The HC12 Pulse Width Modulation System

Pulse Width Modulation

Control speed of motor by adjusting percent

of time power is applied to the motor.

Need to choose period, and have a way to adjust duty cycle

- The HC12 has a flexible, and complicated, PWM system
- There are four 8-bit PWM channels
 - Two 8-bit channels can be combined into a single 16-bit channel
 - We will discuss only 8-bit mode
- You can select center-aligned or left-aligned PWM
 - We will discuss only left-aligned mode
- You can select high polarity or low polarity
 - We will discuss only high polarity mode

Mar. 1, 2002

The HC12 Pulse Width Modulation System

- There are 14 registers you need to program to set up the four channels of the PWM
- To select 8-bit mode, write a 0 to Bits 7 and 6 of PWCLK register
- To select left-aligned mode, write a 0 to Bit 3 of PWCTL register
- To select high polarity mode, write a 1 to Bits 0, 1, 2, and 3 of PWPOL register
- To set the period for a PWM channel you need to program bits in 4 of the PWM registers
 - For Channel 0 the 4 registers are PWCLK, PWPOL, PWSCAL0 and PWPER0
 - For Channel 1 the 4 registers are PWCLK, PWPOL, PWSCAL0 and PWPER1
 - For Channel 2 the 4 registers are PWCLK, PWPOL, PWSCAL1 and PWPER2
 - For Channel 3 the 4 registers are PWCLK, PWPOL, PWSCAL1 and PWPER3
- To set the duty cycle for a PWM channel you need to write to the PWDTY register for that channel

					-			_	
CON23	CON01	PCKA2	PCKA1	PCKA0	PCKB2	PCKB1	PCKB0	0x0040	PWCLK
CON23 - Concatenate PWM 2 & PWM 3 into one 16-bit PWM CON01 - Concatenate PWM 0 & PWM 1 into one 16-bit PWM We will discuss 8-bit PWM only write 0 to CON23 and CON01									
<pre>PWCLK = PWCLK & ~0xC0; PCKA[2-0] PCKA[2-0]: Prescaler for Clock A Divide 8 MHz clock by 2</pre>									
PCKB[2-0]: Prescaler for Clock B Divide 8 MHz clock by 2									
]	
PCLK3	PCLK2	PCLK1	PCLK0	PPOL3	PPOL2	PPOL1	PPOL0	0x0041	PWPOL
PCLKn - Choose clock source for Channel n PPOLn - Choose polarity									
CH3 can use either B (0) or S1 (1)						1 => high polarity			
CH2 can use either B (0) or S1 (1)						0 => low polarity			
CH1 can use either A (0) or S0 (1)									
CHO can use either A (0) or SO (1)						We will use high polarity only PWPOL = PWPOL 0x0F;			
S1 =	В					With high polarity, duty cycle will			
	2 x (P	WSCAL1 +	1)			be the amount of time output is hi			put is high.
50 =		A							
~~ -									

 $2 \times (PWSCAL0 + 1)$

Bit 7	6	5	4	3	2	1	Bit O	0x0044	PSCAL0	
PWSCAL0 adjusts frequency of Clock S0										
Bit 7	6	5	4	3	2	1	Bit O	0x0046	PSCAL1	
PWSCAL	PWSCAL1 adjusts frequency of Clock S1									
PWPERn s	PWPERn sets period of CHn PWM Period = (PWPERn + 1) x Period of PWM Clock n									
PWDTYn adjusts duty cycle of CHn PWM Duty Cycle = (PWDTYn + 1)/(PWPERn + 1) x 100%										
0	0	0	PSWAI	CENTR	RDPP	PUPP	PSBCK	0x0054	PWCTL	
The only bit we will use is CENTR Always set CENTR = 0 to choose left-aligned mode PWCTL = 0x00;										
0	0	0	0	PWEN3	PWEN2	PWEN1	PWEN0	0x0042	PWEN	
<pre>Set PWENn = 1 to enable PWM on CHn If PWENn = 0, the Port P Bit n can be used as general purpose I/O Bits 6-4 of Port P are always used for general purpose I/O To enable PWM Channel 2: PWEN = PWEN 0x04:</pre>										

You need to set PCKA, PWSCAL0, PCLK0, and PWPER0

S

How to set the Period for PWM Channel 0

- To set the period for PWM Channel 0:
 - Set the PWM Period register for Channel 0, PWPER0
 - CLK0, the clock for Channel 0, drives a counter (PWCNT0)
 - PWCNT0 counts from 0 to PWPER0
 - The period for PWM Channel 0 is $(PWPER0 + 1) \times Period of CLK0$
- There are two modes for the clock for PWM Channel 0
 - You select the mode by the PCLK0 bit
 - If PCLK0 == 0, CLK0 is generated by dividing the 8 MHz clock by 2^{PCKA}, where PCKA is between 0 and 7
 - If PCLK0 == 1, CLK0 is generated by dividing the 8 MHz clock by $2^{PCKA+1} \times (PWSCAL0 + 1)$, where PCKA is between 0 and 7 and PWSCAL0 is between 0 and 255
- The Period for PWM Channel 0 (in number of 0.125 μ s cycles) is calculated by

$$Period = \begin{cases} (PWPER + 1) \times 2^{PCKA} & \text{if } PCLK0 == 0\\ (PWPER + 1) \times 2^{PCKA+1} \times (PWSCAL0 + 1) & \text{if } PCLK0 == 1 \end{cases}$$

- With PCLK0 == 0, the maximum possible PWM period is 4.1 ms
- With PCLK0 == 1, the maximum possible PWM period is 2.1 s

• To get a 1 ms PWM period, you need 8,000 cycles.

$$8,000 = \begin{cases} (\texttt{PWPER}+1) \times 2^{\texttt{PCKA}} & \text{if } \texttt{PCLK0} == 0\\ (\texttt{PWPER}+1) \times 2^{\texttt{PCKA}+1} \times (\texttt{PWSCAL0}+1) & \text{if } \texttt{PCLK0} == 1 \end{cases}$$

- You can do this in many ways
 - With PCLK0 = 0, can have

PCKA	pwper0	
5	249	Exact
6	124	Exact
7	62	Close

- With PCLK0 = 1, can have

PCKA	PWSCAL0	pwper0	
0	15	249	Exact
0	19	199	Exact
0	31	124	Exact
0	79	49	Exact
0	159	24	Exact
1	7	249	Exact
1	15	124	Exact
2	3	249	Exact
2	7	124	Exact
3	1	249	Exact

and many other combinations

Ţ

- You want PWPER0 to be large (say, 99 or larger)
 - If PWPER0 is small, you don't have much control over the duty cycle
 - For example, if PWPER0 = 4, you can only have 0%, 25%, 50%, 75% or 100% duty cycle
- Once you choose a way to set the PWM period, you can program the PWM registers
- For example, to get a 1 ms period, let's use PCLK0 = 1, PCKA = 0, PWSCAL0 = 19, and PWPER0 = 199
- We need to do the following:
 - Write 0 to bits 7 and 6 of PWCLK (to set up 8-bit mode)
 - Write 000 to Bits 5,4,3 of PWCLK (to set PCKA to 0)
 - Write 1 to Bit 4 of PWPOL (to set PCLK0 = 1)
 - Write 1 to Bit 0 of PWPOL (to select high polarity mode)
 - Write 19 to PWSCAL0
 - Write 0 to Bit 3 of PWCTL (to select left aligned mode)
 - Write 199 to PWPER0
 - Write 1 to Bit 0 of PWEN (to enable PWM on Channel 0)
 - Write the appropriate value to PWDTY0 to get the desired duty cycle (e.g., PWDTY0 = 119 will give 60% duty cycle)

EE 308

C code to set up PWM Channel 0 for 1 ms period (1 kHz frequency) PWM with 60% duty cycle

```
PWCLK = PWCLK & ~0xC0;
                       /* 8-bit Mode */
PWCLK = PWCLK & ^{\sim}0x38;
                        /* PCKA = 0 */
PWPOL = PWPOL
                0x10;
                        /* PCLK0 = 1 */
              /* High polarity mode */
PWPOL = PWPOL
                0x01;
              PWSCAL0 = 19;
PWCTL = PWCTL & ~0x08; /* Left-Aligned */
PWPER0 = 199;
PWEN = PWEN | 0x01;
                        /* Enable PWM Channel 0 */
                        /* 60% duty cycle on Channel 0 */
PWDTY0 = 119;
```

Interdependence of clocks for Channels 0 and 1

- The clocks for Channels 0 and 1 are interdependent
- They both use PCKA and PWSCAL0
- To set the clock for Channel 0, you need to set PCKA, PCLK0, PWSCAL0 (if PCLK0 == 1) and PWPER0
- To set the clock for Channel 1, you need to set PCKA, PCLK1, PWSCAL0 (if PCLK1 == 1) and PWPER1

Clock Select for PWM Channels 0 and 1

PWM Channels 2 and 3

- PWM channels 2 and 3 are similar to PWM channels 0 and 1
- To set the clock for Channel 2, you need to set PCKB, PCLK2, PWSCAL1 (if PCLK2 == 1) and PWPER2
- To set the clock for Channel 3, you need to set PCKB, PCLK3, PWSCAL1 (if PCLK3 == 1) and PWPER3

Clock Select for PWM Channels 2 and 3

Using the HC12 PWM

- 1. Choose 8-bit mode (PWCLK 7:6=00)
- 2. Choose left-aligned (PWCTL 3 = 0)
- 3. Choose polarity = 1 (PWPOL 3:0 = 1111)
- 4. Select clock mode in PWPOL: PCLKx = 0 for 2^N , PCLKx = 1 for $2^{(N+1)} \times (M+1)$,
- 5. Select N in PWCLK register: PCKA 2:0 for channels 1, 0; PCKB 2:0 for channels 3, 2.
- 6. If PCLKx = 1, select M: PWSCAL0 7:0 = M for channels 1, 0; PWSCAL1 7:0 = M for channels 3, 2.
- 7. Select PWPERx, normally between 99 and 255.
- 8. Enable desired PWM channels: PWEN 3:0.
- 9. Select PWDTYx, normally between 0 and PWPERx. Then

Duty Cycle $x = \frac{PWDTYx + 1}{PWPERx + 1} \times 100\%$

Change duty cycle to control speed of motor or intensity of light, etc.

10. For 0% duty cycle, choose PWDTYx = 0xFF.

/*

Program to use the HC12 PWM System

```
* Program to generate 5.2 kHz pulse width modulation
 * on Port P Bits 0 and 1
 *
 * To get 5.2 kHz: 8,000,000/5,200 = 1538.5
 * Cannot get exactly 1538.5
 * Use 1536, which is 2^9 x 3
 *
 * Lots of ways to set up PWM to achieve this. One way is 2^3 \times 192
 * Set PCKA to 3, do not use PSCAL0, set PWPER to 191
 *
 */
#include "hc12b32.h"
main()
{
    /* Choose 8-bit mode */
    PWCLK = PWCLK & ~0xC0;
    /* Choose left-aligned */
    PWCTL = PWCTL & ^{\sim}0x08;
    /* Choose high polarity on all channels */
    PWPOL = PWPOL | 0x0f;
    /* Select clock mode 0 for Channels 1 and 0 (no PWSCAL0) */
    PWPOL = PWPOL & ^{\circ}0x30;
    /* Select PCKA = 3 for Channels 1 and 0 */
    PWCLK = (PWCLK \& ~0x20) | 0x18;
                                       /* PCKA = 3 */
    /* Select period of 192 for Channels 1 and 0 */
    PWPER1 = 191;
                               /* Period 1 = PWPER1 + 1 */
    PWPER0 = 191;
                               /* Period 0 = PWPER0 + 1 */
    /* Enable PWM on Channels 1 and 0 */
    PWEN = PWEN | 0 \times 03;
    PWDTY1 = 95; /* 50% duty cycle on Channel 1 */
    PWDTY0 = 47; /* 25% duty cycle on Channel 0 */
while (1)
{ /* Code to adjust duty cycle to meet requirements */ }
}
```