EE 308 Lab 2 Spring 2003

EE 308 — LAB 2
Further Use of ZAP and the EVBU

This laboratory will give you more experience with the tools we will use this semester. Be sure to
read through the entire lab and do the pre-lab for each section before coming to lab.

1. Consider the program in Figure 1:

prog: equ $1000

CODE: section .text

org prog
1ldab #47
ldaa #235
sba

std $2000
swi

Figure 1. Demo program for Part 1 of Lab 2.
Do (a), (b), (c) and (d) before coming to lab.

(a)

Hand-assemble this program. I.e., determine the op-codes the HC12 will use to execute
this program.

How many instruction cycles will it take the HC12 to execute this program? How long
(in time) will this take on the HC12? (Do not consider the swi instruction.)

What will be the state of the N, Z, V and C bits after each instruction has been executed.
(Ignore the swi instruction.)

What will be in address 0x2000 and 0x2001 after the program executes?

) Assemble the program using ca6812, clnk and chex. Look at the S19 file. You should

be able to relate the op-codes from part (a) to the data in the S19 file. (A document
showing the format of the Motorola S19 files is available in the AS32 Reference Manual.)

Now execute the program in the ZAP simulator. After starting ZAP, set the cycle counter
to zero. You can do this by going to the COMMAND window and giving the instruction
eval $time=0

Trace through the program using ZAP. To find out how many cycles it took to execute,
go to the COMMAND window and give the instruction

eval $time

Compare this to the answer of part (b).

Look at the condition code register after you have traced over the aba instruction. Verify
that the Z, N, V and C bits are what you expect.

In the MEMORY window look at the contents of address 0x2000. Does the value agree
with your answer of part (d)? (Note: ZAP does not automatically update the memory

window. You will need to load the memory window again using the Address menu of
the MEMORY window.)

http://www.ee.nmt.edu/~rison/datasheets/ee308/AS32REF-1.PDF

EE 308 Lab 2 Spring 2003

(i) You could change this program to add rather than subtract by changing the sba in-
struction to a aba instruction. Rather than going back to the text editor, modifying the
program, assembling it and loading the new program into the simulator, you can easily
change the one instruction of the simulator.

i. Find the address of the sba instruction. Do this by looking at the program code in
the ASSEMBLE window of the simulator.
ii. In the HCS12 Core Users Guide, find the op code for the aba instruction.

iii. In the MEMORY window, go to the address of the sba instruction, and change the op
code to that of the aba instruction. You can change a value in the MEMORY window
by double-clicking on it and typing in the new value.

iv. Run the program again, and verify that the program now adds rather than subtracts.

(j) Repeat (f) through (i) on your EVBU. For part (f) you will not be able to determine the
number of cycles used on the EVBU. For part (i), use the ASM command of D-Bug 12 to
look at and change the program instruction on the EVBU. This is easier than changing
the op code in memory.

2. Consider the program in Figure 2, which is a program to divide a table of ten values by 2.

; 68HC11 demo program
; Bill Rison
; 1/15/03

; This is a program to take a table of data, and create a new table
; which is the original table divided by 2

title "LAB 2 Demo Program"

prog: equ $1000 ;put program at address 0x1000
data: equ $2000 ;put data at address 0x2000
count: equ 10 ;number of entries in table
CODE: section .text
org prog ;set program counter to 0x1000
ldab #count ;ACC B holds number of entries left to process
ldx #tablel ;Reg X points to entry to process
repeat: 1ldaa 0,x ;Get tablel entry into ACC A
asra ;Divide by 2
staa count,x ;Save in table2
inx ;REG X points to next entry in tablel
decb ;Decrement number left to process
bne repeat ;If not done, process next tablel entry
swi ;Done —-- Exit
DATA: section .data
org data

;initialize tablel (COUNT bytes long)

EE 308 Lab 2 Spring 2003

tablel: dc.b $07,%ae,%$4a,$£3,$6¢c,$30,$7f,$12,$67,$cf
table2: ds.b count ;reserve count bytes for table2.

Figure 2. Demo program for part 2 of lab 2.

(a)

(2)

Use a text editor to enter this program, or download lab02_p2.s from
http://wuw.ee.nmt.edu/ rison/ee308_spr03/labs/1lab02_p2.s. Assemble the pro-
gram into an s19 file.

Load the program into the simulator. Run the program. How many cycles does it take
to execute the entire program? How long would this take on the EVBU?

Use the £i11 submenu of the memory window simulator to change the values in addresses
0x2000 through 0x2FFF to Oxff. Reload the s19 file.

Set a break point at repeat.

Execute the program again. The program should stop the first time it reaches the repeat
label, with 0x0a in acc b, and 0x2000 in x.

Continue running the program. It should stop each time it gets to the repeat label — b
should be decremented by one, x should be incremented by one, and there should be a
new entry in table2. (Note: ZAP does not automatically update the memory window.
You will need to load the memory window again using the Address menu of the MEMORY
window.)

Repeat the above using the EVBU.

3. Consider the code of Figure 3. Do parts (a) and (b) below before coming to lab.

ldy #2000
loopl: ldx #50000
loop2: dex

bne loop2

dey

bne loopl

swi

Figure 3. Demo program for part 3 of lab 2.

(a) Answer as part of pre-lab: How many cycles will it take to execute this program?

How long will this take on the EVBU? (Again, ignore the swi instruction.)

(b) Use a text editor to enter the code into a program — you will have to add org statements

and other assembler directives to make the program work.

(¢) Assemble the program and run it on the HC12. (Do not try to run it on the simulator —

it will take a very long time to finish.) How long does it take to run? This time should
match your answer to part (a).

http://www.ee.nmt.edu/~rison/ee308_spr03/labs/lab02_p2.s

