EE 308 Mar. 20, 2002

The HC12 Serial Peripheral Interface (SPI)

e The HC12 has a Synchronous Serial Interface
e Onthe HC12 it is called the Serial Peripheral Interface (SPI)

e If an HC12 generates the clock used for the synchronous data transfer it is
operating in Master Mode.

e If an HC12 uses and external clock used for the synchronous data transfer it
Is operating in Slave Mode.

e If two HC12’s talk to each other using their SPI’s one must be set up as the
Master and the other as the Slave.

e The output of the Master SPI shift register is connected to the input of the
Slave SPI shift register over the Master Out Slave In (MOSI) line.

e The input of the Master SPI shift register is connected to the output of the
Slave SPI shift register over the Master In Slave Out (MISQO) line.

e After 8 clock ticks, the data originally in the Master shift register has been
transfered to the slave, and the data in the Slave shift register has been trans-
fered to the Master.

Mar. 20, 2002

EE 308

Synchronous Serial Communications

Slave

SPODR W

Master

MOSI

MISO

Clock

— SPODR

Clk

11010110

MOSI

MISO

Clock

EE 308 Mar. 20, 2002

Use of Slave Select with the HC12 SPI

o A master HC12 can talk with more than one slave HC12’s

e A slave HC12 uses its Slave Select (SS) line to determine if it is the one the
master is talking with

e There can only be one master HC12, because the master HC12 is the device
which generates the serial clock signal.

Synchronous Serial Communications

Master Slave 1 Slave 2

MOSI

MISO

Clock

With select lines, one master can communicate with more than one slave

EE 308 Mar. 20, 2002

Using the HC12 SPI with other devices

e The HC12 can communicate with many types of devices using its SPI
e For example, consider a D/A (Digital-to-Analog) Converter
e The D/A converter has three digital lines connected to the HC12:

— Serial Data
— Serial Clock
— Chip Select

e The HC12 can send a digital number to the D/A converter. The D/A converter
will convert this digital number to a voltage.

SPI Communication with a D/A Converter

MOSI = SDATA
Vout ———>
Clock > SCLK
SS > CS

EE 308 Mar. 20, 2002

Using the HC12 SPI with other devices

¢ Another type of device the HC12 can talk to is a Real Time Clock (RTC)
e An RTC keeps track of the time (year, month, day, hour, minute, second)

e An RTC can be programmed to generate an alarm (interrupt) at a particular
time (07:00), or can generate a periodic interrupt at a regular interval (once a
second, once an hour, etc.)

e The HC12 initially tells the RTC what the correct time is.
e The RTC keeps track of time from then on.

SPI Communication with a Real Time Clock

Master RTC Chip
MOSI » Din
MISO = Dout 1
Batt . —
Clock » SCLK]7
INT |=< Int
SS = CS

T 1

¢ In a system, an HC12 can communicate with many different devices over its
SPI interface.

EE 308 Mar. 20, 2002

Using the HC12 SPI

¢ In synchronous serial communications, one device talks to another using a
serial data line and a serial clock.

e There are a number of decisions to be made before communication can begin.
e For example

— Is the HC12 operating in master or slave mode?

— Is the serial data sent out most significant bit (MSB) first, or least signifi-
cant bit (LSB) first?

— How many bits are sent in a single transfer cycle?

— Is the data valid on the rising edge or the falling edge of the clock?
— Is the data valid on the first edge or the second edge of the clock?
— What is the speed of the data transfer (how many bits per second)?

e The HC12 SPI is very versatile, and allows you to program all of these pa-
rameters.

e The HC12 SPI has 6 registers to set up and use the SPI system.

SPOCR1 SPIE SPE SWOM MSTR CPOL CPHA SSOE LSBF 0x00D0
SPOCR2 0 0 0 0 PUPS RDS 0 SPCO 0x00D1
SPOBR 0 0 0 0 0 SPR2 SPR1 SPRO 0x00D2
SPOSR SPIF WCOL 0 MODF 0 0 0 0 0x00D3
SPODR Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x00D5
DDRS DDS 7 DDS6 DDS5 DDS4 DDS3 DDS2 DDS1 DDSO 0x00D7

EE 308 Mar. 20, 2002

Setting up the HC12 SPI Clock Mode

¢ You can program the SPI clock to determine the following things:

e Is the data valid on the first or the second edge of the clock (clock phase)?
e Is the clock idle high or idle low (clock polarity)?

e This setup is done in the SPOCRO register.

SPI Clock Polarity and Phase (SPOCR1 Bits 3 & 2)

SCLK Speed (SPOBR Bits 0, 1 & 2)

Bit 3: CPOL Bit 2: CPHA SPOBR 2:0 Divide E by Speed w/8MHz E
CPOL =0: SCK idle low CPHA = 0: Data valid on first clock edge N 2 (N+1) 8 MHz /2 (N+1)
CPOL =1: SCKidle high CPHA = 1: Data valid on second clock edge

N=0.7 4 MHz —> 31.3 kHz

CPOL = 0, CPHA = 0

VA WA A N A A A N

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CPOL = 0, CPHA = 1

SR VA NV A N A N A N

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CPOL =1, CPHA = 0

I VA VA VA N A A N A N

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CPOL =1, CPHA =1

I A A N N A A N A N A

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

EE 308

Mar. 20, 2002

Setting up the HC12 SPI Clock Mode

e The speed of the HC12 clock is set up in the SPOBR register.

e The clock speed is set only if the HC12 is being used as a master.

e The possible clock speeds (for an 8 MHz E-clock) are:

SPR2 | SPR1 | SPRO | E Cl ock | Frequency at
Divisor |[E clock = 8 Mz

0 0 0 2 4.0 VHz

0 0 1 4 2.0 Mz

0 1 0 8 1.0 MHz

0 1 1 16 500.0 kHz
1 0 0 32 250. 0 kHz
1 0 1 64 125.0 kHz
1 1 0 128 62.5 kHz
1 1 1 256 31. 25 kHz

EE 308 Mar. 20, 2002

Programming the DDRS Register when using the HC12 SPI

e The HC12 uses bits 7, 6, 5 and 4 of Port S for its SPI data lines

e If a pin of Port S needs to be set up as output in order to use the HC12 SPI,
you need to write a 1 to that bit of DDRS.

— In Master Mode, you need to write a 1 to bits 7 (Slave Select), 6 (serial
clock) and 5 (MOSI).
— In Slave Mode, you need to write a 1 to bit 4 (MISO).

e If a pin of Port S is used as an input on the HC12 SPI, that setup is done
automatically for you by the HC12,

— If you write a 1 to a bit of DDRS which corresponds to an input bit of the
SPI, the HC12 will ignore this and use the bit as an input.

— For example, in Master Mode, bit 4 (MISO) of the SPI will be an input,
even if you write a 1 to bit 4 of DDRS.

¢ You should set up DDRS before you set up the SPI control registers.

PORTS SS SCK MOSI MISO PS3 PS2 TsDO RxDO

DDRS DDS 7 DDS6 DDS5 DDS4 DDS3 DDS2 DDS1 DDSO0

0x00D6

0x00D7

EE 308 Mar. 20, 2002

Using the HC12 Serial Peripheral Interface
Things to set up when using the HC12 SPI subsystem

e Enable SPI
e Master or Slave?
— Master generates clock for data transfers; slave uses master’s clock
e MSB first or LSB first?
— Normally, MSB first
e Clock Polarity
— Clock idle low or clock idle high?
e Clock Phase
— Data valid on first clock edge or second clock edge?
e Clock Speed (set by Master)
e Generate interrupt after data transfered?
¢ Bidirectional Mode (we will not use)

e Wired-OR Mode (we will not use)

Use the following registers:

SPOCR1, SPOCR?2, SPOBR, SPOSR, SPODR, DDRS

10

EE 308 Mar. 20, 2002

|

. Enable SPI (SPE bit of SPOCRL)

N

. Clock phase and polarity set to match device communicating with
3. Select clock polarity — CPOL bit of SPOCR1

e CPOL =0 for clock idle low
e CPQOL =1 for clock idle high

4. Select clock phase — CPHA bit of SPOCR1

e CPHA = 0 for data valid on first clock edge
e CPHA =1 for data valid on second clock edge

5. Select master or slave MSTR bit of SPOCR1

¢ Will be master when talking to devices such as D/A, A/D, clock, etc.
e May be slave if talking to another microprocessor

6. If you want to receive interrupt after one byte transfered, enable interrupts
with SPI E bit of SPOCRL

o Normally master will not use interrupts — transfers are fast enough that
you will normally wait for transfer to complete

o Will often use interrupts when configured as a slave — you will get inter-
rupt when master sends you data

7. Configure LSBF of SPOCRL for MSB first (LSBF = 0)or LSB first (LSBF = 1)
e For most devices, use MSB first
8. Configure for normal mode by clearing bit SPCO of SPOCR2

¢ Bidirectional mode (SPC1 = 1 in SPOCR?2) used for three-wire com-
munication — need some protocol for selecting who is sender and who is
receiver

11

EE 308 Mar. 20, 2002

Master Mode:

1. Set clock rate — SPR2: 0O bits of SPOBR

e Normally select clock at highest rate compatible with slave
2. Make MOSI, SCLK, and SS output — bits DDS5, DDS6, DDS7 of DDRS
3. MISO automatically configured as input by choosing master mode

4. Configure some way to select slave(s) — probably SS if only one slave; other
1/O bits if multiple slaves

5. Start data transfer by writing byte to SPODR
6. After transfer complete (8 clock cycles), SPI F bit of SPOSR set.

¢ If writing data to slave, can send next byte to SPODR
¢ If reading data from slave, can read data from SPODR

7. Set up SSCE of SPOCR1

e SSCE = 0 if you want to control SS yourself (to be able to send more
than one byte with SS low)

e SSOE = 1 if youwantto SS controlled automatically (SS will be active
for one byte at a time)

Slave Mode:

1. No need to set clock speed — slave accepts data at rate sent by master (up to
4 MHz)

2. Need to make MISO output — bit DDS4 of DDRS

3. No need to Make MOSI, SCLK, and SS inputs — this is done automatically
when configuring HC12 as slave

¢ If receiving data from master, wait until SPI F flag of SPOSR set (or until
SPI interrupt received), then read data from SPODR

¢ If sending data to master, write data to SPODR before master starts trans-
fer

12

EE 308

Mar. 20, 2002

A C program to use the HC12 in master mode

#include <hcl1l2b32._h>

main(Q)

{

/**

* SPI Setup

***/

DDRS | OxEO; /* SS, SCLK, MOSI outputs */

DDRS =

PORTS = PORTS | 0x80;

SPOCR1 = Ox50; /* 0 1
|1
| 1
| 1
| 1
| 1
|1
|1
| \
\

*/
SPOCR2 = 0;
SPOBR = 0x00; /* 4 MHz SPI

/* Bring SS high to deselect slave */

S e e ——— — ()

fm————O
/——— o

S — O
O

S e e e e |

MSB first

multiple bytes with SS asserted
0 phase (data on 1st clock edge)
O polarity (clock idle low)
Master mode

not open drain

Enable SPI

No interrupts

/* Normal (not bi-directional) mode */
clock */

/**

* End of SPI Setup

**/

PORTS

SPODR
while

SPODR
while

SPODR
while

SPODR
while

SPODR

PORTS & ~0x80;

— ’h’;

((SPOSR & 0x80) == 0) ;

— e’-

((SPOSR & 0x80) == 0) :

((SPOSR & 0x80) == 0) ;

((SPOSR & 0x80) == 0) ;

— ’0’;

13

/*

/*
/*

/*
/*

/*
/*

/*
/*

/*

Bring SS low to select slave */

Send
Wait

Send
Wait

Send
Wait

Send
Wait

Send

h”? */
for transfer to finish */

e’ */
for transfer to finish */

’I’ */
for transfer to finish */

’I, */
for transfer to finish */

’0’ */

EE 308 Mar. 20, 2002

while ((SPOSR & 0x80) == 0) ; /* Wait for transfer to finish */

PORTS = PORTS | 0x80; /* Bring SS high to deselect slave */

14

