
EE 308 Apr. 22, 2002

IRQ and XIRQ interrupts

� Lots of ways to interrupt the HC12

– Timer Overflow

– Real Time Interrupt

– Input Capture

– Output Comare

– SPI

– SCI

– A/D

– Others

� Two external pins just for interrupts: IRQ and XIRQ

� IRQ:

– Enable with IRQEN bit of INTCR register

– Mask with I bit of CCR

– Can select falling-edge or low-level sensitivity with IRQE bit of INTCR
register

� XIRQ:

– Always enabled

– Mask with X bit of CCR

– Once masked, cannot unmask — non-maskable interrupt

� Special use of IRQ and XIRQ: get out of standby mode

1

EE 308 Apr. 22, 2002

WAIT and STOP

� HC12 has two low-power modes

� You enter the low-power mode with WAI and STOP instructions

� WAIT mode:

– In WAIT mode current is reduced from max of 45 mA to max of 5 mA

– You can program some subsystems to shut down or to continue operating
in WAIT mode

– Can tell Timer and A/D to shut down during wait mode

– The more subsystems which shut down, the less power is consumed

– The HC12 exits WAIT mode when an unmasked interrupt is received

� STOP mode:

– In STOP mode current is reduced from max of 45 mA to max of 10 � A

– You can enter STOP mode with the STOP instruction only if the S bit of
the CCR is clear

– All subsystems shut down in STOP mode

– The HC12 exits STOP mode when an XIRQ or an unmasked IRQ is re-
ceived (or RESET)

– If XIRQ is masked when an XIRQ is received, the HC12 executes the
next instruction after the STOP instruction

– If XIRQ is unmasked when an XIRQ is received, the HC12 executes the
XIRQ interrupt service routine

2

EE 308 Apr. 22, 2002

D

Q

VCC
VCC

PP4

IRQ

HC12

PORTP = PORTP | 0x10; /* Make FF active */

PORTP = PORTP & ~0x10; /* Reset flip−flop */

INTCR = 0x40; /* Level sensitive, enable IRQ */

enable(); /* Clear I bit of CCR */

main()
{ DDRP = DDRP | 0x10; /* Make PP4 output */

@interrupt void irq_isr(void)
{

Do what needs to be done on interrupt

PORTP = PORTP | 0x10; /* Make FF active */

PORTP = PORTP & ~0x10; /* Clear IRQ FF */

}

}

In WAIT mode, registers already stacked so HCA12 can get into ISR very quickly

Can save more power by turning off other resources not nedded
In WAIT mode, CPU clock stops to save power.

Only way to get out of WAIT is an unmasked interrupt or RESET

while(1) _asm(" wai"); /* Stack registers, reduce power, wait for interrupt */

For example, can set TSWAI bit of TSCR to turn off timer subsystem in WAIT mode
 can set SSWAI bit of SP0CR2 to turn off SPI clock in WAIT mode
 can set ASWAI bit of ATDCTL2 to turn off A/D converter in WAIT mode
In WAIT mode with all subsystems off, power goes from 45mA to 5mA

3

EE 308 Apr. 22, 2002

PORTP = PORTP | 0x10; /* Make FF active */

PORTP = PORTP & ~0x10; /* Reset flip−flop */

INTCR = 0x40; /* Level sensitive, enable IRQ */

main()
{ DDRP = DDRP | 0x10; /* Make PP4 output */

@interrupt void irq_isr(void)
{

Do what needs to be done on interrupt

PORTP = PORTP | 0x10; /* Make FF active */

PORTP = PORTP & ~0x10; /* Clear IRQ FF */

}

}

Only way to get out of STOP is RESET, XIRQ or IRQ

In STOP mode, registers already stacked so HCA12 can get into ISR very quickly
In STOP mode, all clocks stop to save power.

At 10uA, HC12 can run for months on small battery

CVZNIHXS CCR

D

Q

VCC
VCC

PP4

IRQ

HC12

To use STOP mode you must clear S bit of CCR

while(1) _asm(" stop"); /* Stack registers, turn off clocks, wait for interrupt */

_asm(" andcc #$6f"); /* Clear S and I bits of CCR */

In STOP mode power reduced from 45mA to 10uA

4

EE 308 Apr. 22, 2002

Rain Gauge

� Example of using the HC12 in STOP mode
� A switch is toggled whenever 0.01” of rain is detected
� System meant to run for three months on batteries
� Use an HC12 with a low-power real time clock
� At 10 � A, and 1000 mAh battery can run the HC12 for years
� The Real Time Clock is always running and consumes 0.5 mA of current
� With four D-cell batteries, system can run for three months

Q IRQ

D

VCC

R

HC12

Switch closes
and opens with
0.01" of rain

SCK

MISO
MOSI

S M
C
K

O
S
I

M

O
S
I

TIPPING BUCKET RAIN GAUGE LOGGER

Reading Clock resets
interrupt flip−flop

Real Time Clock

Port P4

Go into stop mode while waiting for rain

On switch closure, HC12 wakes up, reads and records time, goes back to sleep

To read clock, HC12 brings PP4 (select for clock) low − this resets IRQ flip−flop

S
S

5

EE 308 Apr. 22, 2002

COP (Computer Operating Properly) Monitor

� When COP is enabled you have to write a pattern of bits to COPRST register
within a set period of time

� You have to write a $55 followed by a $AA

� If you fail to do this, a COP failure reset exception occurs

� HC12 runs routine with interrupt vector $FFFA, $FFFB

� COP is set to time out after 1.024 ms by default

� You can change the timeout rate with bits 2, 1, and 0 of COPCTL register

� If you do not want to use COP monitor you must disable it by writing 0 the
bits 2, 1, and 0 of COPCTL register

Clock Monitor

� When Clock Monitor is enabled a Clock Failure exception will be generated
if the clock is running too slowly

� Any clock below 500 kHz is too slow

� You cannot use Clock Monitor is STOP mode because all clocks are stopped
in STOP mode

� You enable clock monitor by setting the CME bit of COPCTL register

6

EE 308 Apr. 22, 2002

Write $AA to COPRST/
Reset Timer

Timer Overflow/Reset HC12

Timer Overflow/Reset HC12

Write $55 to COPRST

000 Never
001 1.024 ms
010 4.096 ms
011 16.384 ms
100 65.536 ms

110 524.288 ms
101 262.144 ms

111 1,048.576 ms

COP Timer Overflow Rate (CR2−0 of COPCTL)

7

EE 308 Apr. 22, 2002

Background Debug Mode (BDM)

� Background Debug Mode uses internal hardware to monitor what is happen-
ing inside the HC12 CPU

� For example can detect when the HC12 executes code outside of a specified
address range

� The Background Debug Mode is used with another computer for debugging
HC12 hardware and software

� Very powerful debugging tool

� Replaces very expensive external hardware debugging tools

� DBug-12 is set up so that your EVM can be used to control the BDM on
another HC12

CPU

BACKGROUND DEBUG MODE

Hardware which monitors CPU and can stop CPU on some event

For example, can stop CPU when HC12 gets out of main program.

Can figure out how HC12 got outside of program

To use background debug mode, must activate through its own

 serial communications interface. This is normally done with

 another microprocessor

Firmware
Debug

HC12

uP

8

