interrupt vectors start address
vector.o # pre-compiled interrupt vectors file
+def __memory=@.bss # symbol used by library
+def __stack=0xBFF # stack pointer initial value

In the above example, the line:

+seg .text -b 0x2000 -m32768 -n .ROM # 32kb ROM start address and size (.text section is program
code). Name this .text section .ROM

places the .text sections of the following files, crts.o and test.o starting at address 0x2000 (-b 0x2000),
which is the starting address of target system ROM, into a program section named .ROM and checks that
the total size of this section does not exceed 32768 bytes (-m32768) – if it does the linker will generate an
overflow message; the part -n .ROM tells the linker to give this section the name .ROM, which will be
used in the next line to place the .const program section.

+seg .const -a .ROM # .const section (constants) follow section called .ROM

The above line tells the linker to place the .const program sections from the files, crts.o and test.o, after the
last address allocated to the .text section named .ROM. If your application code contains string constants,
such as strings inside a printf() statement, or another kind of literal, these will be allocated into the .const
program section; if your application does not contain any constants, the .const section will be empty, unless
you have linked in run-time library routines that contain constants. Note, that because the .const section
follows the end of the .ROM section (-a .ROM), the linker will check the combined size of the .ROM and
.const sections, and will diagnose an overflow error if the combined sizes exceed the 32768 limit. If the
.const section is biased separately (e.g. +seg .const -b 0x8000 -m 512), then the .ROM and .const
sections are no longer considered as one and the linker will check for overflow in each section
independently. Note also that you can compile your application code with the +nocst option which forces
constants into the .text section so that there is no .const section.

68HC912B32 Target
Now let’s look at the configuration of a 68HC912B32 running in single-chip mode:

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

51

On-chip RAM size: 1024 bytes
On-chip RAM address: 0x800 to 0xBFF
On-chip FLASH EEPROM size: 32 Kbytes
On-chip FLASH EEPROM address:0x8000
Register block size: 512 bytes
Register block address: 0x000 to 0x1FF
Interrupt vectors size: 64 bytes
Interrupt vectors address: 0xFFC0 to 0xFFFF

The link command file below is suitable for a MC68HC912B32 target in single-chip mode:

+seg .text -b 0x8000 -m32768 -n .ROM # 32kb ROM start address and size (.text section is program code.
+seg .const -a .ROM # constants follow .ROM section

.ROM and .const sections are located at target ROM
+seg .data -b 0x800 -m768 -n .IRAM # RAM start address and maximum allowable size for initialized

data. Allow 256 bytes for stack space (768+256 = 1024)
+seg .bss -a .IRAM # uninitialized static data
crts.o # C startup routine
test.o # application program
c:/c/6812/lib/libi.h12 # Integer C library (if needed)
c:/c/6812/lib/libm.h12 # machine support library
+seg .const -b 0xffc0 # interrupt vectors start address
vector.o # pre-compiled interrupt vectors file
+def __memory=@.bss # symbol used by library
+def __stack=0xBFF # stack pointer initial value

Support for P&E Debugger
If you are using the P&E assembler, debugger and BDM cable, COSMIC can supply a converter program,
cvpne, to convert the .h12 file generated by the linker into a .MAP format file which can be read by the
P&E debugger. If you need this converter, make a support request, via email, to support@cosmic-us.com
or go to the Support page on our web-site at www.cosmic-us.com or call + 781 952-2556 and ask for
support.

Here is a brief summary of the CVPNE utility:

Description
Generate P&E mapfile format

Syntax
cvpne -[c o* u] <file>

Function
cvpne is the utility used to generate the P&E mapfile format from a relocatable (.o) or executable
(.h12) file. cvpne accepts the following options:

-c - This flag is reserved for future use (it sets the most significant bit of line numbers to 1;
 this may be used in a future release of the P&E software).

-o* - where * is a filename. * is used to specify an output file for cvpne. By default, if -o is not

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

52

 specified, cvpne sends its output to a filename which is built from the input filename
 by replacing the filename extension by ".map".

-u - DO NOT convert labels to upper case in the output file. By default, cvpne outputs symbols
 and filenames in uppercase.

Example
cvpne acia.h12

generates an output file called acia.map

Libraries Considerations
The sizes (in bytes) of the V4.1x 68HC12 C compiler machine library (libm.h12 in the Lib directory)
functions are given in the table below. These library routines are called directly by the compiler to assist
with operations (e.g. floating point or long integer arithmetic, EEPROM support) which are too lengthy to
generate in-line code.

bfget.o – 50
bfput.o – 64
check.o – 1
dadd.o – 500
dcmp.o – 53
ddiv.o – 204
dmul.o – 365
dneg.o – 11
dtod.o – 17
dtof.o – 90
dtol.o – 138
dtos.o -- 19
eepbfb.o – 26
eepbfd.o – 41
eepbfx.o – 63
eepdbl.o – 41
eeprom.o – 165
eepstr.o -- 47

fadd.o – 263
fcmp.o – 39
fdiv.o – 124
fgadd.o – 7
fgdiv.o – 7
fgmul.o – 7
fgsub.o – 7
fmul.o – 132
ftod.o – 58
ftol.o – 105
itod.o – 58
itof.o – 49
jltab.o – 68
jtab.o – 41
ladd.o – 11
land.o – 13
lcmp.o - 19
ldiv.o – 208

lgadd.o – 13
lgand.o – 15
lgdiv.o – 28
lglsh.o – 36
lgmul.o – 32
lgop.o – 22
lgor.o – 15
lgrsh.o -- 40
lgsub.o – 18
lgursh.o – 36
lgxor.o – 15
llsh.o – 14
lmul.o – 28
lneg.o – 13
lor.o – 13
lrsh.o – 15
lrzmp.o – 11
lsub.o – 11

ltod.o – 85
ltof.o – 77
lursh.o – 14
lxor.o – 13
lzmp.o – 13
uitod.o – 46
uitof.o – 37
ultod.o – 72
ultof.o -- 59

1895 bytes 1216 bytes 375 bytes 416 bytes

TOTAL SIZE = 3902 BYTES

The COSMIC linker only loads those library functions which it needs to complete a user application link,
but some users want to put the whole run-time library in a separate ROM, which is not changed even as the
application changes. The clib librarian allows you to force load an entire library at link time, so you should
remove machine library routines that you know your application will never need, thus saving ROM space.

Over 80% of the 68HC12 machine library functions provide support for:

(1) double precision (64-bit) floating point math (the routines beginning with “d” – total size of 1573
bytes – remove them and the library is now 3902 - 1573 = 2329 bytes),

(2) single precision (32-bit) floating point math (the routines beginning with “f” – total size of 971 bytes
– remove them and the library is now 2329 - 971 = 1358 bytes)

(3) long integer (32-bit int) math (the routines beginning with “l” – total size of 667 bytes – remove them
and the library is now 1358 - 667 = 691 bytes)

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

53

If you are not using a version of the chip with EEPROM support or you are not using the @eeprom
keyword in your C source code, you can remove the EEPROM support routines (beginning with “ee” –
total size 383 bytes – remove them and the library is now 691 - 383 = 308 bytes).

Run-time libraries are provided in pre-built binary form and in source form and can be freely modified to
meet your needs.

IEEE695 Object File Format Support
The COSMIC C compiler package can be used to generate IEEE695 object file format that is a common
format read by third-party C source-level debuggers e.g. Nohau or Noral. The cv695 utility converts the
.h12 output file generated by the COSMIC linker into an IEEE695 format file. The manual page below
describes its use:

Programming Utility cv695

__
NAME

cv695 - generate IEEE695 format
__
SYNOPSIS

cv695 -[d mod? o* v] <file>
__
FUNCTION

cv695 is the utility used to convert a file produced by the linker into an IEEE695
format file.

The flags to cv695 are:

+V4 - This option is used only for older IEEE loaders. i.e. loaders designed to work
with version 4.X of this utility.

-d - dumps to the screen information such as: frame coding, register coding,
e.g. all the processor specific coding for IEEE (note: some of these codings have
been chosen by COSMIC because no specifications exists for them in the
current published standard).

THIS INFORMATION IS ONLY RELEVANT FOR WRITING AN IEEE695
FORMAT READER.

-mod? where ? is a character used to specify the compilation model selected for the file
to be converted.

THIS FLAG IS CURRENTLY ONLY MEANINGFUL FOR 68HC16 TARGET

-o* where * is a filename. * is used to specify the output file for cv695. By default,
if -o is not specified, cv695 sends its output to the file whose name is
obtained from the input file by replacing the filename extension with ".695".

-v selects verbose mode. cv695 will display information about its activity.
__
EXAMPLES: Under MS/DOS, the command could be:

COSMIC 68HC12 C Compiler – Evaluation Guidelines.

54

C>cv695 -modt C:\test\basic.h16

and will produce C:\test\basic.695 and the following command:

C>cv695 -o file basic.h12

will produce an IEEE695 file named file

Under UNIX, the command could be:

% cv695 /test/basic.h12

and will produce test/basic.695

Disclaimer
COSMIC Software provides this document “as-is” and does not guarantee that it is free from errors. – feel
free to use it as an aid to understanding. Any inconsistencies between this document and the V4.x 68HC12
C compiler product release you are using should be reported to COSMIC at + (781) 932-2556 or email to
sales@cosmic-us.com.

Copyright © 1997 COSMIC Software Inc.

