
EE 308 Feb. 25, 2002

What happens when an HC12 gets in unmasked interrupt:

1. Completes current instruction

2. Clears instruction queue

3. Calculates return address

4. Stacks return address and contents of CPU registers

5. Sets I bit of CCR

6. Sets X bit of CCR if an XIRQ interrupt is pending

7. Fetches interrupt vector for the highest-priority interrupt which is pending

8. Executes ISR at the location of the interrupt vector

What happens when an HC12 exits an ISR with the RTI instruction:

1. If no other interrupt pending,

(a) HC12 recovers stacked registers

(b) Execution resumes at the return address

2. If another interrupt pending

(a) HC12 recovers stacked registers

(b) Subtracts 9 from SP

(c) Sets I bit of CCR

(d) Sets X bit of CCR if an XIRQ interrupt is pending

(e) Fetches interrupt vector for the highest-priority interrupt which is pend-
ing

(f) Executes ISR at the location of the interrupt vector

1

EE 308 Feb. 25, 2002

Capturing the Time of an External Event

� One way to determine the time of an external event is to wait for the event to
occur, the read the TCNT register:

� For example, to determine the time a signal on Bit 0 of PORTB changes from
a high to a low:

while ((PORTB & 0x01) != 0) ; /* Wait while Bit 0 high */
time = TCNT; /* Read time after goes low */

� Two problems with this:

1. Cannot do anything else while waiting

2. Do not get exact time because of delays in software

� To solve problems use hardware which latches TCNT when event occurs, and
generates an interrupt.

� Such hardware is built into the HC12 — called the Input Capture System

2

EE 308 Feb. 25, 2002

Measure the time between two events

+5V

∆ t

How to measure t?∆

start = TCNT;

end = TCNT;
dt = end − start;

PB0

PB1

while ((PORTB & 0x01) == 0x01) ;

while ((PORTB & 0x02) == 0x02) ;

Wait until signal goes low, then measure TCNT

+5V

PB0 PB1

3

EE 308 Feb. 25, 2002

Measure the time between two events

+5V

∆ t

How to measure t?∆

start = TCNT;

end = TCNT;
dt = end − start;

PB0

PB1

while ((PORTB & 0x01) == 0x01) ;

while ((PORTB & 0x02) == 0x02) ;

Wait until signal goes low, then measure TCNT

 2) Can’t do anything while waiting for signal
 level to change

+5V

PB0 PB1

Problems: 1) May not get very accurate time

4

EE 308 Feb. 25, 2002

Measure the time between two events

+5V

∆ t

PB0

PB1

+5V

TCNT

Solution: Latch TCNT on falling edge of signal

INTERRUPT

 Read latched values when interrupt occurs

5

EE 308 Feb. 25, 2002

The HC12 Input Capture Function

� The HC12 allows you to capture the time an external event occurs on any of
the eight PORTT pins

� An external event is either a rising edge or a falling edge

� To use the Input Capture Function:

– Enable the timer subsystem (set TEN bit of TSCR)

– Set the prescaler

– Tell the HC12 that you want to use a particular pin of PORTT for input
capture

– Tell the HC12 which edge (rising, falling, or either) you want to capture

– Tell the HC12 if you want an interrupt to be generated when the cature
occurs

6

E
E

308
F

eb.25,2002

A Simplified Block Diagram of the HC12 Input Capture Subsystem

Write

Read

TMSK1

TFLG1

TFLG1

D Q

VCC
00: Disable

TCNT

16 Bit Counter

Capture

01: Rising
10: Falling
11: Either

 Edge
RegisterEDGx B:A

(TCTL 3:4)

INPUT CAPTURE

TCx

CxI

CxF

CxF

Interrupt

I Bit

CCR

PrescalerM−Clock

Port T Pin x set up as Input Capture (IOSx = 0 in TOIS)

PORTT Pin x

7

EE 308 Feb. 25, 2002

Registers used to enable Input Capture Function

TMSK2 = 0x03;

Write a 1 to Bit 7 of TSCR to turn on timer

TSWAI TSBCK TFFCA 0x0086 TSCR

To turn on the timer subsystem: TSCR = 0x80;

Set the prescaler in TMSK2

 you want to measure

TOI PUPT RDPT TCRE PR2 PR1 PR0 0x008D TMSK2

PR2 PR1 PR0

0.125

0.250

0.500

1.000

2.000

4.000

0

0 1

1 0

1 1

0

0

0 1

1 0

1 1

0

0

0

0

0

1

1

1

1

Period Overflow

(s) (ms)µ

8.192

16.384

32.768

65.536

262.144

131.072

−−−−−−

−−−−−−

To have overflow rate of 65.536 ms:

−−−−−−

−−−−−−

Make sure the overflow time is greater than the time difference

TEN

0

8

EE 308 Feb. 25, 2002

Write a 0 to the bits of TIOS to make those pins input capture

Write to TCTL3 and TCTL4 to choose edge(s) to capture

EDGnB EDGnA Configuration

0 0 Disabled

0 1 Rising

1 0 Falling

1 1 Any

To make Pin 3 an input capture pin: TIOS = TIOS & ~0X08;

To have Pin 3 capture a rising edge:

TCTL4 = (TCTL4 | 0x40) & ~0x80;

IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 0x0080 TIOS

EDG7B 0x008A TCTL3

0x008B TCTL4

EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A

EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A

CF7 CF6 CF4 CF3 CF2 CF0CF5 CF1 0x008E TFLG1

When specified edge occurs, the corresponding bit in TFLG1 will be set.

To clear the flag, write a 1 to the bit you want to clear (0 to all others)

To wait until rising edge on Pin 3: while ((TFLG1 & 0x08) == 0) ;

To clear flag bit for Pin 3: TFLG1 = 0x08;

C4I C2IC5I

bit in TMSK1 register

To enable interrupt when specified edge occurs, set corresponding

C7I C6I C3I C1I C0I 0x008C TMSK1

To enable interrupt on Pin 3: TMSK1 = TMSK1 | 0x08;

To determine time of specified edge, read 16−bit result registers TC0 thru TC7

To read time of edge on Pin 3:

unsigned int time;
time = TC3;

9

EE 308 Feb. 25, 2002

USING INPUT CAPTURE ON THE HC12

Input Capture: Connect a digital signal to a pin of Port T. Can capture the time of
an edge (rising, falling or either) – the edge will latch the value of TCNT into TCx
register. This is used to measure the difference between two times.

To use Port T Pin x as an input capture pin:

1. Turn on timer subsystem (1 -> Bit 7 of TSCR reg)

2. Set prescaler (TMSK2 reg). To get most accuracy set overflow rate as small as
possible, but larger than the maximum time difference you need to measure.

3. Set up PTx as IC (0 -> bit x of TIOS reg)

4. Set edge to capture (EDGxB EDGxA of TCTL 3-4 regs)

EDGxB EDGxA

0 0 Disabled
0 1 Rising Edge
1 0 Falling Edge
1 1 Either Edge

5. Clear flag (1 -> bit x of TFLG1 reg, 0 -> all other bits of TFLG1)

6. If using interrupts

(a) Enable interrupt (1 -> bit x of TMSK1 reg)

(b) Clear I bit of CCR (cli or enable())

(c) In interrupt service routine,

i. read time of edge from TCx
ii. Clear flag (1 -> bit x of TFLG1 reg, 0 -> all other bits of TFLG1)

7. If polling in main program

(a) Wait for Bit x of TFLG1 to become set

(b) Read time of edge from TCx

(c) Clear flag (1 -> bit x of TFLG1 reg, 0 -> all other bits of TFLG1)

10

EE 308 Feb. 25, 2002

/* Program to determine the time between two rising edges using the *
* HC12 Input Capture subsystem
*/

#include "hc12b32.h"

unsigned int first, second, time;

main()
{

TSCR = 0x80; /* Turn on timer subsystem */
TMSK2 = 0x05; /* Set prescaler for divide by 32 */

/* Setup for IC1 */
TIOS = TIOS & ˜0x02; /* IOC1 set for Input Capture */
TCTL4 = (TCTL4 | 0x04) & ˜0x08; /* Capture Rising Edge */
TFLG1 = 0x02; /* Clear IC1 Flag */

/* Setup for IC2 */
TIOS = TIOS & ˜0x04; /* IOC2 set for Input Capture */
TCTL4 = (TCTL4 | 0x10) & ˜0x20; /* Capture Rising Edge */
TFLG1 = 0x04; /* Clear IC2 Flag */

while ((TFLG1 & 0x02) == 0) ; /* Wait for 1st rising edge; */
first = TC1; /* Read time of 1st edge; */

while ((TFLG1 & 0x04) == 0) ; /* Wait for 2nd rising edge; */
second = TC2; /* Read time of 2nd edge; */

time = second - first; /* Calculate total time */
}

11

EE 308 Feb. 25, 2002

Using the Keyword volatile in C

� Consider the following code fragment, which waits until an event occurs on
Pin 2 of PORTT:

#define TRUE 1
#define FALSE 0

unsigned int time, done;

main()
{

Code to set up Input Capture 2

TFLG2 = 0x04; /* Clear CF2 */
enable(); /* Enable Interrupts */

done = FALSE;

while (!done) ;
}

@interrupt void tic2_isr(void)
{

time = TC2;
TFLG1 = 0x04;
done = TRUE;

}

12

EE 308 Feb. 25, 2002

� An optimizing compiler knows that done will not change in the main()
function. It may decide that, since done is FALSE in the main() function,
and nothing in the main() function changes the value of done, then done
will always be FALSE, so there is no need to check if it will ever become
TRUE.

� An optimizing comiler might change the line

while (!done) ;

to

while (TRUE) ;

and the program will never get beyond that line.

� By declaring done to be volatile, you tell the compiler that the value
of done might change somewhere else other than in the main() function
(such as in an interrupt service routine), and the compiler should not optimize
on the done variable.

volatile unsigned int time, done;

� If a variable can change its value outside the normal flow of the program
(i.e., inside an interrupt service routine), declare the variable to be of type
volatile.

13

EE 308 Feb. 25, 2002

Using D-Bug12 Routines to Print Information to the Terminal

D-Bug12 has several built-in C routines. Descriptions of these can be found in
the Application Note Using the Callable Routines in D-Bug12. To use these
routines you need to include the header file DBug12.h. These work like oridnary
C functions, but you call them with pointers to the routines in D-Bug12. For
example, you would call the putchar() function with the following line of C
code:

DBug12FNP->putchar(c);

Here is a C program to print Hello, world! to the terminal:

#include "DBug12.h"

void main(void)
{

DBug12FNP->printf("Hello, world!\n\r");
}

Here is a program to print a number to the terminal in three different forms:

#include "DBug12.h"

void main(void)
{

unsigned int i;

i = 0xf000;

DBug12FNP->printf("Hex: 0x%4x, Unsigned: %u, Signed: %d\n\r",i,i,i);
}

The output of the above program will be:

Hex: 0xf000, Unsigned: 61440, Signed: -4096

14

EE 308 Feb. 25, 2002

Program to measure the time between two rising edges, and print out the
result

/* Program to determine the time between two rising edges using
* the HC12 Input Capture subsystem.
*
* The first edge occurs on Bit 1 of PORTT
* The second edge occurs on Bit 2 of PORTT
*
* This program uses interrupts to determine when the two edges
* have occurred.
*/

#include "hc12b32.h"
#include "DBug12.h"

#define TRUE 1
#define FALSE 0

volatile unsigned int first, second, time, done;

main()
{

done = FALSE;

/* Turn on timer subsystem */
TSCR = 0x80;
/* Set prescaler to 32, no TOF interrupt */
TMSK2 = 0x05;

/* Setup for IC1 */
TIOS = TIOS & ˜0x02; /* Configure PT1 as IC */
TCTL4 = (TCTL4 | 0x04) & ˜0x08; /* Capture Rising Edge */
TFLG1 = 0x02; /* Clear IC1 Flag */
TMSK1 = TMSK1 | 0x02; /* Enable IC1 Interrupt */

/* Setup for IC2 */
TIOS = TIOS & ˜0x04; /* Configure PT2 as IC */
TCTL4 = (TCTL4 | 0x10) & ˜0x20; /* Capture Rising Edge */
TFLG1 = 0x04; /* Clear IC2 Flag */
TMSK1 = TMSK1 | 0x04; /* Enable IC2 Interrupt */

15

EE 308 Feb. 25, 2002

enable();

while (!done) ;

time = second - first; /* Calculate total time */

DBug12FNP->printf("time = %d\r\n",time) /* print */;
}

@interrupt void tic1_isr(void)
{

first = TC1;
TFLG1 = 0x02;

}

@interrupt void tic2_isr(void)
{

second = TC2;
done = TRUE;
TFLG1 = 0x04;

}

16

EE 308 Feb. 25, 2002

/* INTERRUPT VECTORS TABLE 68HC12
*/
void tic1_isr();
void tic2_isr();

void (* const _vectab[])() = { /* 0x0B10 */
0, /* BDLC */
0, /* ATD */
0, /* reserved */
0, /* SCI0 */
0, /* SPI */
0, /* Pulse acc input */
0, /* Pulse acc overf */
0, /* Timer overf */
0, /* Timer channel 7 */
0, /* Timer channel 6 */
0, /* Timer channel 5 */
0, /* Timer channel 4 */
0, /* Timer channel 3 */
tic2_isr, /* Timer channel 2 */
tic1_isr, /* Timer channel 1 */
0, /* Timer channel 0 */
0, /* Real time */
0, /* IRQ */
0, /* XIRQ */
0, /* SWI */
0, /* illegal */
0, /* cop fail */
0, /* cop clock fail */
(void *)0xff80, /* RESET */
};

17

