
EE 308 Feb. 20, 2002

What Happens When You Reset the HC12?

� What happens to the HC12 when you turn on power or push the reset button?

� How does the HC12 know which instruction to execute first?

� On reset the HC12 loads the PC with the address located at address 0xFFFE
and 0xFFFF.

� Here is what is in the memory of our HC12:

0 1 2 3 4 5 6 7 8 9 A B C D E F

FFF0 FF 56 FF 5A FF 5E FF 62 FF 66 FF 6A FF 6E FF 80

� On reset or power-up, the first instruction your HC12 will execute is the one
located at address 0xFF80.

� Here is the code your HC12 initially executes:

FF80: LDS #$0C00
FF83: LDAB $6F
FF85: ANDB #$03
FF87: CMPB #$03
FF89: BEQ $FF8B
FF8C: BRA $FF95
FF8F: CMPB #$01

� The HC12 reads the input from address $006F, ANDs it with $03 to keep
only the two lowest bits, and decides what to do based on those two bits.

� This is how the HC12 tells whether to run the DBug12 monitor program or
run directly from EEPROM.

1

EE 308 Feb. 20, 2002

Using the Timer Overflow Flag to implement a delay

� The HC12 timer counts at a rate set by the prescaler:

PR2:0 Divide Clock Clock Overflow
Freq Period Period

000 1 8 MHz 0.125 � s 8.192 ms
001 2 4 MHz 0.250 � s 16.384 ms
010 4 2 MHz 0.500 � s 32.768 ms
011 8 1 MHz 1.000 � s 65.536 ms
100 16 500 kHz 2.000 � s 131.072 ms
101 32 250 kHz 4.000 � s 262.144 ms

� When the timer overflows it sets the TOF flag (bit 7 of the TFLG2 register).

� To clear the TOF flag write a 1 to bit 7 of the TFLG2 register, and 0 to all
other bits of TFLG2:

TFLG2 = 0x80;

� You can implement a delay using the TOF flag by waiting for the TOF flag to
be set, then clearing it:

void delay(void)
{

while ((TFLG2 & 0x80) == 0) ; /* Wait for TOF */
TFLG2 = 0x80; /* Clear flag */

}

� If the prescaler is set to 010, you will exit the delay subroutine after 32.768 ms
have passed.

2

EE 308 Feb. 20, 2002

Introduction to Interrupts

Can implement a delay by waiting for the TOF flag to become set:

void delay(void)
{

while ((TFLG2 & 0x80) == 0) ;
TFLG2 = 0x80;

}

Problem: Can’t do anything else while waiting. Wastes resources of HC12.

Solution: Use an interrupt to tell you when the timer overflow has occurred.

Interrupt: Allow the HC12 to do other things while waiting for an event to hap-
pen. When the event happens, tell HC12 to take care of event, then go back
to what it was doing.

What happens when HC12 gets an interrupt: HC12 automatically jumps to part
of the program which tells it what to do when it receives the interrupt (Inter-
rupt Service Routine).

How does HC12 know where the ISR is located: A set of memory locations called
Interrupt Vectors tell the HC12 the address of the ISR for each type of inter-
rupt.

How does HC12 know where to return to: Return address pushed onto stack be-
fore HC12 jumps to ISR. You use the RTI (Return from Interrupt) instruction
to pull the return address off of the stack when you exit the ISR.

What happens if ISR changes registers: All registers are pushed onto stack be-
fore jumping to ISR, and pulled off the stack before returning to program.
When you execute the RTI instruction at the end of the ISR, the registers are
pulled off of the stack.

To Return from the ISR You must return from the ISR using the RTI instruc-
tion. The RTI instruction tells the HC12 to pull all the registers off of the
stack and return to the address where it was processing when the interrupt
occurred.

3

EE 308 Feb. 20, 2002

How to generate an interrupt when the timer overflows

Take care of event

To generate a TOF interrupt:

Enable timer (set Bit 7 of TSCR)

Inside TOF ISR:

Enable interrupts (clear I bit of CCR)
Enable TOF interrupt (set Bit 7 of TMSK2)
Set prescaler (Bits 2:0 of TMSK2) Clear TOF flag (Write 1 to Bit 7 of TFLG2)

Return with RTI

Overflow

D

R

Interrupt
I Bit

CCR

TOI Bit

TMSK2

Q

VCC

16−Bit Counter

TIMER OVERFLOW INTERRUPT

Write

TOF

Read

(Enable by clearing I bit with CLI instr)

(Enable by setting Bit 8 of TMSK2)

Prescaler

TEN

PR[2..0]

TCNT (addr 0x84)

(Bit 7 of TSCR, addr 0x86)

(Bits 2−0 of TMSK2, addr 0x8D)

(Bit 7 of TFLG2, addr 0x8F)

(Bit 7 of TMSK2, addr 0x8D)

TOF

(Bit 7 of TFLG2, addr 0x8F)

8 MHz
P Clock

#include "hc12b32.h"

main()
{

DDRA = 0xff; /* Make Port A output */
TSCR = 0x80; /* Turn on timer */
TMSK2 = 0x84; /* Enable timer overflow interrupt, set prescaler */
TFLG2 = 0x80; /* Clear timer interrupt flag */
enable(); /* Enable interrupts (clear I bit) */
while (1)
{

/* Do nothing */
}

}

@interrupt void toi_isr(void)
{

PORTA = PORTA + 1; /* Increment Port A */
TFLG2 = 0x80; /* Clear timer interrupt flag */

}

4

EE 308 Feb. 20, 2002

How to tell the HC12 where the Interrupt Service Routine is located

� You need to tell the HC12 where to go when it receives a TOF interrupt

� You do this by setting the TOF Interrupt Vector

� On your HC12 this is located at address 0x0B1E

� In C, you include a file which has a holding place for each possible interrupt

� You put the name of the ISRs you need to use in the appropriate slot

/* INTERRUPT VECTORS TABLE 68HC12
*/
void toi_isr(); /* character receive handler */

/* Vectors at 0xFFD0 on standard HC12; remapped to 0x0B10 with D-Bug 12 */
void (* const _vectab[])() = {

0, /* BDLC */
0, /* ATD */
0, /* reserved */
0, /* SCI0 */
0, /* SPI */
0, /* Pulse acc input */
0, /* Pulse acc overflow */
toi_isr, /* Timer overflow */
0, /* Timer channel 7 */
0, /* Timer channel 6 */
0, /* Timer channel 5 */
0, /* Timer channel 4 */
0, /* Timer channel 3 */
0, /* Timer channel 2 */
0, /* Timer channel 1 */
0, /* Timer channel 0 */
0, /* Real time */
0, /* IRQ */
0, /* XIRQ */
0, /* SWI */
0, /* illegal */
0, /* cop fail */
0, /* cop clock fail */
(void *)0xff80, /* RESET */
};

5

EE 308 Feb. 20, 2002

USING INTERRUPTS ON THE HC12

What happens when the HC12 receives an unmasked interrupt?

1. Finish current instruction

2. Push all registers onto the stack

3. Set I bit of CCR

4. Load Program Counter from interrupt vector for particular interrupt

Most interrupts have both a specific mask and a general mask. For most interrupts
the general mask is the I bit of the CCR. For the TOF interrupt the specific mask
is the TOI bit of the TMSK2 register.

Before using interrupts, make sure to:

1. Load stack pointer

� Done for you in C by crts.s

2. Write Interrupt Service Routine
� Do whatever needs to be done to service interrupt
� Clear interrupt flag
� Exit with RTI

– Use the @interrupt function of the Cosmic C compiler

3. Load address of interrupt service routine into interrupt vector

4. Do any setup needed for interrupt

� For example, for the TOF interrupt, turn on timer and set prescaler

5. Enable specific interrupt

6. Enable interrupts in general (clear I bit of CCR with cli instruction or
enable() function

Can disable all (maskable) interrupts with the sei instruction or disable()
function.

6

EE 308 Feb. 20, 2002

An example of the HC12 registers and stack when a TOF interrupt is
received

A B

X

Y

SP

PC

CCR

FFE0

FFDF

FFDE

FFDD

FFDC

FFDB

FFDA

FFD9

FFD8

FFD7

FFD6

08

08

08

08

08

08

AA BB

0123

4567

07

3A

4B

52

67

79

0A00

0815

HC12 STATE BEFORE RECEIVING TOF INTERRUPT

0A00

09FA

09FB

09FC

09FD

09FE

09FF

09F9

09F8

09F7

09F6

7

EE 308 Feb. 20, 2002

An example of the HC12 registers and stack just after a TOF interrupt is
received

� All of the HC12 registers are pushed onto the stack, and the PC is loaded with
the contents of the Interrupt Vector

A B

X

Y

SP

PC

CCR

FFE0

FFDF

FFDE

FFDD

FFDC

FFDB

FFDA

FFD9

FFD8

FFD7

FFD6

08

08

08

08

08

08

AA BB

0123

4567

17

HC12 STATE AFTER RECEIVING TOF INTERRUPT

3A

4B

52

67

79

083A

A

09FA

09FB

09FC

09FD

09FE

09FF

09F9

09F8

09F7

09F6

0A00

09F7

Y

X

B

A

CCR

Return
Address

08

67

45

23

01

AA

BB

07

15

8

EE 308 Feb. 20, 2002

Interrupt vectors for the 68HC912B32

� The interrupt vectors for the 68HC912B32 are located in memory from 0xFFD0
to 0xFFFF.

� These vectors are programmed into Flash EEPROM and are very difficult to
change

� DBug12 redirects the interrupts to a region of RAM where they are easy to
change

� For example, when the HC12 gets a TOF interrupt:

– It loads the PC with the contents of 0xFFDE and 0xFFDF.

– The program at that address tells the HC12 to look at address 0x0B1E
and 0x0B1F.

– If there is a 0x0000 at these two addresses, DBug12 gives an error stat-
ing that the interrupt vector is uninitialized.

– If there is anything else at these two addresses, DBug12 loads this data
into the PC and executes the routine located there.

– To use the TOF interrupt you need to put the address of your TOF ISR at
addresses 0x0B1E and 0x0B1F.

9

EE 308 Feb. 20, 2002

Interrupt Specific General Normal D-Bug 12
Mask Mask Vector Vector

BDLC BCR1 (IE) I FFD0, FFD1 0B10, 0B11
ATD ATDCTL2 (ASCIE) I FFD2, FFD3 0B12, 0B13
Reserved I FFD4, FFD5 0B14, 0B15
SCI SC0CR2 I FFD6, FFD7 0B16, 0B17

(TIE, TCIE, RIE, ILIE)
SPI SP0CR1 (SPIE) I FFD8, FFD9 0B18, 0B19
Pulse Acc Edge PACTL (PAI) I FFDA, FFDB 0B1A, 0B1B
Pulse Acc Overflow PACTL (PAOVI) I FFDC, FFDD 0B1C, 0B1D
Timer Overflow TMSK2 (TOI) I FFDE, FFDF 0B1E, 0B1F
Timer Channel 7 TMSK1 (C7I) I FFE0, FFE1 0B20, 0B21
Timer Channel 6 TMSK1 (C6I) I FFE2, FFE3 0B22, 0B23
Timer Channel 5 TMSK1 (C5I) I FFE4, FFE5 0B24, 0B25
Timer Channel 4 TMSK1 (C4I) I FFE6, FFE7 0B26, 0B27
Timer Channel 3 TMSK1 (C3I) I FFE8, FFE9 0B28, 0B29
Timer Channel 2 TMSK1 (C2I) I FFEA, FFEB 0B2A, 0B2B
Timer Channel 1 TMSK1 (C1I) I FFEC, FFED 0B2C, 0B2D
Timer Channel 0 TMSK1 (C0I) I FFEE, FFEF 0B2E, 0B2F
Real Time RTICTL (RTIE) I FFF0, FFF1 0B30, 0B31
IRQ INTCR (IRQEN) I FFF2, FFF3 0B32, 0B33
XIRQ (None) X FFFF, FFFF 0B34, 0B35
SWI (None) (None) FFF6, FFF7 0B36, 0B37
Unimplemented Instruction (None) (None) FFF8, FFF9 0B38, 0B39
COP failure COP rate select (None) FFFA, FFFB 0B3A, 0B3B
COP clock moniotr fail COPCTL (CME, FCME) (None) FFFC, FFFD 0B3C, 0B3D
Reset (None) (None) FFFE, FFFF 0B3E, 0B3F

10

