
EE 308 Mar. 20, 2002

The HC12 Serial Peripheral Interface (SPI)

� The HC12 has a Synchronous Serial Interface

� On the HC12 it is called the Serial Peripheral Interface (SPI)

� If an HC12 generates the clock used for the synchronous data transfer it is
operating in Master Mode.

� If an HC12 uses and external clock used for the synchronous data transfer it
is operating in Slave Mode.

� If two HC12’s talk to each other using their SPI’s one must be set up as the
Master and the other as the Slave.

� The output of the Master SPI shift register is connected to the input of the
Slave SPI shift register over the Master Out Slave In (MOSI) line.

� The input of the Master SPI shift register is connected to the output of the
Slave SPI shift register over the Master In Slave Out (MISO) line.

� After 8 clock ticks, the data originally in the Master shift register has been
transfered to the slave, and the data in the Slave shift register has been trans-
fered to the Master.

1

EE 308 Mar. 20, 2002

Clock

MOSI

MISO

Master Slave

Clk

SS

MOSI

T

V
11010110

T

V

Clock

T

V

MISO

10100101

SP0DR SP0DR

Synchronous Serial Communications

2

EE 308 Mar. 20, 2002

Use of Slave Select with the HC12 SPI

� A master HC12 can talk with more than one slave HC12’s

� A slave HC12 uses its Slave Select (SS) line to determine if it is the one the
master is talking with

� There can only be one master HC12, because the master HC12 is the device
which generates the serial clock signal.

Master

SS SS

MOSI

MISO

Clock

Slave 1 Slave 2

Synchronous Serial Communications

With select lines, one master can communicate with more than one slave

3

EE 308 Mar. 20, 2002

Using the HC12 SPI with other devices

� The HC12 can communicate with many types of devices using its SPI

� For example, consider a D/A (Digital-to-Analog) Converter

� The D/A converter has three digital lines connected to the HC12:

– Serial Data

– Serial Clock

– Chip Select

� The HC12 can send a digital number to the D/A converter. The D/A converter
will convert this digital number to a voltage.

Master

SPI Communication with a D/A Converter

MOSI

Clock

SS

SDATA

SCLK

CS

D/A Chip

Vout

4

EE 308 Mar. 20, 2002

Using the HC12 SPI with other devices

� Another type of device the HC12 can talk to is a Real Time Clock (RTC)

� An RTC keeps track of the time (year, month, day, hour, minute, second)

� An RTC can be programmed to generate an alarm (interrupt) at a particular
time (07:00), or can generate a periodic interrupt at a regular interval (once a
second, once an hour, etc.)

� The HC12 initially tells the RTC what the correct time is.

� The RTC keeps track of time from then on.

Master

SS CS

SPI Communication with a Real Time Clock

RTC Chip

Batt

MOSI

Clock SCLK

MISO Dout

Din

IntINT

� In a system, an HC12 can communicate with many different devices over its
SPI interface.

5

EE 308 Mar. 20, 2002

Using the HC12 SPI

� In synchronous serial communications, one device talks to another using a
serial data line and a serial clock.

� There are a number of decisions to be made before communication can begin.

� For example

– Is the HC12 operating in master or slave mode?

– Is the serial data sent out most significant bit (MSB) first, or least signifi-
cant bit (LSB) first?

– How many bits are sent in a single transfer cycle?

– Is the data valid on the rising edge or the falling edge of the clock?

– Is the data valid on the first edge or the second edge of the clock?

– What is the speed of the data transfer (how many bits per second)?

� The HC12 SPI is very versatile, and allows you to program all of these pa-
rameters.

� The HC12 SPI has 6 registers to set up and use the SPI system.

0

SP0CR1

SP0CR2

0x00D0

0x00D1

0x00D2

0x00D3

SPIE SPE SWOM MSTR CPOL CPHA SSOE LSBF

0 0 0 0 0PUPS RDS SPC0

0 0 0 0

0 0

SPR2 SPR1 SPR0

0 0 0SPIF WCOL MODF

0x00D5Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DDS 7 DDS6 DDS5 DDS4 DDS3 DDS2 DDS1 DDS0

SP0BR

SP0SR

SP0DR

DDRS 0x00D7

6

EE 308 Mar. 20, 2002

Setting up the HC12 SPI Clock Mode

� You can program the SPI clock to determine the following things:

� Is the data valid on the first or the second edge of the clock (clock phase)?

� Is the clock idle high or idle low (clock polarity)?

� This setup is done in the SP0CR0 register.

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

CPOL = 0, CPHA = 1

CPOL = 1, CPHA = 0

CPOL = 0, CPHA = 0

CPOL = 1, CPHA = 1

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

SCLK Speed (SP0BR Bits 0, 1 & 2)
SP0BR 2:0 Divide E by Speed w/8MHz E

8 MHz / 2
(N+1)

N = 0..7

N 2
(N+1)

4 MHz −> 31.3 kHz

CPOL = 0: SCK idle low
CPOL = 1: SCK idle high

Bit 3: CPOL

CPHA = 0: Data valid on first clock edge
CPHA = 1: Data valid on second clock edge

Bit 2: CPHA

SPI Clock Polarity and Phase (SP0CR1 Bits 3 & 2)

7

EE 308 Mar. 20, 2002

Setting up the HC12 SPI Clock Mode

� The speed of the HC12 clock is set up in the SP0BR register.

� The clock speed is set only if the HC12 is being used as a master.

� The possible clock speeds (for an 8 MHz E-clock) are:

SPR2 SPR1 SPR0 E Clock Frequency at
Divisor E clock = 8 MHz

0 0 0 2 4.0 MHz
0 0 1 4 2.0 MHz
0 1 0 8 1.0 MHz
0 1 1 16 500.0 kHz
1 0 0 32 250.0 kHz
1 0 1 64 125.0 kHz
1 1 0 128 62.5 kHz
1 1 1 256 31.25 kHz

8

EE 308 Mar. 20, 2002

Programming the DDRS Register when using the HC12 SPI

� The HC12 uses bits 7, 6, 5 and 4 of Port S for its SPI data lines

� If a pin of Port S needs to be set up as output in order to use the HC12 SPI,
you need to write a 1 to that bit of DDRS.

– In Master Mode, you need to write a 1 to bits 7 (Slave Select), 6 (serial
clock) and 5 (MOSI).

– In Slave Mode, you need to write a 1 to bit 4 (MISO).

� If a pin of Port S is used as an input on the HC12 SPI, that setup is done
automatically for you by the HC12.

– If you write a 1 to a bit of DDRS which corresponds to an input bit of the
SPI, the HC12 will ignore this and use the bit as an input.

– For example, in Master Mode, bit 4 (MISO) of the SPI will be an input,
even if you write a 1 to bit 4 of DDRS.

� You should set up DDRS before you set up the SPI control registers.

DDS 7 DDS6 DDS5 DDS4 DDS3 DDS2 DDS1 DDS0DDRS

PORTS 0x00D6

0x00D7

SS SCK MOSI MISO PS3 PS2 TsD0 RxD0

9

EE 308 Mar. 20, 2002

Using the HC12 Serial Peripheral Interface

Things to set up when using the HC12 SPI subsystem

� Enable SPI

� Master or Slave?

– Master generates clock for data transfers; slave uses master’s clock

� MSB first or LSB first?

– Normally, MSB first

� Clock Polarity

– Clock idle low or clock idle high?

� Clock Phase

– Data valid on first clock edge or second clock edge?

� Clock Speed (set by Master)

� Generate interrupt after data transfered?

� Bidirectional Mode (we will not use)

� Wired-OR Mode (we will not use)

Use the following registers:

SP0CR1, SP0CR2, SP0BR, SP0SR, SP0DR, DDRS

10

EE 308 Mar. 20, 2002

1. Enable SPI (SPE bit of SP0CR1)

2. Clock phase and polarity set to match device communicating with

3. Select clock polarity – CPOL bit of SP0CR1

� CPOL = 0 for clock idle low
� CPOL = 1 for clock idle high

4. Select clock phase – CPHA bit of SP0CR1

� CPHA = 0 for data valid on first clock edge
� CPHA = 1 for data valid on second clock edge

5. Select master or slave MSTR bit of SP0CR1

� Will be master when talking to devices such as D/A, A/D, clock, etc.
� May be slave if talking to another microprocessor

6. If you want to receive interrupt after one byte transfered, enable interrupts
with SPIE bit of SP0CR1

� Normally master will not use interrupts – transfers are fast enough that
you will normally wait for transfer to complete

� Will often use interrupts when configured as a slave – you will get inter-
rupt when master sends you data

7. Configure LSBF of SP0CR1 for MSB first (LSBF = 0) or LSB first (LSBF = 1)

� For most devices, use MSB first

8. Configure for normal mode by clearing bit SPC0 of SP0CR2

� Bidirectional mode (SPC1 = 1 in SP0CR2) used for three-wire com-
munication – need some protocol for selecting who is sender and who is
receiver

11

EE 308 Mar. 20, 2002

Master Mode:

1. Set clock rate – SPR2:0 bits of SP0BR

� Normally select clock at highest rate compatible with slave

2. Make MOSI, SCLK, and SS output – bits DDS5, DDS6, DDS7 of DDRS

3. MISO automatically configured as input by choosing master mode

4. Configure some way to select slave(s) – probably SS if only one slave; other
I/O bits if multiple slaves

5. Start data transfer by writing byte to SP0DR

6. After transfer complete (8 clock cycles), SPIF bit of SP0SR set.

� If writing data to slave, can send next byte to SP0DR
� If reading data from slave, can read data from SP0DR

7. Set up SSOE of SP0CR1

� SSOE = 0 if you want to control SS yourself (to be able to send more
than one byte with SS low)

� SSOE = 1 if you want to SS controlled automatically (SS will be active
for one byte at a time)

Slave Mode:

1. No need to set clock speed – slave accepts data at rate sent by master (up to
4 MHz)

2. Need to make MISO output – bit DDS4 of DDRS

3. No need to Make MOSI, SCLK, and SS inputs – this is done automatically
when configuring HC12 as slave

� If receiving data from master, wait until SPIF flag of SP0SR set (or until
SPI interrupt received), then read data from SP0DR

� If sending data to master, write data to SP0DR before master starts trans-
fer

12

EE 308 Mar. 20, 2002

A C program to use the HC12 in master mode

#include <hc12b32.h>

main()
{

/**
* SPI Setup

***/
DDRS = DDRS | 0xE0; /* SS, SCLK, MOSI outputs */

PORTS = PORTS | 0x80; /* Bring SS high to deselect slave */

SP0CR1 = 0x50; /* 0 1 0 1 0 0 0 0
| | | | | | | |
| | | | | | | ____ MSB first
| | | | | | ______ multiple bytes with SS asserted
| | | | | ________ 0 phase (data on 1st clock edge)
| | | | __________ 0 polarity (clock idle low)
| | | ____________ Master mode
| | ______________ not open drain
| ________________ Enable SPI
__________________ No interrupts

*/

SP0CR2 = 0; /* Normal (not bi-directional) mode */
SP0BR = 0x00; /* 4 MHz SPI clock */
/**
* End of SPI Setup

**/

PORTS = PORTS & ˜0x80; /* Bring SS low to select slave */

SP0DR = ’h’; /* Send ’h’ */
while ((SP0SR & 0x80) == 0) ; /* Wait for transfer to finish */

SP0DR = ’e’; /* Send ’e’ */
while ((SP0SR & 0x80) == 0) ; /* Wait for transfer to finish */

SP0DR = ’l’; /* Send ’l’ */
while ((SP0SR & 0x80) == 0) ; /* Wait for transfer to finish */

SP0DR = ’l’; /* Send ’l’ */
while ((SP0SR & 0x80) == 0) ; /* Wait for transfer to finish */

SP0DR = ’o’; /* Send ’o’ */

13

EE 308 Mar. 20, 2002

while ((SP0SR & 0x80) == 0) ; /* Wait for transfer to finish */

PORTS = PORTS | 0x80; /* Bring SS high to deselect slave */
}

14

