
Reference Guide
For

D–Bug12 Version 4.x.x
A Debug Monitor

For
The MC9S12DP256 Microcontroller

Written By
Gordon Doughman

Field Applications Engineer
Software Specialist

1.0 Introduction

D–Bug12 has undergone considerable revision since the introduction of version 1.0.x for the
M68HC812A4 EVB and version 2.x.x for the MC68HC912B32 EVB. Version 4.x.x of D–Bug12
was developed for the MC9S12DP256 to provide an economical yet powerful debugging tool that
can be utilized to develop M68HC12 applications or simply to evaluate the M68HC12 architecture.
The MC9S12DP256 was chosen for this latest version of D-Bug12 to provide more Flash memory
for additional features and programming support for new M68HC12 Flash memory technologies.
While this new version has the capability to run as a simple ROM monitor in an MC9S12DP256
EVB, most of the improvements are related to D–Bug12’s operation in ‘POD’ mode. In this
operating mode, D–Bug12 communicates with a target M68HC12 microcontroller through the
Single–Wire Background Debug Mode (BDM) Interface to allow true emulation of an application
in the target microcontroller’s operating environment.

Target MCU Flash and EEPROM programming support has been dramatically improved,
especially for those family members utilizing their on-chip PLLs. D-Bug12 now supports
buffered, interrupt driven SCI communications utilizing XOn/XOff software handshaking for all
serial communications. This feature allows D-Bug12 to continue receiving S-Record data from the
host computer while it is sending data from the previously received S-Record to the target MCU.

Version 4.x.x of D-Bug12 utilizes the same variable speed BDM communications primitives as
version 2.1.x allowing the target MCU to be operated with a bus clock between 16.384 kHz and
the bus frequency of the MC9S12DP256 on the EVB (normally 24.0 MHz).

Note: It is strongly recommended that current D-Bug12 users read Section 2 and 3 of this
reference guide. Section 2 explains the new features in version 4.x.x. Section 3 explains
the new requirements for the terminal emulator program used with D-Bug12.

D-Bug12 v4.x.x Reference Guide Page 1 Motorola Semiconductor
July 30, 2001

2.0 New Features

In addition to several new commands that have been added to D-Bug12, many of the it’s
commands have been updated or enhanced. The following sections describe the updated features of
D-Bug12’s command set.

• Supports on-chip hardware breakpoint modules. Including the UDR HC12 and Star12
products providing two program only hardware breakpoints.

• EVB or target hardware breakpoints are enabled by default. Software breakpoints may
be enabled by using the USEHBR command.

• FBulk command supports Motorola’s newly specified erase pulse timing of 10 mS for
UDR M68HC12 devices.

• Improved target memory read and write routines supporting aligned word access of 16-
bit wide memory and peripherals.

• D–Bug12 utilizes the XIRQ interrupt input for a program abort function when operating
in EVB mode.

• Maximum S-Record code/data field length was increased to 64 bytes to support
programming of M68HC12 family members utilizing SST Flash.

• Support for all MC9S12DP256 interrupt vectors when operating in EVB mode.

• Improved VERF command reports the target & S-Record data when two memory
locations don't match.

• Arithmetic expressions involving CPU register names and numeric constants are
permitted in place of a simple hexadecimal address for most commands.

• The TCONFIG command can be used to configure target hardware, typically I/O ports
that control VFP circuitry, before erasing or programming target Flash memory.

• UPLOAD command improved to allow S-Record target memory display for M68HC12
family members containing more than 64K of flash memory.

• DEVICE command can no longer be used to specify a new target MCU device.

• Disassembler now displays indexed addressing modes using the program counter with
a 5-, 9-, or 16-bit offset as: <AbsoluteAddress>,PCR.

• Target EEPROM may be programmed using the LOAD command without changing
D–Bug12’s baud rate.

• For devices containing more than 64K of address space, the value of the PPAGE
register can be changed using the PP command.

• Improved support for expanded addressing for HC12 and Star12 devices containing
more than 64K of program memory.

D-Bug12 v4.x.x Reference Guide Page 2 Motorola Semiconductor
July 30, 2001

• The PCALL command, similar in operation to the CALL command, was added to allow
subroutines ending with the RTC instruction to be executed from the command line.

2.1 Hardware Breakpoint Support

Earlier versions of D–Bug12 supported 10 software breakpoints allowing developers to halt
program execution on instruction opcode boundaries. Unfortunately, the placement of software
breakpoints are restricted to programs that reside in alterable memory. This restriction is not a
problem for small programs placed in the on-chip RAM or EEPROM when operating the EVB in
EVB mode. However, when the EVB is utilized in POD mode to test and debug code in a target
M68HC12’s Flash, software breakpoints cannot be used.

To facilitate debugging in an M68HC12’s on-chip flash, many M68HC12 family members include
an on-chip hardware breakpoint module. D–Bug12 supports the hardware breakpoint module by
providing two hardware breakpoints in place of the 10 software breakpoints. Even though the
breakpoint module is capable of providing data access breakpoints, D–Bug12 currently supports
only the module’s dual address program breakpoint operating mode. In this operating mode, the
hardware breakpoints utilize the CPU12’s instruction tagging mechanism. Much like software
breakpoints, this restricts the placement of the hardware breakpoints to the address of an
instruction opcode.

The hardware breakpoints may be used in both POD and EVB operating modes. Utilizing the
hardware breakpoints in EVB mode is especially important when developing code in the on-chip
EEPROM. The hardware breakpoints prevent D–Bug12 from erasing and reprogramming the
EEPROM each time an instruction is traced or breakpoints are placed in memory.

D-Bug12’s 10 software breakpoints are still available to the programmer, however, the default
operating mode uses the two hardware breakpoints. Refer to the USEHBR command
documentation for details on changing the breakpoint operating mode.

2.2 FBULK Erase Pulse Time Reduced for UDR Flash Devices

Motorola has recently made a change to the erase pulse timing specification, tEPULSE, reducing it
from a nominal value of 100 mS to a nominal value of 10 mS. The FBULK command has been
modified to reflect this change. This change applies only to supported ‘UDR 1.5T’ family Flash
devices. M68HC12 family devices utilizing the SST Flash technology (‘A’ suffix devices) and the
Star12 devices are supported with the appropriate erase and programming algorithms.

2.3 Additional Flash Programming Support

The FLOAD, FBULK, VERIFY and DEVICE commands have been enhanced to support on-chip
Flash programming for additional M68HC12 family members - the MC68HC912D60,
MC68HC912DA/DG128, MC68HC912GA32, MC68HC912KD/K128, MC68HC912DP256 and
the MC68HC912DT128A. In addition, the LOAD command, which supports loading of S-
Records into RAM, supports the extended memory space of the MC68HC812A4. For details of
the S–Record format required for parts supporting greater than 64K bytes of program memory,
refer to the LOAD, FLOAD and VERIFY commands.

D-Bug12 v4.x.x Reference Guide Page 3 Motorola Semiconductor
July 30, 2001

Note: The ‘A’ suffix devices, such as the MC68HC912DT128A, utilize Flash memory
technology licensed from SST Corporation. Unlike the ‘UDR 1.5T’ that may be
programmed a byte or aligned word at a time, the SST Flash must be programmed 64 bytes
(32 aligned words) at a time. To program ‘A’ series devices requires S-Records that have a
code/data field of EXACTLY 64 bytes and the load address must begin on a 64 byte
boundary. For compilers or assemblers that do not have the capability to produce
S–Records in this format, a utility named SRecCvt.exe supplied with D-Bug12, may be
used to reformat any S–Record file.

Note: The Star12 devices, such as the MC9S12DP256, utilize Flash memory technology licensed
from SST Corporation. Unlike the ‘UDR 1.5T’ that may be programmed a byte or aligned
word at a time, the SST Flash must be programmed an aligned word at a time. To
programming these devices requires S-Records that have a code/data field consisting of an
even number of bytes. In addition, the load address must begin on an even byte boundary.
For compilers or assemblers that do not have the capability to produce S–Records in this
format, a utility named SRecCvt.exe supplied with D-Bug12, may be used to reformat
any S–Record file.

Note: Please refer to the section titled “FLOAD, LOAD and VERIFY S-Record Format” at the
end of this document for a complete description of the S-Record Format utilized by these
commands for M68HC12 devices supporting more than 64K bytes of memory.

2.4 16-bit Aligned Target Memory Access Supported

All versions of D–Bug12 prior to 2.1.x access memory a byte at a time through low–level drivers.
Because all on-chip memory modules support byte access, utilizing this method simplified the low
level driver code. However, this access method presents some potential problems for 16-bit
registers that reside in the on-chip peripherals. Because the data bus connection to the on-chip
peripherals is 16-bits wide, with a few exceptions, the peripherals are designed in such a way that
16-bit registers must be read or written with a single 16-bit access to ensure data coherency.

D–Bug12’s low level memory access drivers have been rewritten to perform aligned word reads
whenever possible. For instance, if the Memory Modify Word (MMW) command is used with an
even address, all reads and writes will be performed as aligned word accesses. However, if the
MMW command is used with an odd address, each memory access will be performed as two
individual byte read or write operations. Because the Memory Display commands (MD and MDW)
always display an even multiple of 16 bytes, all memory read operations are performed as aligned
word accesses.

2.5 XIRQ Interrupt Usable As Program Abort Input

When testing and debugging programs that reside in the internal RAM or EEPROM of the
MC9S12DP256 when operating in EVB mode, it is possible for the program to become ‘hung-up’
and never return to the D–Bug12 prompt. In these cases, it is desirable to terminate user program
execution and return control to D–Bug12. Unfortunately, pressing the reset switch, S1, causes a

D-Bug12 v4.x.x Reference Guide Page 4 Motorola Semiconductor
July 30, 2001

reinitialization of D–Bug12 resulting in a complete loss of information about the state of the
executing user code. D–Bug12 utilizes the XIRQ interrupt input to terminate the execution of a user
program and return control to D-Bug12. Even though a program abort switch is not present on the
MC9S12DP256 EVB, the XIRQ interrupt input (PE0) may be utilized for a program abort
function. One side of a normally open momentary contact push button can be wired to the XIRQ
input, the other side of the push button should be wired to Vss.

Utilizing the program abort function will return control back to D–Bug12, displaying the CPU
register contents at the point where the users program was terminated.

2.6 MC9S12DP256 Interrupt Vector Support

When D-Bug12 is operated in EVB mode, it provides default interrupt handlers for all of the
on–chip peripherals. Version 4.x.x now fully supports the use of the MC9S12DP256 as a host
CPU by providing default interrupt handlers for all of the MC9S12DP256’s interrupt vectors.

2.7 Maximum S-Record Code/Data Field Length Increased

To support the programming of the M68HC12 ‘A’ suffix devices that utilize Flash memory
technology licensed from SST Corporation, the maximum S-Record code/data field length was
increased to 64 bytes.

2.8 Improved VERF Command

In previous versions of D-Bug12, the VERF command terminated execution with an error message
when target memory contents did not match the received S-Record. To improve support for
debugging memory related problems, the VERF command now reports the S-Record address, S-
Record data, Target memory address and target memory contents for each target memory location
that does not match the S-Record contents.

2.9 Simple Arithmetic Expressions

Many of D-Bug12’s commands accept one or more 16-bit hexadecimal addresses as command line
parameters. To simplify the debugging process, these parameters may be supplied as a 16-bit
hexadecimal number or a simple numeric expression. The simple numeric expression may consist
of one or more CPU register names (PC, X, Y, SP, A, B or D) or numeric constants separated by
the addition (+) or subtraction (–) operator. The numeric constants may be supplied in one of four
number bases by using one of three number base prefix characters. In expressions, hexadecimal
numbers must be preceded by the dollar sign character ($), octal numbers must be preceded by the
commercial at character (@) and binary numbers must be preceded by the percent character (%).
Within expressions, numbers not preceded by one of the number base character designators is
interpreted as a decimal number.

Using numeric expressions in command line parameters can be advantageous in a number of
debugging circumstances. For example, when using the Trace command (T) to step through
program code, it is often desirable to skip execution of subroutines that are known to function
properly. This can be easily accomplished using a simple numeric expression in the operand field
of the GoTill (GT) command, setting a temporary breakpoint at the instruction following a JSR. In
this instance entering the command line GT PC+3 places a temporary breakpoint at the current
location of the Program counter plus three, the length of the JSR instruction utilizing extended
addressing. Obviously, JSR instructions using other addressing modes or BSR instructions would
require an offset other than three.

D-Bug12 v4.x.x Reference Guide Page 5 Motorola Semiconductor
July 30, 2001

Another important use of expressions in command line parameters is for examining data accessed
with a reference to one or more of the CPU12’s index address registers. This can be especially
advantageous for instructions such as the MOVB or MOVW instructions where the data does not
pass through one of the CPU registers. Consider the case where a MOVW instruction is used to
move data from one data table to another utilizing accumulator offset indexed for both the source
and destination address (MOVW A,X,B,Y). To examine or change the data at the destination
address either before or after the execution of the MOVW instruction, entering the command line
MMW Y+B would display the data at the destination address without having to perform any
hexadecimal arithmetic. In a similar situation where data in a stack frame is accessed relative to the
stack pointer, using an expression for the memory display (MD) or memory modify (MM)
command line parameter can greatly simplify the task of examining passed parameters or local
variables.

Note: Simple numeric expressions may not contain space characters.

2.10 TCONFIG Command

Some target systems contain their own VFP generation circuitry to allow in–circuit programming
via CAN, J1850 or even the SCI. For these systems, it is desirable to utilize the target VFP
generation circuitry for programming of the on-chip Flash rather than an externally supplied
programming voltage. In most cases, the application of the target generated programming voltage
to the VFP pin is controlled by one or more I/O pins of the target M68HC12. The TCONFIG
command can be used to specify up to eight one byte values that will be written to the target
memory just before the execution of the FBULK and FLOAD commands. For additional details on
the syntax and features of the TCONFIG command please refer to the detailed command
description in Section 5.

2.11 UPLOAD Command Improvements

In earlier versions of D-Bug12, the UPLOAD command did not support the display of memory
contents for devices containing more than 64K of Flash memory. The UPLOAD command now
supports devices containing more than 64K of Flash memory. In addition, a command line option
has been added that allows the size of the S-Record code/data field to be specified. For additional
details on the syntax and features of the UPLOAD command refer to the detailed command
description in Section 5.

2.12 DEVICE Command Changes

Version 2.x.x of D-Bug12 allowed new MCU device definitions to be added to D-Bug12’s device
table. This feature was initially provided to allow support for devices that utilized the UDR 1.5T
Flash technology with less than 64K of Flash memory. Because the M68HC12 family now utilizes
four different Flash memory technologies and has planned devices with up to 256K of Flash
memory, it is not practical to support new family members by simply defining new devices using
the DEVICE command. Instead, the D-Bug12 device table contained in Flash and may not be
altered. As new M68HC12 family members are developed, new versions of D-Bug12 will be
released to support Flash and EEPROM programming of the new devices.

D-Bug12 v4.x.x Reference Guide Page 6 Motorola Semiconductor
July 30, 2001

2.13 Disassembler Improvements

When writing position independent code, it is necessary to access global variables and/or data
utilizing program counter relative indexed addressing. Earlier versions of D-Bug12 disassembled
instructions using this form of indexed addressing as: <signed offset>,PC. This form of
disassembly made debugging position independent code difficult because the signed offset to a
memory location changes depending where it is referenced within a program. To make debugging
position independent code easier, instructions using the program counter as an index register are
now disassembled as: <AbsoluteAddress>,PCR. The absolute address is displayed as a four
digit hexadecimal number preceded by a dollar sign ($).

2.14 PP Command

The PPAGE register is present on M68HC12 family devices that have a program memory space
greater than 64K. The PPAGE register, located in the I/O register block, is used in conjunction
with the CALL and RTC instructions to address expanded program memory through the memory
expansion window ($8000 - $BFFF). Because the PPAGE register is located at a different I/O
register address in various M68HC12 family members, the PP command can be used to change its
value. See Section 5 for a complete description of the PP command.

2.15 Expanded Addressing Support

D-Bug12 now fully supports the expanded address space of M68HC12 family members containing
more than 64K of program memory. The display of register values now includes the PPAGE
register if the selected device contains more than 64K of program memory. The new register
display format is shown below. Note that the disassembly line displays the characters ‘xx’ in place
of the PPAGE register value if the program counter value is outside the range of the PPAGE
window ($8000 - $BFFF) indicating that the PPAGE register value is not pertinent to program
execution in this memory range.

PP PC SP X Y D = A:B CCR = SXHI NZVC
30 C00A 4000 0000 0000 00:00 1101 0000
xx:C00A CF3FFF LDS #$3FFF

In addition to the new register display and disassembly format, the Go (G), GoTill (GT), ASM,
BR and NOBR commands accept an additional address format that includes a PPAGE value. The
expanded address format consists of an 8-bit PPAGE number and a 16-bit PPAGE window
address separated by the colon character (‘:’). The general format of an expanded address is:

<PPAGENum>:<PPAGEWinAddr>

Both the PPAGE number and the PPAGE window address may consist of a simple expression.
<PPAGENum> must be in a valid range for the selected device and <PPAGEWinAddr> must be an
address in the PPAGE window ($8000 - $BFFF).

D-Bug12 v4.x.x Reference Guide Page 7 Motorola Semiconductor
July 30, 2001

Note: Because the GoTill (GT), BR and NOBR commands involves setting breakpoints, the
target MCU must contain a breakpoint module that supports the PPAGE number as part
of the address comparison. The original UDR M68HC12 family members do not posses
this capability. Alternatively, if the UDR target system contains RAM in place of the
Flash (such as an EVS system), the GoTill (GT), BR and NOBR commands may be
used in conjunction with software breakpoints (see the USEHBR command description
in Section 5).

2.16 PCALL Command

The PCALL command is used to execute a subroutine ending with an RTC instruction, returning to
the D-Bug12 monitor program when the final RTC of the subroutine is executed. For complete
information, see the PCALL command description in Section 5.

D-Bug12 v4.x.x Reference Guide Page 8 Motorola Semiconductor
July 30, 2001

3.0 Terminal Communications Setup

Version 4.x.x of D-Bug12 requires a host terminal program that supports XOn/XOff software
handshaking for proper operation. Many popular terminal emulation programs for the Windows™
operating system meet this requirement. However, because the HyperTerminal terminal emulation
program is supplied with Windows 95/98/NT it is recommended for use with D-Bug12. The
factory configured default communications parameters used by D-Bug12 are 9600 baud, eight data
bits, one stop bit, XOn/XOff handshaking and no parity.

When configured for EVB mode, the communications parameters will revert to the factory default
settings whenever the board is powered down or reset. However, when operating the EVB in POD
mode, baud rate changes made using the BAUD command are stored in the MC9S12DP256’s on-
chip EEPROM, making the entered baud rate the new default communication rate. If
communication cannot be established with the EVB and random characters are displayed on the
terminal screen, it is possible that the baud rate was changed to something other than the current
settings of the terminal program.

If attempting communications at various baud rates does not result in D-Bug12’s prompt being
displayed, the EVB’s on-chip EEPROM should be erased to reconfigure the baud rate to the
factory default of 9600. This task can be accomplished by configuring the EVB for EVB mode,
setting the terminal emulator program to 9600 baud and entering the BULK command on the
command line. If communication cannot be established when the EVB is configured for EVB
mode, check all communications and power connections to the EVB board.

3.1 Configuring HyperTerminal

The HyperTerminal terminal emulation program is supplied with Windows 95/98/NT and is
recommended for use with D-Bug12 version 4.x.x. For those not familiar with HyperTerminal,
this section describes the setup procedure necessary to use HyperTerminal with D-Bug12. For
most Windows configurations, a short cut to the HyperTerminal program or the HyperTerminal
folder can be found in the Start menu under Programs/Accessories/Communications. If a short cut
for the HyperTerminal program or folder does not exist in the communications menu, use the Find
item in the Start menu to search for the program.

After locating the HyperTerminal program or short cut icon, double click on the icon to start the
program. When presented with the Configuration Dialog click cancel to dismiss the dialog box.
From the File menu select Properties. Make sure that the Connect To tab is selected. From
the Connect using drop down list, select a direct connection using one of the computers COM
ports. After selecting the com port, click on the Configure… button to reveal the Properties
Dialog. Use the drop down lists to set the baud rate to 9600 (factory default), one stop bit, no
parity and XOn/XOff handshaking. Click the OK button in the Properties and connection dialog
box to confirm the settings.

In the Call menu select the Call item to establish a connection through the selected COM port to the
EVB. Pressing the reset button on the EVB should display one of the D-Bug12 sign-on messages
and prompt. If nothing appears on the screen, check the connection between the computer and
EVB to ensure that the EVB is connected to the proper serial port. If random characters appear on
the screen, it is most likely that an incorrect baud rate was selected.

D-Bug12 v4.x.x Reference Guide Page 9 Motorola Semiconductor
July 30, 2001

Note: Before selecting a new baud rate, HyperTerminal must be disconnected from the
communication source by selecting Disconnect from the Call menu. Failure to
disconnect from the communication source will cause HyperTerminal to ignore any new
port settings.

4.0 Operating Modes

The D-Bug12 firmware has four operating modes controlled by the logic level present on the PAD0
and PAD1 pins at power up or reset. The operating modes for the four logic level combinations are
presented in Figure 1.

PAD1 PAD0 Operating Mode

0 0 D-Bug12; EVB

0 1 Jump to internal EEPROM

1 0 D-Bug12; POD

1 1 Serial Bootloader

Figure 1, D-Bug12’s Operating Modes

4.1 EVB Mode

In D-Bug12’s ‘EVB’ mode the monitor firmware operates as a ROM resident monitor/debugger
executing from the MC9S12DP256’s internal Flash. While this mode provides an excellent
environment for silicon evaluation, a stable evaluation environment for testing new algorithms or
conducting performance benchmarks, it does have some limitations. Because the monitor/debugger
program executes out of the MC9S12DP256’s internal memory, the Flash memory, 1024 bytes of
the on-chip RAM, and one of the the SCI serial ports are not available to the developer. As shown
in Figure 2, D-Bug12 runs on the target system.

User Terminal
RS-232

D-Bug12 Target
System

Low-Level
Interface
Routines

MCS68HC912DP256 EVB

Figure 2, EVB Mode Conceptual Model

When operating in the ‘EVB’ mode, D-Bug12 is not capable of supporting true emulation of a
target system. However, programs may be downloaded and executed from the 3072 bytes of the
on-chip EEPROM or the portion of on-chip RAM not utilized by D-Bug12. The portion of the
RAM that may be used by developer programs begins at $1000 and ends at $3BFF. D-Bug12
utilizes the remainder of the RAM which begins at $3C00 and extends through $3FFF.

After selecting the EVB operating mode and applying power or pressing the reset button, the sign
on message in Figure 3 will be displayed on the screen:

D-Bug12 v4.x.x Reference Guide Page 10 Motorola Semiconductor
July 30, 2001

D-Bug12 v4.0.0
Copyright 1996 - 2000 Motorola Semiconductor
For Commands type "Help"

>

Figure 3, EVB Mode Sign on Message

D-Bug12 displays the ASCII greater than character (>) indicating that it is ready to accept a
command. When issuing a command that causes a program to run from the internal RAM or
EEPROM, D-Bug12 will place the terminal cursor on a blank line where it will remain until control
is returned to D-Bug12. If a running program fails to return to D-Bug12, pressing the EVB’s reset
switch will cause the running program to halt execution and initiate the D-Bug12 initialization
sequence. Using this method to regain control of an executing program fails to report any
information to the programmer on why or how the program may have failed.

Alternately, if an optional S.P.S.T. normally open switch has been wired to the XIRQ interrupt
input pin, pressing it generates an XIRQ interrupt that causes the running program to halt execution
and returns control back to D-Bug12 where the CPU register contents are displayed.

4.2 Interrupts in EVB Mode

D-Bug12 contains default interrupt handlers for all of the implemented MC9S12DP256 interrupt
vectors. However, to allow a programmer to utilize peripherals in an interrupt driven manner, a
RAM based interrupt vector table is provided by D-Bug12. Each of the 64 entries in the table
consists of a two byte address with the table beginning at $3E00. Initially, all entries in the table
have an address of $0000. Storing a value other than $0000 in any of the RAM interrupt vector
table entries causes execution of the interrupt service routine pointed to by the address when an
associated interrupt occurs. The user supplied interrupt service routine must end with an RTI
instruction to ensure that execution of the main program continues where it was interrupted.

If an unmasked interrupt occurs and a table entry contains the default address of $0000, program
execution is returned to D-Bug12 where a message is displayed indicating the source of the
interrupt and displays the CPU registers at the point where the program was interrupted.

Figure 4 shows the correspondence between the interrupt source and the two byte RAM interrupt
vector. Note that even though there is an entry in the table for SCI0, replacing the default value
with the address of an interrupt service routine will be ignored since D-Bug12 requires the SCI0
for all of its communication.

D-Bug12 v4.x.x Reference Guide Page 11 Motorola Semiconductor
July 30, 2001

RAM Vector
AddressInterrupt Source

$3E00Reserved $FF80

$3E02Reserved $FF82

$3E04Reserved $FF84

$3E06Reserved $FF86

$3E08Reserved $FF88

$3E0AReserved $FF8A

$3E0CPWM Emergency Shutdown

$3E0EPort P Interrupt

$3E10MSCAN 4 Transmit

$3E12MSCAN 4 Receive

$3E14MSCAN 4 Errors

$3E16MSCAN 4 Wake-up

$3E18MSCAN 3 Transmit

$3E1AMSCAN 3 Receive

$3E1CMSCAN 3 Errors

$3E1EMSCAN 3 Wake-up

$3E20MSCAN 2 Transmit

$3E22MSCAN 2 Receive

$3E24MSCAN 2 Errors

$3E26MSCAN 2 Wake-up

$3E28MSCAN 1 Transmit

$3E2AMSCAN 1 Receive

$3E2CMSCAN 1 Errors

$3E2EMSCAN 1 Wake-up

$3E30MSCAN 0 Transmit

$3E32MSCAN 0 Receive

$3E34MSCAN 0 Errors

$3E36

$3E38Flash

$3E3AEEPROM

$3E3CSPI2

$3E3ESPI1

MSCAN 0 Wake-up

RAM Vector
AddressInterrupt Source

$3E40IIC Bus

$3E42DLC

$3E44SCME

$3E46CRG Lock

$3E48Pulse Accumulator B Overflow

$3E4AModulus Down Counter Underflow

$3E4CPort H Interrupt

$3E4EPort J Interrupt

$3E50ATD1

$3E52ATD0

$3E54SCI1

$3E56SCI0

$3E58SPI0

$3E5APulse Accumulator A Input Edge

$3E5CPulse Accumulator A Overflow

$3E5ETimer Overflow

$3E60Timer Channel 7

$3E62Timer Channel 6

$3E64Timer Channel 5

$3E66Timer Channel 4

$3E68Timer Channel 3

$3E6ATimer Channel 2

$3E6CTimer Channel 1

$3E6ETimer Channel 0

$3E70Real Time Interrupt

$3E72IRQ

$3E74XIRQ

$3E76

$3E78Unimplemented Instruction Trap

$3E7AN/A

$3E7CN/A

$3E7EN/A

SWI

Figure 4, RAM Interrupt Vector Addresses

D-Bug12 v4.x.x Reference Guide Page 12 Motorola Semiconductor
July 30, 2001

4.3 POD Mode

In the POD operating mode, none of the MC9S12DP256’s resources are available to the developer.
Instead, D-Bug12 communicates with the developer’s M68HC12 target system through the Single
Wire Background Debug interface. This arrangement, as shown in Figure 5, allows access to a
developer’s target system in a non-intrusive manner. All of the target MCU’s resources are
available to the developer, providing a non-invasive development environment for the target
system.

User Terminal
RS-232

D-Bug12
Low-Level
Interface
Routines

Target
System

MCS68HC912DP256 EVB

Background Debug
Connection

M68HC12
Microcontroller

Figure 5, POD Mode Conceptual Model

On power-up or reset D–Bug12 attempts to establish communications with a target system.
Initially, communications is attempted without resetting the target system. This feature allows the
POD EVB to be ‘hot connected’ to a running system without disturbing the target microcontroller.
If communications cannot be established, the message shown in Figure 6 is displayed.

Can't Communicate With Target CPU

1.) Set Target Speed (4000 KHz)
2.) Reset Target
3.) Reattempt Communication
4.) Erase & Unsecure
?

Figure 6, Failed Target Communications Prompt

Entering the number ‘1’, ‘2’, ‘3’ or ‘4’ from the keyboard allows the developer to configure
D–Bug12 for an alternate target frequency, reset the target, attempt to establish communications
without resetting the target M68HC12 or erase and unsecure an MC9S12 target device. Entering a
character other than the choices provided will result in the target being reset and an attempt to
establish communications. The frequency displayed in parenthesis is the current setting for the
target crystal frequency.

Entering the number one causes the prompt shown in Figure 7 to be displayed.

D-Bug12 v4.x.x Reference Guide Page 13 Motorola Semiconductor
July 30, 2001

Enter Target Crystal Frequency (KHz):

Figure 7, Request for Target Frequency Prompt

The entered number must be the target’s crystal frequency and not the target’s E–clock frequency.
The entered frequency must be in kilohertz and not hertz. Valid target frequencies range from a low
of 32 KHz to a high equal to the crystal frequency of the EVB being used as the POD. Numbers
outside this range will result in an error message being displayed and cause the menu of choices to
be redisplayed. Each time a valid target crystal frequency is entered, the new value is saved in the
EVB’s on-chip EEPROM. The saved value is used to initiate communications each time the EVB is
powered-up or connected to a new target system.

Note: Because of the timing tolerance inherent in the BDM communications protocol and the
implementation of the BDM firmware communications primitives, an exact value for the
target crystal need not be specified. However, the entered value should be as accurate as
possible. For very low frequencies, such as a 32.768 KHz crystal, a value of 32 or 33
will result in proper communication. In reality, the BDM firmware communications
primitives will communicate properly with the target microcontroller even if the entered
crystal frequency is as much as ± 20% different from the actual target crystal frequency.

After a valid target crystal frequency has been entered, D–Bug12 will attempt to establish
communications with the target processor without resetting the target. If the menu of choices is
redisplayed, communication could not be established. If communication cannot be established after
several attempts, check for the following possible problems:

• The EVB’s BDM OUT connector must be properly connected to the target systems
BDM connector. If the target system is another MC9S12DP256 EVB, make sure that
the POD EVB’s BDM OUT connector is connected to the target EVB’s BDM IN
connector.

• Check for the proper orientation of the BDM cable with the BDM connectors on both
the EVB and the target.

• If the target system is not another EVB, verify that its BDM connector is wired to the
proper MCU signals on each pin.

• If the target MCU does not have any firmware to execute, the CPU will most likely
“run away”, possibly executing a STOP instruction, preventing BDM communications
with the target MCU. Thus it is strongly recommended that if a target system does not
have firmware to execute at power-up or reset, that the target MCU be configured to
operate in Special Single Chip mode.

• If the target MCU is a member of the MC9S12 family, has it’s security feature enabled
and the Flash and EEPROM are not blank, normal BDM communication cannot be
established with the device. Option ‘4’ must first be used to erase the Flash and
EEPROM and disable security.

When communications with a target MCU is properly established, either initially or after setting the
target crystal frequency, the sign on message in Figure 8 is displayed. Note that this sign on

D-Bug12 v4.x.x Reference Guide Page 14 Motorola Semiconductor
July 30, 2001

message is identical to that of the sign on message for EVB mode except for the prompt.

D-Bug12 v4.0.0
Copyright 1996 - 2000 Motorola Semiconductor
For Commands type "Help"

S>

Figure 8, Successful POD Mode Sign on Message

When operating in the POD mode, D-Bug12 will display one of two command prompts depending
on the state of the attached target system. When the target system is in active background mode
(not running a user program), a two character prompt of ‘S>’ is displayed. The ‘S’ in the prompt
indicates that the target is Stopped and not running a user program. When the target system is
running a user program, a two character prompt of ‘R>’ is displayed. The ‘R’ indicates that the
target is Running a user program.

Because the M68HC12 Single Wire Background interface allows the reading and writing of target
system memory even when the target is running a user’s program, the probe microcontroller is
always available for the entry of commands. D-Bug12 commands that examine or modify target
system memory may be issued when either the ‘S>’ or ‘R>’ prompt is displayed.

4.3.1 The Erase & Unsecure Option

The security of a microcontroller’s program and data memories has long been a concern of
companies for one main reason. Because of the considerable time and money that is invested in the
development of proprietary algorithms and firmware, it is extremely desirable to keep the firmware
and associated data from prying eyes. The MC9S12 (Star12) family members have been designed
with a device security mechanism that makes it nearly impossible to access the Flash or EEPROM
contents. Once the security mechanism has been enabled, access to the Flash and EEPROM either
through the BDM or the expanded bus is inhibited. Gaining access to either of these resources may
only be accomplished by erasing the contents of the Flash and EEPROM or through a built in back
door mechanism. While having a back door mechanism may seem to be a weakness of the security
mechanism, the target application must specifically support this feature for it to operate.

When a secured device is reset in Special Single-chip mode, a special BDM security ROM
becomes active. The program in this small ROM performs a blank check of the Flash and
EEPROM memories. If both memory spaces are erased, the BDM firmware temporarily disables
device security, allowing full BDM functionally. However, if the Flash or EEPROM are not blank,
security remains active and only the BDM hardware commands remain functional. In this mode the
BDM commands are restricted to reading and writing the I/O register space. Because all other BDM
commands and on-chip resources are disabled, the contents of the Flash and EEPROM remain
protected. This functionality is adequate to manipulate the Flash and EEPROM control registers to
erase their contents.

Note: Use of the BDM interface to erase the Flash and EEPROM memories is not present in the
initial mask set (0K36N) of the MC9S12DP256. Great care must be exercised to ensure
that the microcontroller is not programmed in a secure state unless the back door
mechanism is supported by the target firmware.

D-Bug12 v4.x.x Reference Guide Page 15 Motorola Semiconductor
July 30, 2001

Because normal BDM communication cannot be established with a secured MC9S12 device whose
Flash and/or EEPROM are not erased, the Erase and Unsecure option can be used to erase the
Flash and EEPROM of a target MC9S12 device and place it in the unsecured state.

4.4 Jump to EEPROM Mode

This operating mode allows a small program (4096 bytes or less) to be executed from the on-chip
EEPROM whenever the EVB is powered up or reset. D-Bug12’s startup code jumps directly to
address $0400 without performing any initialization of the CPU registers or peripherals. This
mode provides a convenient way to execute a program in a standalone manner without having to
erase and program the on-chip Flash using the Bootloader. Code and data can be programmed into
the EEPROM using D-Bug12’s LOAD command.

Note: The MC9S12DP256 contains 4096 bytes of small sector Flash used to ‘emulate’ EEPROM
memory. The default address range of the EEPROM is $0000 - $0FFF. Because the default
location of the I/O register block occupies the address range from $0000 - $03FF, the
lower 1024 bytes of the EEPROM is not initially accessible. This is why the ‘Jump to
EEPROM Mode’ jumps to $0400 instead of the start of the EEPROM. Note that the I/O
register block may be relocated by writing to the INITRG register, thus providing access to
the lower 1024 bytes of EEPROM memory.

4.5 Serial Bootloader Mode

The on-chip Flash memory includes a boot block area from $F000 - $FFFF containing an S-
Record bootloader program. The bootloader can be used to erase and reprogram the remainder of
on-chip Flash memory or erase the on-chip byte erasable EEPROM. The bootloader program
utilizes the on-chip SCI for communications and does not require any special programming
software on the host computer. The only host software required is a simple terminal program that
is capable of communicating at 9600 - 115,200 baud and supports XOn/XOff handshaking.

Invoking the bootloader causes the prompt shown in Figure 9 to be displayed on the host
terminal’s screen.

HCS912DP256 Bootloader

a) Erase Flash
b) Program Flash
c) Set Baud Rate
d) Erase EEPROM
?

Figure 9, Serial Bootloader Prompt

D-Bug12 v4.x.x Reference Guide Page 16 Motorola Semiconductor
July 30, 2001

4.5.1 Erase Flash Command

Selecting the Erase function by typing a lower case ‘a’ on the terminal will cause a bulk erase of all
four 64K Flash arrays except for the 4k boot block in the upper 64K array where the S-Record
bootloader resides. After the erase operation is completed, a verify operation is performed to
ensure that all locations were properly erased. If the erase operation is successful, the bootloader’s
prompt is redisplayed.

If any locations were found to contain a value other than $FF, an error message is displayed on the
screen and the bootloader’s prompt is redisplayed. If the MC9S12DP256 device will not erase after
one or two attempts the device may be damaged.

4.5.2 Program Flash Command

To increase the efficiency of the programming process, the S-Record bootloader uses interrupt
driven, buffered serial I/O in conjunction with XOn/XOff software handshaking to control the flow
of S-Record data from the host computer. This allows the bootloader to continue receiving S-
Record data from the host computer while the data from the previously received S-Record is
programmed into the Flash. The terminal program must support XOn/XOff handshaking to
properly reprogram the MC9S12DP256’s Flash memory.

Typing a lower case ‘b’ on the terminal causes the bootloader to enter the programming mode and
wait for S-Records to be sent from the host computer. The bootloader will continue to receive and
process S-Records until it receives an ‘S8 or ‘S9’ end of file record. If the object file being sent to
the bootloader does not contain an ‘S8’ or ‘S9’ record, the bootloader will not return its prompt
and will continue to wait for the end of file record. Pressing the EVB’s reset switch, will cause the
bootloader to return to its prompt.

If a Flash memory location will not program properly, an error message is displayed on the
terminal screen and the bootloader’s prompt is redisplayed. If the MC9S12DP256 device will not
program after one or two attempts the device may be damaged or an S-Record with a load address
outside the range of the available on-chip Flash may have been received. The S-Record data must
have load addresses in the range $C0000 - $FFFFF. This address range represents the upper 256K
bytes of the 1MB address space of the MC9S12DP256.

4.5.3 Set Baud Rate Command

While the default communications rate of the bootloader is 9600 baud, this speed is much too slow
if the majority of the MC9S12DP256’s Flash is to be programmed, however, it provides the best
compatibility for initial communications with most terminal programs. The Set Baud Rate
command allows the bootloader communication rate to be set to one of four standard baud rates.
Using a baud rate of 57,600 allows the entire 256K of flash to be programmed in just under two
minutes.

Typing a lower case ‘c’ on the terminal causes the prompt shown in Figure 10 to be displayed on
the host terminal’s screen. Entering a number ‘1’ through ‘4’ on the keyboard will select the
associated baud rate and issue a secondary prompt indicating that the terminal baud rate should be
changed. After changing the terminal baud rate, pressing the enter or return key will return to the
main bootloader prompt.

D-Bug12 v4.x.x Reference Guide Page 17 Motorola Semiconductor
July 30, 2001

1) 9600
2) 38400
3) 57600
4) 115200
? 3
Change Terminal BR, Press Return

Figure 10, Change Baud Rate Prompt

4.5.4 Reloading D-Bug12

When features or enhancements are added to D-Bug12 it may be desirable to replace the version
that was shipped with the MC9S12DP256 with the latest version. An S-Record file containing the
current version of D-Bug12 can be obtained electronically from the Advanced Microcontroller
Division Freeware Data Systems at the following locations:

• World Wide Web - ????

4.5.5 Loading User programs into Flash

While the MC9S12DP256 EVB was designed to be used with the D-Bug12 software to evaluate
the MC9S12DP256 device, the board may also be used with user supplied software and hardware
to prototype an embedded application. When using the board in this manner the user supplied code
may occupy all of the on-chip Flash memory except the address range from $F000 - $FFFF in the
fixed Flash memory page that begins at $C000. To begin execution of the users application
program, PAD0 and PAD8 must both have jumpers placed in the ‘0’ or ‘OFF’ position. This will
cause the bootloader startup code to jump to the address in the alternate reset vector at $EFFE.
When the user code is programmed into Flash, an address MUST be placed in the Reset vector
position ($EFFE) of the alternate interrupt vector table.

4.5.6 Erasing the On-chip EEPROM

When D-Bug12 operates in POD mode, it saves various operating parameters and data in the
MC9S12DP256’s on-chip EEPROM. One of the parameters is the default baud rate. If
communication cannot be established with the EVB and random characters are displayed on the
terminal screen, it is possible that the baud rate was changed to something other than the current
settings of the terminal program. If attempting communications at various baud rates does not
result in D-Bug12’s prompt being displayed, the EVB’s on-chip EEPROM should be erased to
reconfigure the baud rate to the factory default of 9600.

D-Bug12 v4.x.x Reference Guide Page 18 Motorola Semiconductor
July 30, 2001

5.0 D-Bug12 Command Set

The following list summarizes the D-Bug12 command set. Each command’s function and
command line syntax are described in detail.

• ALTCLK - Specify an alternate BDM communications rate
• ASM - Single line assembler/disassembler.
• BAUD - Set the SCI communications BAUD rate
• BF - Block Fill user memory with data.
• BR - Set/Display user breakpoints.
• BULK - Bulk erase on-chip EEPROM
• CALL - Execute a user subroutine, return to D-Bug12 when finished.
• DEVICE - Select/define a new target MCU device.
• EEBASE - Inform D-Bug12 of the target’s EEPROM base address
• FBULK - Erase the target processor’s on-chip Flash EEPROM
• FLOAD - Program the target processor’s on-chip Flash EEPROM from S-Records
• G - Go. Begin execution of user program.
• GT - Go Till. Set a temporary breakpoint and begin execution of user program.
• HELP - Display D-Bug12 command set and command syntax.
• LOAD - Load user program in S-Record format.
• MD - Memory Display. Display memory contents in hex bytes/ASCII format.
• MDW - Memory Display Words. Display memory contents in hex words/ASCII

format.
• MM - Memory Modify. Interactively examine/change memory contents.
• MMW - Memory Modify Words. Interactively examine/change memory contents.
• MOVE - Move a block of memory.
• NOBR - Remove one/all user breakpoints.
• PCALL - Execute a user subroutine in expanded memory, return to D-Bug12 when

finished.
• RD - Register Display. Display the CPU register contents.
• REGBASE - Inform D-Bug12 of the target’s I/O register’s base address
• RESET - Reset the target CPU
• RM - Register Modify. Interactively examine/change CPU register contents.
• STOP - Stop the execution of user code in the target processor and place the target

processor in background mode.
• T - Trace. Execute an instruction, disassemble it, and display the CPU registers.
• TCONFIG - Configure target before erasing or programming target Flash
• UPLOAD - Display memory contents in S-Record format.
• USEHBR - Use EVB/Target Hardware breakpoints
• VERF - Verify memory contents against S-Record Data.
• <RegisterName> <RegisterValue> - Set CPU <RegisterName> to <RegisterValue>

D-Bug12 v4.x.x Reference Guide Page 19 Motorola Semiconductor
July 30, 2001

ALTCLK - Specify An Alternate BDM Communications Rate

Command Line Format

ALTCLK [<AltBDMRate>]

Parameter Description

<AltBDMRate> - A 16-bit decimal number

Command Description

An errata was introduced in the BDM module on the MC9S12DP256 (Barracuda II) 0K79X
mask set and the MC9S12H256 (Mako) 0K78X mask set. When using EXTAL ÷ 2 as the
BDM clock source (default) and the PLL is selected as the bus clock source, BDM
communications will be lost when the PLL multiplier is greater than 2 ((synr+1))/(refdv+1)).
Once communication is lost, the only way to regain communications is to reset the target MCU.

D-Bug12 version 4.0.0b8 and later has been modified to configure the BDM to use the target
bus clock (BDM Status Register CLKSW=1) if either of these parts is connected as the target
device. Because the BDM interface is being driven by the target bus clock, BDM
communication will be lost if the target firmware changes the bus clock frequency using the
PLL. To prevent the loss of communications from disrupting a debug session, a command has
been added to D-Bug12 that allows an alternate BDM communication clock frequency to be
specified. If BDM communication with the target is lost, D-Bug12 will automatically attempt
communication at the alternate frequency without notifying the user.

The ALTCLK command (see documentation) is used to specify the alternate BDM
communication frequency, which should be equal to the target bus frequency with the PLL
engaged as the bus clock. For example, if a 4 MHz crystal/oscillator is being used in a target
application and the firmware programs the PLL to generate a 24 MHz bus clock, the ALTCLK
command should be used to specify an alternate bus frequency of 24000 KHz. The ALTCLK
command must be used to specify the alternate BDM communication frequency before
executing the target code that engages the PLL as the bus clock. Note that the alternate BDM
communication rate specified using the ALTCLK command is saved in D-Bug12’s host MCU
EEPROM so that it does not have to be reentered each time the development tool is powered
up.

Entering the ALTCLK command without an alternate BDM communications frequency will
display the current alternate clock setting.

Restrictions

Switching between the two BDM communications rates is completely transparent to the
developer with one exception. If D-Bug12’s memory modify command (MM) is used to
engage the PLL as the bus clock by setting the PLLSEL bit in the CLKSEL register, D-Bug12
will report that the target memory could not be modified because of the temporary loss of
communications. However, after displaying the error message, D-Bug12 will resynchronize to
the new BDM communications rate and show that the target memory was properly modified.

The ALTCLK command can only be used if the MC9S12DP256 (Barracuda II) 0K79X mask
set or the MC9S12H256 (Mako) 0K78X mask set device is connected as the target device.

D-Bug12 v4.x.x Reference Guide Page 20 Motorola Semiconductor
July 30, 2001

Example

S>ALTCLK 24000
S>ALTCLK
Alternate BDM Clock Frequency (KHz): 24000
S>

D-Bug12 v4.x.x Reference Guide Page 21 Motorola Semiconductor
July 30, 2001

ASM - Single Line Assembler/Disassembler Command

Command Line Format

ASM <Address> | <PPAGENum>:<PPAGEWinAddr>

Parameter Description

<Address> - A 16-bit hexadecimal number or simple expression
<PPAGENum> - An 8-bit hexadecimal number or simple expression
<PPAGEWinAddr> - A 16-bit hexadecimal number or simple expression

Command Description

The assembler/disassembler is an interactive memory editor that allows memory contents to be
viewed and altered using assembly language mnemonics. Each entered source line is translated
into machine language code and placed into memory at the time of entry. When displaying
memory contents, each instruction is disassembled into its source mnemonic form and
displayed along with the hexadecimal machine code and any instruction operands.

Assembler mnemonics and operands may be entered in any mix of upper and lower case
letters. Any number of spaces may appear between the assembler prompt and the instruction
mnemonic or between the instruction mnemonic and the operand. By default, numeric values
appearing in the operand field are interpreted as signed decimal numbers. Placing a $ in front of
a number will cause the number to be interpreted as a hexadecimal number.

When an instruction has been disassembled and displayed, the D-Bug12 prompt is displayed
following the disassembled instruction. If a carriage return is entered immediately following the
prompt, the next instruction in memory is disassembled and displayed on the next line.

If a CPU12 instruction is entered following the prompt, the entered instruction is assembled
and placed in memory. The line containing the new entry is erased and the new instruction is
disassembled and displayed on the same line. The contents of the next memory location(s) is
disassembled and displayed on the screen.

The instruction mnemonics and operand formats accepted by the assembler follow the syntax
as described in the M68HC12 Family CPU12 Reference Manual.

There are a number of M68HC11 instruction mnemonics that appear in the M68HC12 Family
CPU12 Reference Manual that do not have direct equivalent CPU12 instructions. These
mnemonics, listed in the table below, are translated into functionally equivalent CPU12
instructions. To aid the current M68HC11 users that may desire continue to use the M68HC11
mnemonics, the disassembler portion of the assembler/disassembler recognizes the functionally
equivalent CPU12 instructions and disassembles those instructions into the equivalent
M68HC11 mnemonics.

When entering branch instructions, the number placed in the operand field should be the
absolute destination address of the instruction. The assembler will calculate the twos
compliment offset of the branch.

The assembly/disassembly process may be terminated by entering a period (.) following the
assembler prompt.

D-Bug12 v4.x.x Reference Guide Page 22 Motorola Semiconductor
July 30, 2001

Restrictions

None.

M68HC11 Mnemonic CPU12 Instruction

CLC ANDCC #$FE

CLI ANDCC #$EF

CLV ANDCC #$FD

SEC

SEI

SEV

ORCC #$01

ORCC #$10

ORCC #$02

ABX

ABY

DES

LEAX B,X

LEAY B,Y

LEAS -1,S

M68HC11 Mnemonic CPU12 Instruction

INS LEAS 1,S

TAP

TPA

TSX

TSY

TFR A,CC

TFR CC,A

TFR S,X

TFR S,Y

XGDX

XGDY

EXG D,X

EXG D,Y

SEX R ,R8 16 TFR R ,R8 16

M68HC11 to CPU12 Instruction Translation

Example

>ASM 700

0700 CC1000 LDD #4096
0703 1803123401FE MOVW #$1234,$01FE
0709 0EF9800001F1 BRSET $003F,PCR,#$01,$0700
070F 18FF TRAP $FF
0711 183FE3 ETBL <Illegal Addr Mode> >.

>

D-Bug12 v4.x.x Reference Guide Page 23 Motorola Semiconductor
July 30, 2001

Assembly Operand Format

This section describes the operand format used by the assembler when assembling CPU12
instructions. The operand format accepted by the assembler is described separately in the
CPU12 Reference Manual. Rather that describe the numeric format accepted for each
instruction, some general rules will be used. Exceptions and complicated operand formats are
described separately.

In general, anywhere the assembler expects a numeric value in the operand field, either a
decimal or hexadecimal value may be entered. Decimal numbers are entered as signed constants
having a range of -32768..65535. A leading minus sign (-) indicates negative numbers, the
absence of a leading minus sign indicates a positive number. A leading plus sign (+) is not
allowed. Hexadecimal numbers must be entered with a leading dollar sign ($) followed by one
to four hexadecimal digits. The default number base is decimal.

For all branching instructions, (Bcc, LBcc, BRSET, BRCLR, DBEQ, DBNE, IBEQ, IBNE,
TBEQ, TBNE) the number entered in the address portion of the operand field must be the
absolute address of the branch destination. The assembler will calculate the two’s compliment
offset to be placed in the assembled object code.

The D–Bug12 assembler allows an optional # symbol to precede the 8-bit mask value in all bit
manipulation instructions (BSET, BCLR, BRSET, BRCLR).

Disassembly Operand Format

This section describes the operand format for the disassembler that is used in conjunction with
the single line assembler. The operand format used by the disassembler is described separately
in the CPU12 Reference Manual. Rather that describe the numeric format used for each
instruction, some general rules will be applied. Exceptions and complicated operand formats
will be described separately.

All numeric values disassembled as hexadecimal numbers will be preceded by a dollar sign ($)
to avoid being confused with values disassembled as signed decimal numbers.

For all branch (Bcc, LBcc, BRSET, BRCLR, DBEQ, DBNE, IBEQ, IBNE, TBEQ, TBNE)
instructions the numeric value of the address portion of the operand field will be displayed as
the hexadecimal absolute address of the branch destination.

All offsets used with indexed addressing modes will be disassembled as signed decimal
numbers with the following exception. When an instruction is disassembled utilizing the
program counter as an index register, the offset field will contain an absolute hexadecimal
address rather than a decimal offset. The address is calculated by adding the offset in the object
code to the value of the program counter at the end of the instruction. Rather than displaying
the index register name as ‘PC’ the mnemonic ‘PCR’ is used to indicate that the offset field
contains an absolute address.

All addresses, whether direct or extended, will be disassembled as four digit hexadecimal
numbers.

All 8-bit mask values (BRSET/BRCLR/ANDCC/ORCC) will be disassembled as two digit
hexadecimal numbers.

D-Bug12 v4.x.x Reference Guide Page 24 Motorola Semiconductor
July 30, 2001

For bit manipulation instructions (BSET, BCLR, BRSET, BRCLR), the disassembler always
displays the # symbol preceding the 8-bit mask value.

All 8-bit immediate values will be disassembled as hexadecimal numbers.

All 16-bit immediate values will be disassembled as hexadecimal numbers.

D-Bug12 v4.x.x Reference Guide Page 25 Motorola Semiconductor
July 30, 2001

BAUD - Change The Communications BAUD Rate

Command Line Format

BAUD <BAUDRate>

Parameter Description

<BAUDRate> An unsigned 32-bit decimal number

Command Description

The BAUD command is used to change the communications rate of the SCI that is used by D-
Bug12 to communicate with the user.

Restrictions

Because the <BAUDRate> parameter supplied on the command line is a 32-bit unsigned
integer, BAUD rates greater than 65535 baud may be set using this command. The SCI BAUD
rate divider value for the requested BAUD rate is calculated using the bus clock value that is
supplied in the Customization Data area. Because the SCI BAUD rate divider is a 13-bit
counter, certain BAUD rates may not be supported at particular MCU clock frequencies.

Example

>baud 50

Invalid BAUD Rate
>baud 115200
Change Terminal BR, Press Return
>

D-Bug12 v4.x.x Reference Guide Page 26 Motorola Semiconductor
July 30, 2001

BF - Fill memory with data

Command Line Format

BF <StartAddress> <EndAddress> [<Data>]

Parameter Description

<StartAddress> A 16-bit hexadecimal number or simple expression
<EndAddress> A 16-bit hexadecimal number or simple expression
<Data> An 8-bit hexadecimal number

Command Description

The Block Fill command is used to place a single 8-bit value into a range of memory locations.
<StartAddress> is the first memory location written with data and <EndAddress> is the last
memory location written with data. If the <data> parameter is omitted the memory range is
filled with the value $00.

Restrictions

None.

Example

>bf 400 fff 0
>bf x x+$ff 55
>

D-Bug12 v4.x.x Reference Guide Page 27 Motorola Semiconductor
July 30, 2001

BR - Set/Display User Breakpoints

Command Line Format

BR [<Address> | <PPAGENum>:<PPAGEWinAddr>…]

Parameter Description

<Address>A 16-bit hexadecimal number or simple expression
<PPAGENum> - An 8-bit hexadecimal number or simple expression
<PPAGEWinAddr> - A 16-bit hexadecimal number or simple expression

Command Description

The BR command is used to set a breakpoint at a specified address or to display any previously
set breakpoints. The function of a breakpoint is to halt user program execution when the
program reaches the breakpoint address. When a breakpoint address is encountered, D-Bug12
will disassemble the instruction at the breakpoint address, print the CPU12’s register contents,
and wait for the next D-Bug12 command to be entered by the user.

Breakpoints are set by entering the breakpoint command followed by one or more breakpoint
addresses. Entering the breakpoint command without any breakpoint addresses will display all
the currently set breakpoints.

A maximum of 10 breakpoints may be set at one time when using software breakpoints
(default). A maximum of 2 breakpoints may be set when using the EVB or target CPU’s
hardware breakpoint capability. For additional information on D-Bug12’s hardware breakpoint
support, see the USEHBR command description.

Restrictions

D-Bug12 implements the software breakpoint function by replacing the opcode at the
breakpoint address with an SWI instruction when operating in the EVB mode or the BGND
instruction when operating in the POD mode. A breakpoint may not be set on a user SWI
instruction when operating in EVB mode. In either mode breakpoints may only be set at an
opcode address and breakpoints may only be placed at memory addresses implemented as
RAM.

When using the on-chip hardware breakpoints, D–Bug12 utilizes the the breakpoint module in
either SWI Dual Address (EVB) or BDM Dual Address (POD) mode. Both of these breakpoint
module modes utilize the CPU12 instruction fetch tagging mechanism which only allows
breakpoints to be set on instruction opcodes.

When operating in the POD mode, new breakpoints may not be set with the BR command
when the ‘R>’ prompt is being displayed. However, the BR command may be used to display
breakpoints that are currently set in the user’s running program.

Example

>br 35ec 2f80 c592
Breakpoints: 35ec 2f80 c592

>br
Breakpoints: 35EC 2F80 C592

D-Bug12 v4.x.x Reference Guide Page 28 Motorola Semiconductor
July 30, 2001

BULK - Bulk Erase on-chip EEPROM

Command Line Format

BULK

Parameter Description

No parameters are required

Command Description

The BULK command is used to erase the entire contents of the on-chip EEPROM in a single
operation. After the bulk erase operation has been performed, each on-chip EEPROM location
shall be checked for contents of $FF.

Restrictions

None.

Example

>BULK

F/EEPROM Failed To Erase
>BULK

>

D-Bug12 v4.x.x Reference Guide Page 29 Motorola Semiconductor
July 30, 2001

CALL - Execute A User Subroutine

Command Line Format

CALL [<Address>]

Parameter Description

<Address> A 16-bit hexadecimal number or simple expression

Command Description

The CALL command is used to execute a subroutine and return to the D-Bug12 monitor
program when the final RTS of the subroutine is executed. When control is returned to
D–Bug12, the CPU register contents will be displayed. All CPU registers contain the values at
the time the final RTS instruction was executed with the exception of the program counter
(PC). The PC will contain the starting address of the subroutine. If a subroutine address is not
supplied on the command line, the current value of the Program Counter (PC) will be used as
the starting address.

NOTE: No breakpoints are placed in memory before execution is transferred to user code.

Restrictions

If the called subroutine modifies the value of the stack pointer during its execution, it MUST
restore the stack pointer’s original value before executing the final RTS of the called
subroutine. This restriction is required because D–Bug12 places four bytes of data on the users
stack that causes control to return to D-Bug12 when the final RTS of the subroutine is
executed. Obviously, any subroutine must obey this restriction to execute properly.

The CALL command cannot be issued when the ‘R>’ prompt is being displayed indicating that
the target system is already running a user program.

Example

>call 820
Subroutine Call Returned

 PC SP X Y D = A:B CCR = SXHI NZVC
0820 0A00 057C 0000 0F:F9 1001 0000
0820 CCFFFF LDD #$0FFF

>

D-Bug12 v4.x.x Reference Guide Page 30 Motorola Semiconductor
July 30, 2001

DEVICE - Specify a target MCU device type

Command Line Format

DEVICE
DEVICE ?
DEVICE <DeviceName>

Parameter Description

<DeviceName> Maximum of 7 ASCII characters used to select a target MCU device

Command Description

Selecting the proper target MCU with the DEVICE command provides D-Bug12 the
information necessary to allow transparent alteration of the target MCU’s on-chip EEPROM
using any D-Bug12 commands that modify memory. It also provides the necessary information
to allow the programming and erasure of on-chip Flash EEPROM. In addition, it allows D-
Bug12 to initialize the stack pointer to the top of on-chip RAM when the target MCU is reset
using the RESET command. The DEVICE command has three command line formats allowing
for the display and/or selection of target device parameters.

Entering “DEVICE” on the command line followed by a carriage return will display the name
of the currently selected device, the on-chip EEPROM’s starting and ending address, the on-
chip Flash EEPROM’s starting and ending address, the on-chip RAM’s starting and ending
address, and the I/O Base address. This form of the command may be used when D-Bug12 is
operating in either EVB or POD mode.

When D-Bug12 is operated in the POD mode, the device command may also be used to select a
new target device. Entering the DEVICE command followed only by a device name will
configure D-Bug12 for operation with the selected target device. The table below shows the
command line name to use for the default MCU devices.

Device Name Target MCU
912B32 MC68HC912B32

MC68HC912BC32
812A4 MC68HC812A4
912D60 MC68HC912D60
912D60A MC68HC912D60A
DA128 MC68HC912DA128

MC68HC912DG128
DT128A MC68HC912DT128A

MC68HC912DG128A
KD128 MC68HC912KD128

MC68HC912K128
DP256 MC9S12DP256
GA32 MC68HC912GA32

D-Bug12 v4.x.x Reference Guide Page 31 Motorola Semiconductor
July 30, 2001

Restrictions

When operating the MC9S12DP256 EVB in EVB mode, the DEVICE command may only be
used to display the current device information.

Example

>device

Device: 912B32
EEPROM: $0D00 - $0FFF
Flash: $8000 - $FFFF
RAM: $0800 - $0BFF
I/O Regs: $0000

S>device 812a4

Device: 812A4
EEPROM: $1000 - $1FFF
RAM: $0800 - $0BFF
I/O Registers: $0000

S>device da128

Device: DA128
EEPROM: $0800 - $0FFF
Flash: $8000 - $BFFF Pages: 8 PPAGE at: $00FF
RAM: $2000 - $3FFF
I/O Regs: $0000

S>

D-Bug12 v4.x.x Reference Guide Page 32 Motorola Semiconductor
July 30, 2001

EEBASE - Specify the EEPROM base address

Command Line Format

EEBASE <Address>

Parameter Description

<Address> A 16-bit hexadecimal number

Command Description

Each time D-Bug12 performs a memory write, it will automatically perform the necessary
register manipulations to program the on-chip EEPROM if the write operation falls within the
address range of the target’s on-chip EEPROM. Because user code may change the
EEPROM’s base address may be changed by writing to the INITEE register, D-Bug12 must be
informed of the EEPROM’s location if automatic EEPROM writes are to occur. The EEBASE
command is used to specify the base address of the target processor’s on-chip EEPROM.

When operating in EVB mode, the default EEPROM base address and range are specified in
the Customization Data variables CustomData.EEBase and CustomData.EESize. The
value in CustomData.EEBase is used by the startup code to remap the EEPROM. The
EEBASE command may not be used to relocate the I/O registers.

When operating in POD mode, the target’s default EEPROM base address and range are
specified by the currently selected device (See the DEVICE command description for additional
details).

The EEBASE command does not check to ensure that the parameter is a valid base address for
the selected M68HC12 family member. If an improper base address is provided, automatic
programming of the on-chip EEPROM will not operate properly.

Note: The EEBASE command does not automatically modify the INITEE register. It is the
responsibility of the programmer to ensure that the INITEE register is modified either
manually or through the execution of code.

Example

S>device

Device: 912B32
EEPROM: $0D00 - $0FFF
Flash: $8000 - $FFFF
RAM: $0800 - $0BFF
I/O Regs: $0000

D-Bug12 v4.x.x Reference Guide Page 33 Motorola Semiconductor
July 30, 2001

S>eebase 1d00

Device: 912B32
EEPROM: $1D00 - $1FFF
Flash: $8000 - $FFFF
RAM: $0800 - $0BFF
I/O Regs: $0000

S>mm 12

0012 01 11

0013 0F .

S>md 1d00

1D00 FF FF FF FF - FF FF FF FF - FF FF FF FF - FF FF FF FF
S>

D-Bug12 v4.x.x Reference Guide Page 34 Motorola Semiconductor
July 30, 2001

FBULK - Erase target on-chip Flash EEPROM Memory

Command Line Format

FBULK

Parameter Description

No parameters are required

Command Description

The FBULK command is used to erase the entire contents of the on-chip Flash EEPROM of a
target MCU in a single operation. After the bulk erase operation has been performed, each on-
chip Flash location is checked for contents of $FF. The target processor’s Flash memory is
erased by resetting the target processor and then loading a small ‘driver’ program into the target
processor’s on-chip RAM. For this reason, the previous contents of the target processor’s On-
chip RAM is lost.

Restrictions

When operating in the ‘EVB’ mode, the FBULK command cannot be used. If the FBULK
command is entered while in ‘EVB’ mode, an error message is displayed and command
execution will be terminated.

Before using the FBULK command, a target device must be selected (see the DEVICE
command description) that reflects the locations of the on-chip Flash EEPROM, on-chip RAM
and the I/O Registers when the part is reset. Failure to follow this restriction will cause the
FBULK command to fail and may require that the EVB be reset.

Because the FBULK command downloads a small ‘driver’ program into the target MCU’s on
chip RAM, D-Bug12’s breakpoint table is cleared before beginning execution of the ‘driver’.
This is necessary to prevent previously set breakpoints from accidentally halting the execution
of the driver program.

Example

S>fbulk
Vfp Not Present
S>fbulk
F/EEPROM Failed To Erase
S>fbulk
S>

>fbulk
Command Not Allowed In EVB Mode
>

D-Bug12 v4.x.x Reference Guide Page 35 Motorola Semiconductor
July 30, 2001

FLOAD - Program on-chip Flash memory from S-Records

Command Line Format

FLOAD [<AddressOffset>]

Parameter Description

<AddressOffset> A 32-bit hexadecimal number

Command Description

The FLoad command is used to program a target device’s Flash EEPROM memory with the
data contained in S-Record object files. The address offset, if supplied, is added to the load
address of each S-Record before an S-Record’s data bytes are placed in memory. Providing an
address offset other than zero allows object code or data to be programmed into memory at a
location other than that for which it was assembled or compiled. An offset greater than $FFFF
may only be used with devices that support more than 64K bytes of memory.

Note: Please refer to the section titled “FLOAD, LOAD and VERIFY S-Record Format” at the
end of this document for a complete description of the S-Record Format utilized by this
command for M68HC12 devices supporting more than 64K bytes of memory.

The time required to program target on-chip Flash memory varies with the different Flash
memory technologies used on the M68HC12 family. Because of this variability, D–Bug12
uses XOn/XOff handshaking to control the flow of S-Record data between the host computer
and the EVB. As each S-Record is received and processed, an ASCII asterisk character (*) is
echoed to the screen. Note that this is only to indicate programming progress and is NOT used
for handshaking purposes.

The FLoad command is terminated when D-Bug12 receives an ‘S8’ or ‘S9’ end of file record.
If the object file being loaded does not contain an ‘S8’ or ‘S9’ record, D–Bug12 will not return
its prompt and will continue to wait for the end of file record. Pressing a system Reset will
return D–Bug12 to its command line prompt.

Restrictions

Because the on-chip Flash EEPROM is only bulk erasable, the FBULK command should be
used before attempting to program the Flash memory using the FLOAD command.

The FLOAD command cannot be used with target MCUs operating with crystal speeds lower
than 3.0 MHz (E-clock speeds less than 1.5 MHz) unless the target MCU contains an on–chip
PLL that is used in the target application.

The FLOAD command cannot be used with S-Records that contain a code/data field longer than
64 bytes. Sending an S-Record with a code/data field longer than 32 bytes will cause D-Bug12
to terminate the FLOAD command the issue an error message.

Before using the FLOAD command, a target device must be selected (see the DEVICE
command description) that reflects the locations of the on-chip Flash EEPROM, on-chip RAM
and the I/O Registers when the part is reset. Failure to follow this restriction will cause the

D-Bug12 v4.x.x Reference Guide Page 36 Motorola Semiconductor
July 30, 2001

FLOAD command to fail and may require that the EVB be reset.

Because the FLOAD command downloads a small ‘driver’ program into the target MCU’s on
chip RAM, D-Bug12’s breakpoint table is cleared before beginning execution of the ‘driver’.
This is necessary to prevent previously set breakpoints from accidentally halting the execution
of the driver program.

Supplying an address offset greater than $FFFF for an M68HC12 family member that contains
less than 64K of addressable program memory will result in termination of the FLOAD
command and an error message being issued.

S-Record object files used with the M68HC12 ‘A’ family parts (MC68HC912D60A,
MC68HC912DT128A, MC68HC912DG128A) must contain S-Records consisting of a 64
byte code/data field with a load address that begins on a 64 byte boundary. This restriction is
necessary due to the programming requirements of the on-chip Flash memory. The supplied
SRecCvt utility can be used to reformat S-Record files to meet these requirements.

S-Record object files used with the MC68HC912GA32 must contain only S-Records with a
code/data field that is a multiple of 8 bytes and a load address that begins on an 8 byte
boundary. This restriction is necessary due to the programming requirements of the on-chip
Flash memory. The supplied SRecCvt utility can be used to reformat S-Record files to meet
these requirements.

Example

S>fload
Vfp Not Present
S>fload
**
**

S>

D-Bug12 v4.x.x Reference Guide Page 37 Motorola Semiconductor
July 30, 2001

Go, begin execution of user code

Command Line Format

G [<Address> | <PPAGENum>:<PPAGEWinAddr>]

Parameter Description

<Address>A 16-bit hexadecimal number or simple expression
<PPAGENum> - An 8-bit hexadecimal number or simple expression
<PPAGEWinAddr> - A 16-bit hexadecimal number or simple expression

Command Description

The G command is used to begin the execution of user code in real time. Before beginning
execution of user code, any breakpoints set using the BR command are placed in memory.
Execution of the user program will continue until a user breakpoint is encountered, a CPU
exception occurs or the reset switch on the HC12EVB is pressed. When user code halts for one
of these reasons and control is returned to D-Bug12, a message is displayed explaining the
reason for program termination. In addition, D-Bug12 displays the CPU12’s register contents,
disassembles the instruction at the current PC address, and waits for the next D-Bug12
command to be entered by the user.

If a starting address is not supplied in the command line parameter, program execution will
begin at the address defined by the current value of the Program Counter.

Restrictions

The G command cannot be issued when the ‘R>’ prompt is being displayed indicating that the
target system is already running a user program.

In EVB mode if the program counter is pointing to a CALL instruction, the Go command
cannot be used to continue program execution. This limitation is due to the fact that D-Bug12
traces one instruction before continuing program execution. The CALL instruction cannot be
traced because it interferes with the operation of D-Bug12.

Example

S>g 800

R>md 1000

1000 FF FF FF FF - FF FF FF FF - FF FF FF FF - FF FF FF FF
R>
User Breakpoint Encountered

 PC SP X Y D = A:B CCR = SXHI NZVC
0820 09FE 057C 0000 00:00 1001 0100
0820 08 INX
S>

D-Bug12 v4.x.x Reference Guide Page 38 Motorola Semiconductor
July 30, 2001

GT - Go Until, Execute user code until temporary breakpoint is reached

Command Line Format

GT <Address> | <PPAGENum>:<PPAGEWinAddr>

Parameter Description

<Address>A 16-bit hexadecimal number or simple expression
<PPAGENum> - An 8-bit hexadecimal number or simple expression
<PPAGEWinAddr> - A 16-bit hexadecimal number or simple expression

Command Description

The GT command is similar to the G command except that a temporary breakpoint is placed at
the address supplied on the command line. Any breakpoints set by the BR command are NOT
placed in the user’s code before program execution begins. Program execution begins at the
address defined by the current value of the Program Counter. When user code reaches the
temporary breakpoint and control is returned to D-Bug12, a message is displayed explaining
the reason for user program termination. In addition, D-Bug12 displays the CPU12’s register
contents, disassembles the instruction at the current PC address, and waits for the next D-
Bug12 command to be entered by the user.

Restrictions

The GT command cannot be issued when the ‘R>’ prompt is being displayed indicating that the
target system is already running a user program.

Example

S>gt 820
R>
Temporary Breakpoint Encountered

 PC SP X Y D = A:B CCR = SXHI NZVC
0820 09FE 057C 0000 00:00 1001 0100
0820 08 INX
S>

D-Bug12 v4.x.x Reference Guide Page 39 Motorola Semiconductor
July 30, 2001

HELP - Display D-Bug12 command summary

Command Line Format

HELP

Parameter Description

No parameters are required

Command Description

The HELP command is used to display a summary of the D-Bug12 command set. Each
command is shown along with its command line format and a brief description of the
command's function. The commands are listed in alphabetical order.

Restrictions

None.

Error Conditions

None.

D-Bug12 v4.x.x Reference Guide Page 40 Motorola Semiconductor
July 30, 2001

Example

>help
ASM <Address> Single line assembler/disassembler
 <CR> Disassemble next instruction
 <.> Exit assembly/disassembly
BAUD <baudrate> Set communications rate for the terminal
BF <StartAddress> <EndAddress> [<data>] Fill memory with data
BR [<Address>] Set/Display breakpoints
BULK Erase entire on-chip EEPROM contents
CALL [<Address>] Call user subroutine at <Address>
DEVICE [<DevName>] display/select target device
EEBASE <Address> Set base address of on-chip EEPROM
FBULK Erase entire target FLASH contents
FLOAD [<AddressOffset>] Load S-Records into target FLASH
G [<Address>] Begin/continue execution of user code
GT <Address> Set temporary breakpoint at <Address> & execute user code
HELP Display D-Bug12 command summary
LOAD [<AddressOffset>] [;f] Load S-Records into memory
MD <StartAddress> [<EndAddress>] Memory Display Bytes
MDW <StartAddress> [<EndAddress>] Memory Display Words
MM <StartAddress> Modify Memory Bytes
 <CR> Examine/Modify next location
 </> or <=> Examine/Modify same location
 <^> or <-> Examine/Modify previous location
 <.> Exit Modify Memory command
MMW <StartAddress> Modify Memory Words (same subcommands as MM)
MOVE <StartAddress> <EndAddress> <DestAddress> Move a block of memory
NOBR [<address>] Remove One/All Breakpoint(s)
RD Display CPU registers
REGBASE <Address> Set base address of I/O registers
RESET Reset target CPU
RM Modify CPU Register Contents
STOP Stop target CPU
T [<count>] Trace <count> instructions
TCONFIG [<Address>=<Data8>] | [DLY=<mSDelay>] | NONE Configure Target Device
UPLOAD <StartAddress> <EndAddress> [;f] [<SRecSize>] S-Record Memory display
USEHBR [ON | OFF] Use Hardware/Software Breakpoints
VERF [<AddressOffset>] [;f] Verify S-Records against memory contents
<Register Name> <Register Value> Set register contents
 Register Names: PC, SP, X, Y, A, B, D, PP
 CCR Status Bits: S, XM, H, IM, N, Z, V, C
>

D-Bug12 v4.x.x Reference Guide Page 41 Motorola Semiconductor
July 30, 2001

LOAD - Load user program in S-Record format

Command Line Format

LOAD [<AddressOffset>] [;f]

Parameter Description

<AddressOffset> A 32-bit hexadecimal number
;f The ASCII string ‘;f’ or ‘;F’

Command Description

The Load command is used to load S-Record object files into user memory from an external
device. The address offset, if supplied, is added to the load address of each S-Record before an
S-Record’s data bytes are placed in memory. Providing an address offset other than zero
allows object code or data to be loaded into memory at a location other than that for which it
was assembled. An offset greater than $FFFF may only be used with devices that contain more
than 64K bytes of memory.

Note: Please refer to the section titled “FLOAD, LOAD and VERIFY S-Record Format” at the
end of this document for a complete description of the S-Record Format utilized by this
command for M68HC12 devices supporting more than 64K bytes of memory.

During the loading process, the S-Record data is not echoed to the control console. However,
for each ten S-Records that are successfully loaded, an ASCII asterisk character (*) is sent to
the control console. When an S-Record file has been successfully loaded, D-Bug12 will issue
its prompt.

The Load command is terminated when D-Bug12 receives an ‘S8’ or ‘S9’ end of file record. If
the object file being loaded does not contain an ‘S8’ or ‘S9’ record, D–Bug12 will not return
its prompt and will continue to wait for the end of file record. Pressing a systems Reset button
will return D–Bug12 to its command line prompt.

When the ‘;f’ option is not used, the load command accepts only S1 S-Records. This allows
program or data to be loaded into any memory locations visible in the 64K memory map,
including the PPAGE window address range ($8000 - $BFFF) for devices containing more
than 64K of paged program memory.

The ‘;f’ option is used to load S-Records into target memory normally occupied by on chip
Flash memory for devices having a program memory space greater than 64K. This option is
only required by devices that support more than 64K bytes of memory and have a device
definition where the number of 16K memory pages is greater than zero. This option allows the
S-Record loader to distinguish between S-Records that are to be loaded into paged program
memory and those destined for other areas of on-chip or off-chip memory.

Restrictions

None.

D-Bug12 v4.x.x Reference Guide Page 42 Motorola Semiconductor
July 30, 2001

Example

>load 1000

>

D-Bug12 v4.x.x Reference Guide Page 43 Motorola Semiconductor
July 30, 2001

MD - Display memory in hexadecimal bytes and ASCII format

Command Line Format

MD <StartAddress> [<EndAddress>]

Parameter Description

<StartAddress> A 16-bit hexadecimal number or simple expression
<EndAddress> A 16-bit hexadecimal number or simple expression

Command Description

The memory display command displays the contents of memory in both hexadecimal bytes and
ASCII, 16-bytes on each line. The <StartAddress> parameter must be supplied, however, the
<EndAddress> parameter is optional. When the <EndAddress> parameter is not supplied, a
single line is displayed.

The number supplied as the <StartAddress> parameter is rounded down to the next lower
multiple of 16. While the number supplied as the <EndAddress> parameter is rounded up to
the next higher multiple of 16 - 1. This causes each line to display memory in the range of
$xxx0 through $xxxF. For example if the user entered $205 as the start address and $217 as
the ending address, the actual memory range displayed would be $200 through $21F.

Restrictions

None.

Example

>md 800

0800 AA 04 37 6A - 00 06 27 F9 - 35 AE 78 0D - B7 56 78 20 ..7j..'.5.x..Vx

>md 800 87f

0800 AA 04 37 6A - 00 06 27 F9 - 35 AE 78 0D - B7 56 78 20 ..7j..'.5.x..Vx
0810 B6 36 27 F9 - 35 AE 27 F9 - 35 9E 27 F9 - 35 BE B5 28 .6'.5.'.5.'.5..(
0820 27 F9 35 D6 - 37 B8 00 0F - 37 82 01 0A - 37 36 FF F0 '.5.7...7...76..
0830 7C 10 37 B3 - 00 00 37 B6 - 00 0F AA 04 - A5 02 37 B6 |.7...7.......7.
0840 00 0F 27 78 - 37 6A 00 06 - 27 F9 35 78 - 27 F9 35 56 ..'x7j..'.5x'.5V
0850 78 0D B7 10 - 78 3B 37 86 - 00 DC 27 F9 - 35 48 78 57 x...x;7...'.5HxW
0860 37 86 00 DE - F5 01 EA 09 - 37 B5 0D 0A - 27 F9 36 2A 7.......7...'.6*
0870 A5 00 37 65 - 00 02 27 F9 - 35 E8 37 9C - 37 4C F5 02 ..7e..'.5.7.7L..

D-Bug12 v4.x.x Reference Guide Page 44 Motorola Semiconductor
July 30, 2001

MDW - Display memory in hexadecimal words and ASCII format

Command Line Format

MDW <StartAddress> [<EndAddress>]

Parameter Description

<StartAddress> A 16-bit hexadecimal number or simple expression
<EndAddress> A 16-bit hexadecimal number or simple expression

Command Description

The memory display command displays the contents of memory in both hexadecimal words
and ASCII, 16-bytes on each line. The <StartAddress> parameter must be supplied, however,
the <EndAddress> parameter is optional. When the <EndAddress> parameter is not supplied, a
single line is displayed.

The number supplied as the <StartAddress> parameter is rounded down to the next lower
multiple of 16. While the number supplied as the <EndAddress> parameter is rounded up to
the next higher multiple of 16 - 1. This causes each line to display memory in the range of
$xxx0 through $xxxF. For example if the user entered $205 as the start address and $217 as
the ending address, the actual memory range displayed would be $200 through $21F.

Restrictions

None.

Example

>mdw 800
0800 AA04 376A - 0006 27F9 - 35AE 780D - B756 7820 ..7j..'.5.x..Vx

>mdw 800 87f
0800 AA04 376A - 0006 27F9 - 35AE 780D - B756 7820 ..7j..'.5.x..Vx
0810 B636 27F9 - 35AE 27F9 - 359E 27F9 - 35BE B528 .6'.5.'.5.'.5..(
0820 27F9 35D6 - 37B8 000F - 3782 010A - 3736 FFF0 '.5.7...7...76..
0830 7C10 37B3 - 0000 37B6 - 000F AA04 - A502 37B6 |.7...7.......7.
0840 000F 2778 - 376A 0006 - 27F9 3578 - 27F9 3556 ..'x7j..'.5x'.5V
0850 780D B710 - 783B 3786 - 00DC 27F9 - 3548 7857 x...x;7...'.5HxW
0860 3786 00DE - F501 EA09 - 37B5 0D0A - 27F9 362A 7.......7...'.6*
0870 A500 3765 - 0002 27F9 - 35E8 379C - 374C F502 ..7e..'.5.7.7L..
>

D-Bug12 v4.x.x Reference Guide Page 45 Motorola Semiconductor
July 30, 2001

MM - Modify memory bytes in hexadecimal format

Command Line Format

MM <Address> [<data>]

Parameter Description

<Address> A 16-bit hexadecimal number or simple expression.
<data> An 8-bit hexadecimal number.

Command Description

The memory modify word command allows the contents of memory to be examined and/or
modified as 8-bit hexadecimal data. If the 8-bit data parameter is present on the command line,
the byte at memory location at <Address> is replaced with <data>. If not, D-Bug12 will enter
the interactive memory modify mode. In the interactive mode, each byte is displayed on a
separate line following the data's address. Once the memory modify command has been
entered, several sub-commands are used for the modification and verification of memory
contents. These sub-commands have the following format:

[<Data>]<CR> Optionally update current location and display the next location
[<Data>] / or = Optionally update current location and redisplay the current location
[<Data>] ^ or - Optionally update current location and display the previous location
[<Data>] . Optionally update current location and exit Memory Modify

With the exception of the carriage return, the sub-command must be separated from any entered
data with at least one space character. If an invalid sub-command character is entered, an
appropriate error message will be issued and the contents of the current memory location shall
be redisplayed.

Restrictions

While there are no restrictions regarding the use of the MM command, caution should be used
when modifying target memory while user code is running. Accidentally modifying target
memory containing program code could lead to program run away.

Example

>mm 800
0800 00 <CR>
0801 F0 FF
0802 00 ^
0801 FF <CR>
0802 00 <CR>
0803 08 55 /
0803 55 .
>

D-Bug12 v4.x.x Reference Guide Page 46 Motorola Semiconductor
July 30, 2001

MMW - Modify memory words in hexadecimal format

Command Line Format

MMW <Address> [<data>]

Parameter Description

<Address> A 16-bit hexadecimal number or simple expression
<data> A 16-bit hexadecimal number

Command Description

The memory modify word command allows the contents of memory to be examined and/or
modified as 16-bit hexadecimal data. If the 16-bit data parameter is present on the command
line, the word at memory location at <Address> is replaced with <data>. If not, D-Bug12 will
enter the interactive memory modify mode. In the interactive mode, each byte is displayed on a
separate line following the data's address. Once the memory modify command has been
entered, several sub-commands are used for the modification and verification of memory
contents. These sub-commands have the following format:

[<Data>]<CR> Optionally update current location and display the next location
[<Data>] / or = Optionally update current location and redisplay the current location
[<Data>] ^ or - Optionally update current location and display the previous location
[<Data>] . Optionally update current location and exit Memory Modify

With the exception of the carriage return, the sub-command must be separated from any entered
data with at least one space character. If an invalid sub-command character is entered, an
appropriate error message will be issued and the contents of the current memory location shall
be redisplayed.

If the <Address> parameter corresponds to an even byte address, values read from and/or
written to memory will be performed as aligned word accesses. This guarantees data coherency
for peripherals that require a single access to their 16-bit registers.

Restrictions

While there are no restrictions regarding the use of the MMW command, caution should be
used when modifying target memory while user code is running. Accidentally modifying target
memory containing program code could lead to program run away.

Example

>mmw 800
0800 00F0 <CR>
0802 0008 AA55 /
0804 843F ^
0802 AA55 <CR>
0804 843F <CR>
0806 C000 .
>

D-Bug12 v4.x.x Reference Guide Page 47 Motorola Semiconductor
July 30, 2001

MOVE - Move a Block of Memory

Command Line Format

MOVE <StartAddress> <EndAddress> <DestAddress>

Parameter Description

<StartAddress> A 16-bit hexadecimal number or simple expression
<EndAddress> A 16-bit hexadecimal number or simple expression
<DestAddress> A 16-bit hexadecimal number or simple expression

Command Description

The MOVE command is used to move a block of memory from one location to another a byte at
a time. The number of bytes moved is one more than the <EndAddress> - <StartAddress>.
The block of memory created beginning at the destination address may overlap the memory
block defined by the <StartAddress> and <EndAddress>.

One of the uses of the MOVE command might be to copy a program from RAM into EEPROM
memory.

Restrictions

A minimum of one byte may be moved if the <StartAddress> is equal to the <EndAddress>.
The maximum number of bytes that may be moved is 216 - 1. In addition, caution should be
exercised when moving target memory while user code is running. Accidentally modifying
target memory containing program code could lead to program run away.

Example

>move 800 8ff 1000
>

D-Bug12 v4.x.x Reference Guide Page 48 Motorola Semiconductor
July 30, 2001

NOBR - Remove one/all user breakpoints

Command Line Format

NOBR [<Address> | <PPAGENum>:<PPAGEWinAddr>…]

Parameter Description

<Address>A 16-bit hexadecimal number or simple expression
<PPAGENum> - An 8-bit hexadecimal number or simple expression
<PPAGEWinAddr> - A 16-bit hexadecimal number or simple expression

Command Description

The NOBR command is used to remove one or more of previously entered breakpoints. If the
NOBR command is entered without any arguments, all user breakpoints are removed from the
breakpoint table.

Restrictions

When operating in the POD mode, breakpoints may not be removed with the NOBR command
when the ‘R>’ prompt is being displayed.

Example

>br 800 810 820 830
Breakpoints: 0800 0810 0820 0830

>nobr 810 820
Breakpoints: 0800 0830

>nobr
All Breakpoints Removed

>

D-Bug12 v4.x.x Reference Guide Page 49 Motorola Semiconductor
July 30, 2001

PCALL - Execute A User Subroutine Ending with RTC

Command Line Format

PCALL [<PPAGENum>:<PPAGEWinAddr>]

Parameter Description

<PPAGENum> An 8-bit hexadecimal number or simple expression
<PPAGEWinAddr> A 16-bit hexadecimal number or simple expression

Command Description

The PCALL command is used to execute a subroutine and return to the D-Bug12 monitor
program when the final RTC of the subroutine is executed. When control is returned to
D–Bug12, the CPU register contents will be displayed. All CPU registers contain the values at
the time the final RTC instruction was executed with the exception of the program counter
(PC). The PC will contain the starting address of the subroutine. If a subroutine address is not
supplied on the command line, the current value of the Program Counter (PC) and PPAGE
register (PP) will be used as the starting address.

NOTE: No breakpoints are placed in memory before execution is transferred to user code.

Restrictions

If the called subroutine modifies the value of the stack pointer during its execution, it MUST
restore the stack pointer’s original value before executing the final RTC of the called
subroutine. This restriction is required because D–Bug12 places five bytes of data on the users
stack that causes control to return to D-Bug12 when the final RTC of the subroutine is
executed. Obviously, any subroutine must obey this restriction to execute properly.

The PCALL command cannot be issued when the ‘R>’ prompt is being displayed indicating
that the target system is already running a user program.

Example

S>pcall 30:8006

Subroutine Call Returned

PP PC SP X Y D = A:B CCR = SXHI NZVC
30 8006 3FFF 0000 0000 00:00 1101 1000
30:8006 4D0101 BCLR $0001,#$01

S>

D-Bug12 v4.x.x Reference Guide Page 50 Motorola Semiconductor
July 30, 2001

RD - Display CPU12 Register Contents

Command Line Format

RD

Parameter Description

No parameters are required. Any parameters on the command line will be ignored.

Command Description

The Register Display command is used to display the CPU12’s registers. The registers are
displayed in the same format used when a breakpoint is encountered.

Restrictions

When operating in the POD mode, the CPU registers may not be displayed when the ‘R>’
prompt is being displayed.

Example

S>rd

 PC SP X Y D = A:B CCR = SXHI NZVC
C028 4000 0000 0000 00:00 1101 0000
C028 790016 CLR $0016
S>device da128

Device: DA128
EEPROM: $0800 - $0FFF
Flash: $8000 - $BFFF Pages: 8 PPAGE at: $00FF
RAM: $2000 - $3FFF
I/O Regs: $0000

S>rd

PP PC SP X Y D = A:B CCR = SXHI NZVC
03 C00A 4000 0000 0000 00:00 1101 0000
xx:C00A CF4000 LDS #$4000
S>

D-Bug12 v4.x.x Reference Guide Page 51 Motorola Semiconductor
July 30, 2001

REGBASE - Specify the Register base address

Command Line Format

REGBASE <Address>

Parameter Description

<Address> A 16-bit hexadecimal number

Command Description

Because D-Bug12 supports the ability to transparently program the on-chip EEPROM of the
target MCU, it must know the base address of the I/O registers. Because user code may change
the register block’s base address by writing to the INITRG register, D-Bug12 must be
informed of the register block’s base address for transparent EEPROM writes to occur. The
REGBASE command is used to specify the base address of the target processor’s on-chip
registers.

The REGBASE command does not check to ensure that the <Address> parameter is a valid
base address for the selected M68HC12 family member. If an improper register base address is
provided, automatic programming of the on-chip EEPROM will not operate properly.

When operating in EVB mode, the default register base address is specified in the
Customization Data variables CustomData.IOBase. This value is used by the startup code
to remap the I/O registers. The REGBASE command may not be used to relocate the I/O
registers.

Note: The REGBASE command does not automatically modify the INITRG register. It is the
responsibility of the user to ensure that the INITRG register is modified either manually
or through the execution of user code.

Restrictions

The REGBASE command may not be used when D-Bug12 is operated in the EVB mode.

Example

S>device

Device: 912B32
EEPROM: $0D00 - $0FFF
Flash: $8000 - $FFFF
RAM: $0800 - $0BFF
I/O Regs: $0000

S>regbase 2000

Device: 912B32
EEPROM: $0D00 - $0FFF
Flash: $8000 - $FFFF
RAM: $0800 - $0BFF

I/O Regs: $2000

D-Bug12 v4.x.x Reference Guide Page 52 Motorola Semiconductor
July 30, 2001

RESET - Reset the target system MCU

Command Line Format

RESET

Parameter Description

No parameters are required. Any parameters on the command line will be ignored.

Command Description

The RESET command is used to reset the target system processor when operating in
D–Bug12’s POD mode. The target processor’s reset pin is held low for approximately 2 mS.
When the reset line is released, BDM commands are are sent to the target processor to place it
in active background mode. With the exception of the program counter (PC), the target
processor’s registers are initialized with the same values used for the registers when operating
in EVB mode. The PC is initialized with the contents of the target processor’s reset vector,
memory locations $FFFE and $FFFF

Restrictions

When operating in the ‘EVB’ mode, the RESET command cannot be used. If the RESET
command is entered while in ‘EVB’ mode, an error message will be displayed and command
execution will be terminated.

Example

S>reset
Target Processor Has Been Reset
S>g 4000
R>reset
Target Processor Has Been Reset
S>

D-Bug12 v4.x.x Reference Guide Page 53 Motorola Semiconductor
July 30, 2001

RM - Interactively Modify CPU12 Register Contents

Command Line Format

RM

Parameter Description

No parameters are required. Any parameters on the command line will be ignored.

Command Description

The register modify command is used to examine and/or modify the contents of the CPU12's
registers in an interactive manner. As each register and its contents is displayed, D-Bug12
allows the user to enter a new value for the register in hexadecimal. If modification of the
displayed register is not desired, entering a carriage return causes the next CPU12 register and
its contents to be displayed on the next line. When the last of the CPU12's registers has been
examined and/or modified, the RM command will redisplay the first register giving the user an
opportunity to make additional modifications to the CPU12's register contents. Typing a period
(.) as the first non space character on the line will exit the interactive mode of the register
modify command and return to the D-Bug12 prompt.

The registers are displayed in the following order, one register per line: PC, SP, X, Y, A, B,
CCR.

Restrictions

When operating in the POD mode, the CPU registers may not be modified when the ‘R>’
prompt is being displayed.

Example

>RM
PC=0206 200
SP=03FF <CR>
X=1000 1004
Y=3700 <CR>
A=27 <CR>
B=FF <CR>
CCR=D0 D1
PC=0200 .
>

D-Bug12 v4.x.x Reference Guide Page 54 Motorola Semiconductor
July 30, 2001

STOP - Stop Execution of user code in the target MCU

Command Line Format

STOP

Parameter Description

No parameters are required. Any parameters on the command line are ignored.

Command Description

When operating in D–Bug12’s POD mode, the STOP command is used to halt target program
execution and place the target processor in active background debug mode.

Restrictions

When operating in the ‘EVB’ mode, the STOP command cannot be used. If the STOP
command is entered while in ‘EVB’ mode, an error message is displayed and command
execution will be terminated.

Example

S>asm 4000
4000 CCFFFF LDD #$FFFF
4003 830001 SUBD #$0001
4006 26FB BNE $4003
4008 20F6 BRA $4000
400A 00 BGND >.
S>g 4000
R>stop
Target Processor Has Been Stopped

 PC SP X Y D = A:B CCR = SXHI NZVC
4003 0A00 0000 0000 37:3F 1101 0000
4003 830001 SUBD #$0001
S>

D-Bug12 v4.x.x Reference Guide Page 55 Motorola Semiconductor
July 30, 2001

T - Trace (Execute) CPU12 Instruction(s)

Command Line Format

T [<Count>]

Parameter Description

<Count> An 8-bit decimal number in the range 1..255

Command Description

The Trace command is used to execute one or more user program instructions beginning at the
current Program Counter (PC) location. As each program instruction is executed, the CPU12’s
register contents are displayed and the next instruction to be executed is displayed. A single
instruction may be executed by entering the trace command followed immediately by a carriage
return.

Restrictions

When operating in ‘EVB’ mode using software breakpoints, all branch instructions (Bcc,
LBcc, BRSET, BRCLR, DBEQ/NE, IBEQ/NE, TBEQ/NE) containing an offset that branches
back to the instruction opcode will NOT execute because of the method used to execute a single
instruction. The monitor will appear to become ‘stuck’ at the branch instruction and will not
execute the instruction even if the condition for the branch instruction is satisfied. This
limitation can be overcome by using the GT (GoTill) command to set a temporary breakpoint at
the instruction following the branch instruction.

This restriction DOES NOT apply when using D-Bug12 on a target system in POD mode or
when utilizing the hardware breakpoints of the EVB’s MCU in either EVB or POD mode. See
the USEHBR command for additional information on the use of hardware breakpoints.

In EVB mode the CALL instruction cannot be executed using the trace command because it
interferes with the operation of D-Bug12.

Example

>t

 PC SP X Y D = A:B CCR = SXHI NZVC
0803 09FE 057C 0000 10:00 1001 0000
0803 830001 SUBD #$0001
>t 2

 PC SP X Y D = A:B CCR = SXHI NZVC
0806 09FE 057C 0000 0F:FF 1001 0000
0806 26FB BNE $0803

 PC SP X Y D = A:B CCR = SXHI NZVC
0803 09FE 057C 0000 0F:FF 1001 0000
0803 830001 SUBD #$0001

 >

D-Bug12 v4.x.x Reference Guide Page 56 Motorola Semiconductor
July 30, 2001

TCONFIG - Configure target system

Command Line Format

TCONFIG <Address>=<Data> [<Address>=<Data>] [DLY=<mSDelay>]
TCONFIG NONE
TCONFIG

Parameter Description

<Address> A 16-bit hexadecimal number.
<Data> An 8-bit hexadecimal number.
<mSDelay> A 16-bit unsigned decimal number.

Command Description

Some target systems contain their own VFP generation circuitry to allow in–circuit
programming via CAN, J1850 or even the SCI. For these systems, it is desirable to utilize the
target VFP generation circuitry for programming of the on-chip Flash rather than an externally
supplied programming voltage. In most cases, the application of the target generated
programming voltage to the VFP pin is controlled by one or more I/O pins of the target
M68HC12. The TCONFIG command can be used to specify up to eight one byte values that
will be written to the target memory just before the execution of the FBULK and FLOAD
commands.

To allow time for the target VFP circuitry to stabilize after it is enabled, an optional delay
between 1 and 65535 mS may be specified. The specified delay does not have to appear as the
last parameter on the command line, however, a delay may not be specified without also
supplying values to be written to the target memory.

Entering the TCONFIG command without supplying any parameters reports the address, data
and delay time previously specified using the TCONFIG command. If no address, data and
delay time have been specified, a message is displayed indicating that no data has been
supplied.

To disable the function of the TCONFIG command, a single parameter ‘NONE’ is entered on
the command line. When a new target device is specified using the DEVICE command, any
previously entered address, data and delay information is discarded.

Restrictions

The TCONFIG command may not be used when the EVB is operating in ‘EVB’ mode. If the
TCONFIG command is entered while in ‘EVB’ mode, an error message is displayed and
command execution will be terminated.

Example

>tconfig 1=01 3=fe dly=20
>tconfig
$0001=$01 $0003=$FE Delay=20 mS
>

D-Bug12 v4.x.x Reference Guide Page 57 Motorola Semiconductor
July 30, 2001

UPLOAD - Display Memory In S-Record Format

Command Line Format

UPLOAD <StartAddress> <EndAddress> [;f] [;<SRecSize>]

Parameter Description

<StartAddress> A 32-bit hexadecimal number
<EndAddress> A 32-bit hexadecimal number
;f The ASCII string ‘;f’ or ‘;F’
[;<SRecSize>] Decimal number specifying the S-Record data field length.

Command Description

The UPLOAD command is used to display the contents of memory in Motorola S-Record
format. In addition to displaying the specified range of memory, the UPLOAD command also
outputs an S9 end-of-file record. The output of this command may be captured by a terminal
program and saved to a disk file.

When the ‘;f’ option is not used, the upload command accepts a 16-bit <StartAddress> or
<EndAddress> parameter in the range $0000 through $FFFF. This allows any program or data
visible in the 64K memory map to be displayed in S-Record format, including the PPAGE
window address range ($8000 - $BFFF) for devices containing more than 64K of paged
program memory.

The ‘;f’ option is used to upload S-Records into target memory normally occupied by on chip
Flash memory for devices having a program memory space greater than 64K. This option is
only required by devices that support more than 64K bytes of memory and have a device
definition where the number of 16K memory pages is greater than zero. This option allows the
S-Record loader to distinguish between S-Records that are to be uploaded from paged program
memory and those destined for other areas of on-chip or off-chip memory.

The optional <SRecSize> parameter may be used to specify the length of the S-Record data
field. Permissible values for <SRecSize> range from 16 through 64. If the <SRecSize>
parameter is not specified, the default S-Record length is 32.

Restrictions

None.

D-Bug12 v4.x.x Reference Guide Page 58 Motorola Semiconductor
July 30, 2001

Example

>upload 400 4ff
S123040000F0000843FC0000F50F379F37BF43FCF50F27FA757F177AFA047504177AFA21C5
S123042037B500FF37FAFB0437B5400037FAFB061735FB0037B500C137FAFA003715379C01
S1230440F50F379D37BC012C37BD400085009A003C023D02377C0140B6EE7A0F400037B583
S1230460000337FAFA4C37FAFA5037FAFA5437B5502037FAFA4E37B5302037FAFA5237B58A
S1230480682037FAFA5637BD014037BC000095008A003C023D02377D0172B6EE37BD017259
S12304A037BC020095008A003C023D02377D018EB6EE27F937B0F50F379C37BC00CE27F901
S12304C000FC27F9104C27F90E68378000BE0A0D442D42756731362056312E3033202D20E3
S12304E04465627567204D6F6E69746F7220466F7220546865204D363848433136204661ED
S9030000FC
>

D-Bug12 v4.x.x Reference Guide Page 59 Motorola Semiconductor
July 30, 2001

USEHBR - Use EVB/Target Hardware Breakpoints

Command Line Format

USEHBR [ON | OFF]

Parameter Description

[ON | OFF] The ASCII string ‘ON’ or ‘OFF’

Command Description

Entering the USEHBR command causes D-Bug12 to use the hardware breakpoint capability of
the MC9S12DP256 on the EVB, in EVB mode, or the breakpoint capability of the target
microcontroller in POD mode. Using hardware breakpoints allows two, program only
breakpoints to be set in Flash or other non-volatile memory. By default, D-Bug12 uses the
hardware breakpoint capability of the MC9S12DP256 in EVB mode or the hardware
breakpoint capability of the target microcontroller. To utilize D-Bug12’s 10 software
breakpoints, the USEHBR command should be entered with the ‘OFF’ parameter on the
command line.

Using the hardware breakpoints of the MC9S12DP256 when operating in EVB mode allows
the developer to trace through the user accessible routines in D-Bug12 that are located in the
on-chip Flash memory. Further, when debugging small programs located in the
MC9S12DP256’s on-chip EEPROM, it is recommended that hardware breakpoints be used.
Using hardware breakpoints will prevent D-Bug12 from repeatedly erasing and reprogramming
the on-chip EEPROM when using the T, G or GT commands or when setting breakpoints.

Entering the USEHBR command will reinitialize the breakpoint table causing any previously
set breakpoints to be removed from the breakpoint table.

Restrictions

When operating in the POD mode, the USEHBR command cannot be issued when the ‘R>’
prompt is being displayed indicating that the target system is running a user program.

Example

S>usehbr

Using Hardware Breakpoints

S>br 810 835

Breakpoints: 0810 0835

S>br 957

Breakpoint Table Full

S>

D-Bug12 v4.x.x Reference Guide Page 60 Motorola Semiconductor
July 30, 2001

VERF - Compare S-Record File To The Contents of Memory

Command Line Format

VERF [<AddressOffset>] [;f]

Parameter Description

<AddressOffset> A 16-bit hexadecimal number
;f The ASCII string ‘;f’ or ‘;F’

Command Description

The VERF command is used to compare the data contained in an S-Record object file to the
contents of target memory. The address offset, if supplied, is added to the load address of each
S-Record before an S-Record’s data bytes are compared to the contents of memory. Providing
an address offset other than zero allows the S-Record’s object code or data to be compared
against memory other than that for which the S-Record was assembled. An offset greater than
$FFFF may only be used with devices that support more than 64K bytes of memory.

When the ‘;f’ option is not used, the verify command accepts only S1 S-Records. This
allows S-Record data to be verified against any memory locations visible in the 64K memory
map. This includes the PPAGE window address range ($8000 - $BFFF) for devices
containing more than 64K of paged program memory.

The ‘;f’ option is used to verify S-Records against target memory locations normally occupied
by on chip Flash memory for devices having a program memory space greater than 64K. This
option is only required by devices that support more than 64K bytes of memory and have a
device definition where the number of 16K memory pages is greater than zero. This option
allows the S-Record loader to distinguish between S-Records that are to be verified against
paged program memory and those to compare against other areas of on-chip or off-chip
memory.

Note: Please refer to the section titled “FLOAD, LOAD and VERIFY S-Record Format” at the
end of this document for a complete description of the S-Record Format utilized by this
command for M68HC12 devices supporting more than 64K bytes of memory.

During the verification process, the ASCII characters ‘|’, ‘/’, ‘-’ and ‘\’ are sent one at a time to
the control console to indicate that the verify process is proceeding. Before each character is
sent, an ASCII backspace character is sent to the console so that the previously sent progress
character is effectively erased from the screen. The displayed effect is a rotating bar. When an
S-Record file has been successfully verified, D-Bug12 will issue its prompt.

If the contents of target memory does not match the corresponding data in the S–Record, an
informational line is displayed on the console showing the S-Record address, the S-Record
data and the data at the corresponding target memory location. Note that the displayed S-
Record address includes the optional address offset that may have been entered on the
command line.

D-Bug12 v4.x.x Reference Guide Page 61 Motorola Semiconductor
July 30, 2001

The VERF command is terminated when D-Bug12 receives an ‘S8’ or ‘S9’ end of file record.
If the object file being loaded does not contain an ‘S8’ or ‘S9’ record, D–Bug12 will not return
its prompt and will continue to wait for the end of file record. Pressing system Reset will return
D–Bug12 to its command line prompt.

Restrictions

None.

Example

S>verf
S-Rec Address S-Rec Data Target Address Target Data
$00200 $00 $0200 $C6
$002C3 $00 $02C3 $87
$00397 $00 $0397 $EB
$005BA $00 $05BA $A2
$007DF $00 $07DF $61

S>

D-Bug12 v4.x.x Reference Guide Page 62 Motorola Semiconductor
July 30, 2001

<RegisterName> - Modify a CPU12 Register Value

Command Line Format

<RegisterName> <RegisterValue>

Parameter Description

Where <RegisterName> is one of the following CPU12 register names:

Register Name Description Legal Range
PC Program Counter $0..$FFFF
SP Stack Pointer $0..$FFFF
X X-Index Register $0..$FFFF
Y Y-Index Register $0..$FFFF
A A Accumulator $0..$FF
B B Accumulator $0..$FF
D D Accumulator (A:B) $0..$FFFF
CCR Condition Code Register $0..$FF
PP PPAGE Register $0..$FF

Each of the fields in the CCR may be modified by using the following field Names:

CCR Bit Name Description Legal Range
S STOP Enable 0..1
H Half Carry 0..1
N Negative Flag 0..1
Z Zero Flag 0..1
V Twos Complement Overflow Flag 0..1
C Carry Flag 0..1
IM IRQ Interrupt Mask 0..1
XM XIRQ Interrupt Mask 0..1

For each of the CPU register names, <RegisterValue> may be a hexadecimal number or a
simple expression. For the CCR bit names only a value of zero or one may be supplied for the
<RegisterValue> parameter.

Command Description

This set of “commands” uses the CPU12 register names as individual commands to allow
changing the contents of individual registers. Each register name or Condition Code Register
bit name is entered on the command line followed by a space, then followed by the new
register or bit value. The successful alteration of a CPU register or CCR will cause the
CPU12’s register contents to be displayed.

Restrictions

When operating in POD mode, these commands may not be used when the ‘R>’ is being
displayed.

If a value outside the range for a given register is entered, an error message is displayed and
command execution is terminated leaving the register contents unaltered.

D-Bug12 v4.x.x Reference Guide Page 63 Motorola Semiconductor
July 30, 2001

Example

>pc 700e

 PC SP X Y D = A:B CCR = SXHI NZVC
700E 0A00 7315 7D62 47:44 1001 0000
700E 790016 CLR $0016
>x 1000

 PC SP X Y D = A:B CCR = SXHI NZVC
700E 0A00 1000 7D62 47:44 1001 0000
700E 790016 CLR $0016
>c 1

 PC SP X Y D = A:B CCR = SXHI NZVC
700E 0A00 1000 7D62 47:44 1001 0001
700E 790016 CLR $0016
>z 1

 PC SP X Y D = A:B CCR = SXHI NZVC
700E 0A00 1000 7D62 47:44 1001 0101
700E 790016 CLR $0016
>d adf7

 PC SP X Y D = A:B CCR = SXHI NZVC
700E 0A00 1000 7D62 AD:F7 1001 0101
700E 790016 CLR $0016
>

D-Bug12 v4.x.x Reference Guide Page 64 Motorola Semiconductor
July 30, 2001

Appendix A

FLOAD, LOAD and VERIFY S-Record Format

The S-Record object file format was designed to allow binary object code and/or data to be
represented in printable ASCII hexadecimal format to allow easy transportation between computer
systems and development tools. For M68HC12 family members supporting less than 64K bytes of
address space, S1 records, which contain a 16-bit address, are sufficient to specify the location in
the device’s memory space where code and/or data are to be loaded. The load address contained in
the S1 record generally corresponds directly to the address of on-chip or off-chip memory device.
For M68HC12 devices that support an address space greater than 64K bytes, S1 records are not
sufficient.

Because the M68HC12 family is a 16-bit microcontroller with a 16-bit program counter, it cannot
directly address a total of more than 64K bytes of memory. To enable the M68HC12 family to
address more than 64K bytes of program memory, a paging mechanism was designed into the
architecture. Program memory space expansion provides a window of 16K byte pages that are
located from $8000 through $BFFF. An 8-bit paging register, called the PPAGE register, provides
access to a maximum of 256, 16K byte pages or 4 megabytes of program memory. While there
may never be any devices that contain this much on-chip memory, the MC68HC812A4 is capable
of addressing this much external memory. In addition, the MC9S12DP256 contains 256K bytes of
on-chip Flash that resides in a 1MB address space.

While many high-level debuggers are capable of directly loading linked, absolute binary object files
into a target system’s memory, D–Bug12 does not have that capability. D–Bug12 is only capable
of loading object files that are represented in the S-Record format. As mentioned previously,
because S1 records only contain a 16-bit address, they are inadequate to specify a load address for
a memory space greater than 64K bytes. S2 records, which contain a 24-bit address, were
originally defined for loading object files into the memory space of the M68000 family. It would
seem that S2 records would provide the necessary load address information required for
M68HC12 object files. However, as those who are familiar with the M68000 family know, the
M68000 has a linear (non-paged) address space. Thus, development tools, such as non-volitle
memory device programmers, interpret the 24-bit address as a simple linear address when placing
program data into memory devices.

Because the M68HC12 memory space expansion is based on 16k byte pages, there is not a direct
one-to-one mapping of the 24-bit linear address contained in the S2 record to the 16K byte
program memory expansion space. Instead of defining a new S–Record type or utilizing an
existing S–Record type in a non-standard manner, the D–Bug12 FLOAD, LOAD and VERIFY
commands view M68HC12 memory spaces larger than 64K bytes as a simple linear array of
memory that begins at an address of $00000. This is the same format in which S–Records would
need to be presented to a stand alone non-volitle memory device programmer.

The MC9S12DP256 implements 6 bits of the PPAGE register which gives it a 1MB program
memory address space that is accessed through the PPAGE window at addresses $8000 through
$BFFF. The lower 768K portion of the address space, accessed with PPAGE values $00 through
$2F, are reserved for external memory when the part is operated in expanded mode. The upper
256K of the address space, accessed with PPAGE values $30 through $3F, is occupied by the on-
chip Flash memory. The mapping between the linear address contained in the S–Record and the
16K byte page viewable through the PPAGE is shown in Figure A-1 below.

D-Bug12 v4.x.x Reference Guide Page 65 Motorola Semiconductor
July 30, 2001

on-chip Flash

PPAGE Value S-Record Address Range

$00 - $2F

$30

$00000 - $BFFFF

$C0000 - $C3FFF

Memory Type

off-chip memory

on-chip Flash

$31

$32

$33

$34

$35

$36

$37

$38

$39

$3A

$3B

$3C

$3D

$3E

$3F

$C4000 - $C7FFF

$C8000 - $CBFFF

$CC000 - $CFFFF

$D0000 - $D3FFF

$D4000 - $D7FFF

$D8000 - $DBFFF

$DC000 - $DFFFF

$E0000 - $E3FFF

$E4000 - $E7FFF

$E8000 - $EBFFF

$EC000 - $EFFFF

$F0000 - $F3FFF

$F4000 - $F7FFF

$F8000 - $FBFFF

$FC000 - $FFFFF

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

Figure A-1, MC9S12DP256 PPAGE to S-Record Address Mapping

The MC68HC912DA/DG128 only implements 3 bits of the PPAGE register giving it a 128K byte
program memory address space accessed through the PPAGE window. The mapping between the
linear address contained in the S–Record and the 16K byte page viewable through the PPAGE is
shown in Figure A-2 below. Figure A-3 provides a graphical representation of the DA/DG128
mapping.

on-chip Flash

PPAGE Value S-Record Address Range

$00 $00000 - $03FFF

Memory Type

on-chip Flash

$01

$02

$03

$04

$05

$06

$07

$04000 - $07FFF

$08000 - $0BFFF

$0C000 - $0FFFF

$10000 - $13FFF

$14000 - $17FFF

$18000 - $1BFFF

$1C000 - $1FFFF

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

on-chip Flash

Figure A-2, MC68HC912DA/DG128 PPAGE to S-Record Address Mapping

D-Bug12 v4.x.x Reference Guide Page 66 Motorola Semiconductor
July 30, 2001

The generation of S-Records that meet these requirements is the responsibility of the linker and/or
S-Record generation utility provided by the compiler/assembler vendor. Cosmic Software’s linker
and S-Record generation utility is capable of producing properly formatted S-Records that can be
used by D-Bug12. Other vendor’s tools may or may not posses this capability. For those
compilers and assemblers that produce ‘banked’ S-Records, the included SRecCvt utility can be
used to convert their output to the linear S-Record format required by D-Bug12.

$0000

$FFFF
$FF00

$E000

$C000

$8000

$4000

$2000

8K Boot
Block

7

6

16K Flash
(Paged)

16K Flash
(Unpaged)

0 1 6

00 Flash 32K 01 Flash 32K 10 Flash 32K 11 Flash 32K

8K Boot

$00000 -
$03FFF

$04000 -
$07FFF

$08000 -
$0BFFF

$0C000 -
$0FFFF

$10000 -
$13FFF

$14000 -
$17FFF

$18000 -
$1BFFF

$1C000 -
$1FFFF

2 3

8K Boot

4 5

8K Boot

7

8K Boot

Figure A-3, MC68HC912DA/DG128 Flash Memory Paging

D-Bug12 v4.x.x Reference Guide Page 67 Motorola Semiconductor
July 30, 2001

Appendix B

Adapting D-Bug12 to Use Alternate Crystal Frequencies

As supplied, D-Bug12 v4.x.x is configured to operate with an 8.0 MHz crystal or oscillator. The
8.0 MHz reference frequency is used by the PLL to generate a bus frequency of 24.0 MHz. Using
a 24.0 MHz bus speed (rather than the DP256’s rated speed of 25 MHz) allows communication
with a host terminal program at 115,200 baud with very little speed mismatch (approximately
0.16%). To use D-Bug12 with a crystal or oscillator frequency other than 8.0 MHz, one area of
D–Bug12 and the bootloader need to be modified.

Bootloader Modifications

Even though the bootloader is separate from D-Bug12, it requires modification so that the
FCLKDIV, ECLKDIV and PLL registers can be programmed with the proper values when the
bootloader is used. Figure B-1 shows an excerpted portion of the supplied bootloader source code
used to calculate the register constants. OscClk is the crystal or oscillator frequency in MHz and
should be changed to the desired value. In addition, depending on the value used for OscClk, a
change may have to be made to the RefClk value to obtain a 24 MHz bus frequency. The
equation used to calculate the value for REFDVVal and SYNRVal MUST produce integer results.
The RefClk value must always be less than or equal to the OscClk value.

OscClk: equ 8000000 ; crystal or oscillator frequency.
Eclock: equ 24000000 ; final E-clock frequency (PLL).
RefClock: equ 8000000 ; frequency used by the PLL to generate E-clock.
;
REFDVVal: equ (OscClk/RefClock)-1 ; value for REFDV register.
SYNRVal: equ (Eclock/RefClock)-1 ; value for SYNR register.
 if OscClk>12800000
FCLKDIVVal: equ (OscClk/200000/8)+FDIV8 ; value for FCLKDIV/ECLKDIV register.
 else
FCLKDIVVal: equ (OscClk/200000) ; value for FCLKDIV/ECLKDIV register.
 endif

Figure B-1, Bootloader FCLKDIV, ECLKDIV and PLL Register Values

For example, if a 16 MHz crystal or oscillator were used, the only required change would be to the
value of OscClk because OscClk would be an integer multiple of RefClock and Eclock is an
integer multiple of RefClock. If, however, a 12.0 MHz crystal or oscillator were used, both the
OscClk and RefClock values would need to be changes to 12000000 because the E-clock
frequency of 24.0 MHz is an even multiple of the OscClk.

As a final example, if a 10 MHz crystal or oscillator were used, the following changes would have
to be made. In this case, because Eclock is not an integer multiple of OscClk, a reference clock
must be generated that is an even multiple of Eclock. A reference clock of 2.0 MHz could be
multiplied by 12 to obtain a 24 MHz bus clock. Therefore, specifying a RefClock value of
2000000 will cause the calculation of the proper integer values for both the FCLKDIV and
ECLKDIV registers.

D-Bug12 v4.x.x Reference Guide Page 68 Motorola Semiconductor
July 30, 2001

D-Bug12 Modifications

The changes required to D-Bug12 are isolated to a single data table residing at a fixed address.
Among other data, this table contains constant values used to initialize the FCLKDIV, ECLKDIV
and PLL registers. The values in the table related to the oscillator clock frequency are all calculated
from the three constants at the beginning of the listing. The values of these three constants have the
same restrictions as the constants described in the previous section.

;
;***
; Customization Data for D-Bug12 v4.x.x
;
; This data MUST reside at address $eec0
;***
;
FDIV8: equ $40
;
 org $eec0
;
OscClk: equ 16000000
Eclock: equ 24000000 ; PLL E-clock frequency.
RefClock: equ 8000000 ; reference frequency used by PLL.
;
UserCCR: dc.b $90 ; initial CCR register for EVB mode.
UserB: dc.b $00 ; initial B acc. for EVB or POD mode.
UserA: dc.b $00 ; initial A acc. for EVB or POD mode.
UserX: dc.w $0000 ; initial X register for EVB or POD mode.
UserY dc.w $0000 ; initial Y register for EVB or POD mode.
UserPC: dc.w $0000 ; initial PC value for EVB or POD mode.
BusClk: dc.l Eclock ; system bus (E-clock) frequency.
REFDVVal: dc.b (OscClk/RefClock)-1
SYNRVal: dc.b (Eclock/RefClock)-1
 if OscClk>12800000
FCLKDIVVal: dc.b (OscClk/200000/8)+FDIV8 ; value for FCLKDIV & ECLKDIV register.
 else
FCLKDIVVal: dc.b (OscClk/200000) ; value for FCLKDIV & ECLKDIV register.
 endif
IOBase: dc.w $0000 ; I/O register base address.
SCIBRegVal: dc.w Eclock/16/9600 ; initial baud register value (9600 baud)
EEBase: dc.w $0400 ; on-chip EEPROM base addr avail to D-Bug12.
EESize: dc.w 3072 ; on-chip EEPROM size avail to D-Bug12.
EEDelay: dc.w $ef02 ; adress of 1 mS delay routine.
DlyCnt: dc.w Eclock/4000
;

Figure B-2, D-Bug12 Customization Data

D-Bug12 v4.x.x Reference Guide Page 69 Motorola Semiconductor
July 30, 2001

Note: While the listing in Figure B-2 shows that the start of the data table must reside in the upper
fixed page at $EEC0, the S-Record load address must be $FEEC0. If the assembler used to
assemble the data table allows addresses greater than 16-bits, the address in the ORG
statement should be changed to $FEEC0. If not, the resulting S-Record file with a 16-bit
load address can be converted to have the proper load address using the supplied SRecCvt
utility using the following command line:

sreccvt -m c0000 fffff 32 -of f0000 <inputfilename>

The file containing the converted S-Record will be named Out.S19 and reside in the same
directory as the input file.

S2240FEE805CD1487A483FE35D6B5A67A3E342EA56E32FEA17EA0A6A0F6A1AECCB6A246A3B86
S2240FEEA0963196CFFF2E
S2240FEEC09000000000000000003C00016E36000002280000009C04000C00EF021770FFFF61
S2240FEF002002205FCF400086555A3F415A3F86005A3CF6EECF5B35F6EED05B34A7A7A7A7A1
S2240FEF204F3708FC4C3980F6EED17B0110FCEED25A11A786115A10A7FCEED68A015A12A719

Figure B-3, S-Record Line Containing Customization Data

S2240FEE805CD1487A483FE35D6B5A67A3E342EA56E32FEA17EA0A6A0F6A1AECCB6A246A3B86
S2240FEEA0963196CFFF2E

S2240FEF002002205FCF400086555A3F415A3F86005A3CF6EECF5B35F6EED05B34A7A7A7A7A1
S2240FEF204F3708FC4C3980F6EED17B0110FCEED25A11A786115A10A7FCEED68A015A12A719

Figure B-4, Line Containing Customization Data Removed

S2240FEE805CD1487A483FE35D6B5A67A3E342EA56E32FEA17EA0A6A0F6A1AECCB6A246A3B86
S2240FEEA0963196CFFF2E
S2220FEEC09000000000000000003C00016E36000002280000009C04000C00EF02177061
S2240FEF002002205FCF400086555A3F415A3F86005A3CF6EECF5B35F6EED05B34A7A7A7A7A1
S2240FEF204F3708FC4C3980F6EED17B0110FCEED25A11A786115A10A7FCEED68A015A12A719

Figure B-5, Replacement of S-Record Header, Byte Count and Load Address

After making the necessary changes and successfully assembling the source file, a single line in the
D-Bug12 S-Record file must be replaced. Using a text editor search for the S-Record line that
begins with “S2240FEEC0” as shown in Figure B-3. Remove this line from the file leaving a
space for the S-Record containing the newly generated customization data as shown in Figure B-4.
Finally, paste in the S-Record containing the new customization data as shown in Figure B-5 and
save the result.

D-Bug12 v4.x.x Reference Guide Page 70 Motorola Semiconductor
July 30, 2001

Note: The new S-Record shown in Figure B-5 was generated directly by an assembler. An S-
Record generated by the SRecCvt program will be the same length as the other S-records in
the file with the last two data bytes in the being $FF.

D-Bug12 v4.x.x Reference Guide Page 71 Motorola Semiconductor
July 30, 2001

Appendix C

User Accessible Utility Routines

When operating in EVB mode, D-Bug12 v4.x.x provides access to 18 utility routines through an
array of function pointers (addresses) beginning at $EE80. Placing the table at a fixed address,
allows access to the individual functions to remain constant even though the actual address of the
routines may move when changes are made to D-Bug12.

Because D-Bug12 was written almost entirely in C, the utility routines are presented as C function
definitions. However, this does not mean that the utility routines are usable only when
programming in C. They may easily be accessed when programming in assembly language. Figure
C-1 shows a summary of the available utility routines. A complete description of each utility
routine is provided later in Appendix C.

Function Description Pointer Address
far main() Start of D-Bug12 $EE80

getchar() Get a character from SCI0 or SCI1 $EE84

putchar() Send a character out SCI0 or SCI1 $EE86

printf() Formatted Output - Translates binary values to characters $EE88

far GetCmdLine() Obtain a line of input from the user $EE8A

far sscanhex() Convert an ASCII hexadecimal string to a binary integer $EE8E

isxdigit() Checks for membership in the set [0..9, a..f, A..F] $EE92

toupper() Converts lower case characters to upper case $EE94

isalpha() Checks for membership in the set [a..z, A..Z] $EE96

strlen() Returns the length of a null terminated string $EE98

strcpy() Copies a null terminated string $EE9A

far out2hex() Displays 8-bit number as 2 ASCII hex characters $EE9C

far out4hex() Displays 16-bit number as 4 ASCII hex characters $EEA0

SetUserVector() Setup user interrupt service routine $EEA4

far WriteEEByte() Write a data byte to on-chip EEPROM $EEA6

far EraseEE() Bulk erase on-chip EEPROM $EEAA

far ReadMem() Read data from the M68HC12 memory map $EEAE

far WriteMem() Write data to the M68HC12 memory map $EEB2

Figure C-1, Utility Routines Summary

User Accessible Function Calling Conventions

All of the user accessible routines were written in C. In general, parameters are passed to the user
callable functions on the stack. Parameters must be pushed onto the stack in the reverse order they
are listed in the function declaration (right-to-left) except for the last parameter (the first parameter
listed in the C function declaration). The last parameter is passed to the function in the D-
accumulator. Functions having only a single parameter pass it in the D-accumulator. char
parameters must always be converted to an int. This means that even if a parameter is declared as

D-Bug12 v4.x.x Reference Guide Page 72 Motorola Semiconductor
July 30, 2001

a char it will occupy two bytes of stack space as a parameter. char parameters should occupy
the low order byte (higher byte address) of a word pushed onto the stack or the B-accumulator if
the parameter is passed in D.

Parameters pushed onto the stack before the function is called remain on the stack when the
function returns. It is the responsibility of the calling routine to remove passed parameters from the
stack.

All 8- and 16-bit function results are returned in the D-accumulator. char values returned in the D-
accumulator are located in the 8-bit B-accumulator. Boolean function results are zero for False
and non-zero values for True.

None of the CPU12’s register contents, except the Stack Pointer, are preserved by the called
functions. If any of the register values need to be preserved, they should be pushed onto the stack
before any of the parameters and restored after deallocating the parameters.

Functions listed in Figure C-1 with the far qualifier are located in the MC9S12DP256’s banked
memory and must be accessed using the CALL instruction. Note that each of the far function
pointers occupies four bytes of memory instead of two.

Assembly Language Interface

Calling the functions from assembly language is a simple matter of pushing the parameters onto the
stack in the proper order, loading the first or only function parameter into the D-accumulator. The
function can then be called with a CALL or JSR instruction. The code following the CALL or JSR
instruction should remove any parameters pushed onto the stack If a single parameter was pushed
onto the stack, a simple PULX or PULY instruction is on of the most efficient ways to remove the
parameter from the stack. If two or more parameters were pushed on to the stack, the LEAS
instruction is the most efficient way to remove the parameters. Any of the CPU12’s registers may
have been saved on the stack before the function parameters should be restored with corresponding
PULx instructions. An example of calling the WriteEEByte() function is shown in Figure C-2.

WriteEEByte: equ $EEA6 ; address of function pointer.
;
 .
 .
 ldab #$55 ; write $55 to EEPROM.
 pshd ; place the data on the stack.
 ldd EEAddress ; EEaddress to write data.
 call [WriteEEByte,pcr] ; Call the routine.
 pulx ; remove the parameter from stack.
 beq EEWError ; zero return value means error.
 .
 .

Figure C-2, Calling the WriteEEByte Subroutine

D-Bug12 v4.x.x Reference Guide Page 73 Motorola Semiconductor
July 30, 2001

Callable Routine Descriptions

The following paragraphs contain complete descriptions and usage notes for D-Bug12’s user
callable routines. In addition, the amount of stack space required by each routine and the routine’s
pointer address are also supplied.

void far main(void);

Pointer Address: $EE80

The first field in the table contains a pointer to D-Bug12’s main() function. This entry is
provided for two purposes. First, the Reset vector does not point to main() but rather to code
that is contained in the file Startup.s. This file contains assembly language code that is required
to initialize various hardware modules of the MC9S12DP256 before proper execution of the
monitor can occur. As the monitor code is changed, the address of main() will change. Because
the user may replace the supplied startup routines with their own startup code, the user would have
to examine the supplied D-Bug12 startup object code to determine the address of main().

Placing the address of the main() function at first location in the user callable routines table
allows user supplied startup code to easily begin execution of the monitor with the following
instructions:

ldx #main ; point to the main() far pointer
movb 2,x,PPAGE ; move main's PPAGE number into the PPAGE register.
jmp [main,pcr] ; start D-Bug12 from main().

In addition, the user may want to execute a program stored in EEPROM or other non-volatile
memory before entering the monitor. Again, for the same reasons listed above, providing the
address of the monitor’s main() function at a fixed address allows the location of main() to
change without having to change the users code.

Note: When executing a user program from powerup or reset that is stored in the on-chip
EEPROM, the users program should enter D-Bug12 through the secondary reset vector at
$EFFE rather than through main(). The main() function does not perform any hardware
initialization and does not clear D-Bug12’s variable memory.

When calling the main() function from a user program that began execution from D-Bug12, the
user’s program should first load the CPU12’s stack pointer (SP) with the value located in the
Customization Data area described in Appendix A.

Note: Reentering D-Bug12 from a user program through the main() function reinitializes all
of D-Bug12’s internal tables and variables. Any previously set breakpoints will be lost
and any breakpoint SWI’s will remain in the users program.

D-Bug12 v4.x.x Reference Guide Page 74 Motorola Semiconductor
July 30, 2001

int getchar(void);

Pointer Address: $EE84

The getchar() function provides the ability to retrieve a single character from the control
terminal SCI. If a character is not available in the SCI’s Receive Data Register when the function is
called, the getchar() will wait until one is received. Because the character is returned as an
int, the 8-bit character is placed in the B-accumulator.

int putchar(int);

Pointer Address: $EE86

The putchar() function provides the ability to send a single character to the control terminal
SCI. If the SCI’s Transmit Data Register is full when the function is called, putchar() will
wait until the Transmit Data Register is empty before sending the character. No buffering of
characters is provided. putchar() returns the character that was sent. However, it does not
detect any error conditions that may occur in the process and therefore will never return EOF.
Because the character is returned as an int, the 8-bit character is placed in the B-accumulator.

int printf(char *format, ...);

Pointer Address: $EE88

The printf() function is used to convert, format, and print its arguments on the standard output
under the control of the format string pointed to by format. It returns the number of characters
that were sent to standard output. The version of printf() included as part of the monitor
supports the formatted printing of all data types except floating point numbers.

The format string can contain two basic types of objects: ASCII characters which are copied
directly from the format string to the display device, and conversion specifications that cause
succeeding printf() arguments to be converted, formatted, and sent to the display device. Each
conversion specification begins with a percent sign (%) and ends with a single conversion
character. Optional formatting characters may appear between the percent sign and the conversion
character in the following order:

[-][<FieldWidth>][.][<Precision>][h | l]

Character Description

- (minus sign) Left justifies the converted argument.
FieldWidth Integer number that specifies the minimum field width for the

converted argument. The argument will be displayed in a field at
least this wide. The displayed argument will be padded on the left or
right if necessary.

. (period) Separates the field width from the precision.
Precision Integer number that specifies the maximum number of characters to

display from a string or the minimum number of digits for an
integer.

h To have an integer displayed as a short.

D-Bug12 v4.x.x Reference Guide Page 75 Motorola Semiconductor
July 30, 2001

l (letter ell) To have an integer displayed as a long.

The FieldWidth or Precision field may contain an asterisk (*) character instead of a number. The
asterisk will cause the value of next argument in the argument list to be used instead.

Figure C-3, shown below, contains the conversion characters supported by the printf()
function included in D-Bug12. If the conversion character(s) following the percent sign are not one
of the formatting characters shown above or the conversion characters shown in Table 2 below, the
behavior of the printf() function is undefined.

Character Argument Type; Displayed As
d, i int; signed decimal number

o int; unsigned octal number (without a leading 0)

x int; unsigned hexadecimal number using abcdef for 10..15

X int; unsigned hexadecimal number using ABCDEF for 10..15

u int; unsigned decimal number

c int; single character

s char *; display from the string until a '\0'

p void *; pointer (implementation-dependent representation)

% no argument is converted; print a %

Figure C-3, printf() Conversion Characters

For those unfamiliar with C or the printf() function the following examples show the results
produced by the printf() function for several different format strings.

Example 1.

printf("Signed Decimal: %d Unsigned Decimal: %u/n", Num, Num);

Where Num has the value $FFFF

Displays the result:

Signed Decimal: -1 Unsigned Decimal: 65535

Example 2.

printf("Hexadecimal: %H Hexadecimal: %4.4H/n", Num, Num);

Where Num has the value $FF

Displays the result:

Hexadecimal: FF Hexadecimal: 00FF

Example 3.

printf("This is a %s/n", TestStr);

D-Bug12 v4.x.x Reference Guide Page 76 Motorola Semiconductor
July 30, 2001

Where TestStr is a pointer to (address of) the first byte of a null (zero) terminated character array
containing "Test".

Displays the result:

This is a Test

int GetCmdLine(char *CmdLineStr, int CmdLineLen);

Pointer Address: $EE8A

The GetCmdLine() function is used to obtain a line of input from the user. GetCmdLine()
accepts input from the user a single character at a time by calling getchar(). As each character is
received it is echoed back to the users terminal by calling putchar() and placed in the character array
pointed to by CmdLineStr. A maximum of CmdLineLen - 1 printable characters may be
entered. Only printable ASCII characters are accepted as input with the exception of the ASCII
backspace character ($08) and the ASCII carriage return character ($0D). All other non-printable
ASCII characters are ignored by the function.

The ASCII backspace character ($08) is used by the GetCmdLine() function to delete the
previously received character from the command line buffer. When GetCmdLine() receives the
backspace character, it will echo the backspace to the terminal, print the ASCII space character,
$20, and then send a second backspace character to the terminal. This action will cause the
previous character to be erased from the screen of the terminal device. At the same time the
character is deleted from the command line buffer. If a backspace character is received when there
are no characters in CmdLineStr, the backspace character is ignored.

The reception of an ASCII carriage return character ($0D) terminates the reception of characters
from the user. The carriage return, however, is not placed in the command line buffer. Instead an
ASCII NULL character ($00) is placed in the next available buffer location.

Before returning, all the entered characters are converted to upper case. GetCmdLine() always
returns an error code of noErr.

char * far sscanhex(char *HexStr, unsigned int *BinNum);

Pointer Address: $EE8E

The sscanhex() function is used to convert an ASCII hexadecimal string to a binary integer.
The hexadecimal string pointed to by HexStr may contain any number of ASCII hexadecimal
characters. However, the converted value must be no greater than $FFFF. The string must be
terminated by either an ASCII space ($20) or an ASCII NULL ($00) character.

The value returned by sscanhex() is either a pointer to the terminating character or a NULL
pointer. A NULL pointer indicates that either an invalid hexadecimal character was found in the
string or that the converted value of the ASCII hexadecimal string was greater than $FFFF.

D-Bug12 v4.x.x Reference Guide Page 77 Motorola Semiconductor
July 30, 2001

int isxdigit(int c);

Pointer Address: $EE92

The isxdigit()function tests the character passed in c, for membership in the character set
[0..9, a..f, A..F]. If the character c is part of this set, the function returns a non-zero (true) value
otherwise, a value of zero is returned.

int toupper(int c);

Pointer Address: $EE94

If c is a lower-case character, [a..z], toupper() will return the corresponding upper-case letter.
If the character is upper-case, it simply returns c.

int isalpha(int c);

Pointer Address: $EE96

The isalpha()function tests the character passed in c, for membership in the character set
[a..z, A..Z]. If the character c is part of this set, the function returns a non-zero (true) value
otherwise, a value of zero is returned.

unsigned int strlen(const char *cs);

Pointer Address: $EE98

The strlen() function returns the length of the string pointed to by cs. A string is an array of
characters that is terminated by a '\0' character.

char * strcpy(char *s1, char *s2);

Pointer Address: $EE9A

The strcpy() function copies the contents of string s2 into the string pointed to by s1 including
the '\0'. A pointer to s1 is returned.

void far out2hex(unsigned int num);

Pointer Address: $EE9C

The out2hex() function displays the lower byte of num on the control terminal as two
hexadecimal characters. The upper byte of num is ignored. This function is provided for those that
may not know how to use the printf() function. out2hex() simply calls printf() with a
format string of "%2.2X".

D-Bug12 v4.x.x Reference Guide Page 78 Motorola Semiconductor
July 30, 2001

void far out4hex(unsigned int num);

Pointer Address: $EEA0

out4hex() displays num on the control terminal as four hexadecimal characters.This function is
provided for those that may not know how to use the printf() function. out4hex() simply
calls printf() with a format string of "%4.4X".

int SetUserVector (int VectNum,
 Address UserAddress);

Pointer Address: $EEA4

Note: The SetUserVector() function is included with v4.x.x only for compatibility with
earlier versions of D-Bug12. The RAM vector table is located at $3E00 and may be
accessed directly as described in Section 4.2

The function SetUserVector() allows the user to substitute their own interrupt service
routines for the default interrupt service routines provided by D-Bug12. Providing access to the
RAM interrupt vector table through this routine provides flexibility for future implementations of
interrupt handling in D-Bug12. In addition the memory location of the table may be changed
without having to change a users code. The address of the user’s interrupt service routine, passed
in UserAddress, should point to a routine that ends with an M68HC12 RTI instruction.

The following enum typedef defines the valid constants for VectNum. If an invalid constant is
passed in VectNum, a value of -1 will be returned by SetUserVector() otherwise a value of
zero is returned.

typedef Address char *;
typedef enum Vect {
 UserRsrv0x80 = 0,
 UserRsrv0x82 = 1,
 UserRsrv0x84 = 2,
 UserRsrv0x86 = 3,
 UserRsrv0x88 = 4,
 UserRsrv0x8a = 5,
 UserPWMShDn = 6,
 UserPortP = 7,
 UserMSCAN4Tx = 8,
 UserMSCAN4Rx = 9,
 UserMSCAN4Errs = 10,
 UserMSCAN4Wake = 11,
 UserMSCAN3Tx = 12,
 UserMSCAN3Rx = 13,
 UserMSCAN3Errs = 14,
 UserMSCAN3Wake = 15,
 UserMSCAN2Tx = 16,
 UserMSCAN2Rx = 17,
 UserMSCAN2Errs = 18,
 UserMSCAN2Wake = 19,

D-Bug12 v4.x.x Reference Guide Page 79 Motorola Semiconductor
July 30, 2001

 UserMSCAN1Tx = 20,
 UserMSCAN1Rx = 21,
 UserMSCAN1Errs = 22,
 UserMSCAN1Wake = 23,
 UserMSCAN0Tx = 24,
 UserMSCAN0Rx = 25,
 UserMSCAN0Errs = 26,
 UserMSCAN0Wake = 27,
 UserFlash = 28,
 UserEEPROM = 29,
 UserSPI2 = 30,
 UserSPI1 = 31,
 UserIIC = 32,
 UserDLC = 33,
 UserSCME = 34,
 UserCRG = 35,
 UserPAccBOv = 36,
 UserModDwnCtr = 37,
 UserPortH = 38,
 UserPortJ = 39,
 UserAtoD1 = 40,
 UserAtoD0 = 41,
 UserSCI1 = 42,
 UserSCI0 = 43,
 UserSPI0 = 44,
 UserPAccEdge = 45,
 UserPAccOvf = 46,
 UserTimerOvf = 47,
 UserTimerCh7 = 48,
 UserTimerCh6 = 49,
 UserTimerCh5 = 50,
 UserTimerCh4 = 51,
 UserTimerCh3 = 52,
 UserTimerCh2 = 53,
 UserTimerCh1 = 54,
 UserTimerCh0 = 55,
 UserRTI = 56,
 UserIRQ = 57,
 UserXIRQ = 58,
 UserSWI = 59,
 UserTrap = 60,
 RAMVectAddr = -1 };

Once set, all of the addresses of the user’s interrupt service routines will remain in the RAM vector
table until D-Bug12 is restarted by a hardware reset. Alternately, individual interrupt service
routine addresses may be removed by passing a null pointer in the UserAddress parameter.

Passing the constant ‘RAMVectAddr’ in the VectNum parameter will return the base address of
the RAM interrupt vector table instead of an error code. This will allow the user to make numerous
changes to the RAM vector table without having to call the SetUserVector() function for each
interrupt vector change. When accessing the RAM vector table by using the base address, the Vect
enumerated constants must be multiplied by two before being used as an offset into the RAM
vector table.

D-Bug12 v4.x.x Reference Guide Page 80 Motorola Semiconductor
July 30, 2001

Note: Care should be used when allowing addresses of user interrupt service routines to remain
in the RAM vector table. If the addresses of interrupt service routines change during
program development, D-Bug12’s interrupt handler will most likely jump to an incorrect
program address resulting in loss of CPU/monitor control.

Boolean far WriteEEByte(Address EEAddress, Byte EEData);

Pointer Address: $EEA6

The WriteEEByte() provides a mechanism to program individual bytes of the on-chip
EEPROM without having to manipulate the EEPROM programming control registers.
WriteEEByte() does not perform any range checking on EEAddress to ensure that it falls
within the address range of the on-chip EEPROM. A users program can determine the start address
and size of the on-chip EEPROM array by examining the data contained in the custom data area
fields CustData.EEBase and CustData.EESize.

A byte erase operation is performed before the programming operation and a verify is performed
after the programming operation. If the EEPROM data does not match EEData, false (zero value)
is returned by the function.

int far EraseEE(void);

Pointer Address: $EEAA

The EraseEE() function provides a mechanism to bulk Erase the on-chip EEPROM without
having to manipulate the EEPROM programming control registers. After the bulk erase operation is
performed, a check of the memory range described by CustData.EEBase and
CustData.EESize is checked for erasure. If any of the bytes does not contain 0xff, a non-
zero error code is returned.

int far ReadMem (Address StartAddress, Byte *MemDataP,
 unsigned int NumBytes);

Pointer Address: $EEAE

The ReadMem() function is used internally by D-Bug12 for all memory read accesses. For this
implementation of the monitor, the ReadMem() function simply reads NumBytes of data directly
from the target memory and places it in a buffer pointed to by MemDataP. A user implemented
command would probably not benefit from the use of this function. Instead, it could read values
directly from memory. A non-zero error code is returned if a problem occurs while reading target
memory.

D-Bug12 v4.x.x Reference Guide Page 81 Motorola Semiconductor
July 30, 2001

int WriteMem (Address StartAddress, Byte *MemDataP,
 unsigned int NumBytes);

Pointer Address: $EEB2

The WriteMem() function is used internally by D-Bug12 for all memory write accesses.
WriteMem() is different from ReadMem() in the fact that it is aware of the on-chip EEPROM
memory. If a byte is written to the memory range described by CustData.EEBase and
CustData.EESize, WriteMem() calls the WriteEEByte() function to program the data
into the on-chip EEPROM memory. A non-zero error code is returned if a problem occurs while
writing target memory.

D-Bug12 v4.x.x Reference Guide Page 82 Motorola Semiconductor
July 30, 2001

