
EE 308 Lab 5 Spring 2003

EE 308 – LAB 5

C Programming Language

Introduction

The C programming language is used extensively in programming microprocessors. In this lab
you will write some simple C programs which do the things you did in assembly language in the
last lab.

For example, the following C program increments Port B:

/* A C Language Program to Increment Port B on a 68HC12 */
#include <iodp256.h> /* Get the HCS12DP256 definitions */
#define D_1MS (24000/6) /* Inner delay loop takes 6 cycles */

/* 24000 cycles = 1 ms for 24 MHz clock */
#define TRUE 1 /* A normal C define */
void delay(unsigned int ms);

void main() /* The main program */
{

DDRB = 0xff; /* Make all bits of Port B output */
PORTB = 0;
while (TRUE) /* Do forever */
{

PORTB = PORTB + 1; /* Increment Port B */
delay(100); /* Wait 100 ms */

}
}

/* Function to delay ms milliseconds */
void delay(unsigned int ms)
{

int i;

while (ms > 0)
{

i = D_1MS;
while (i >0)
{

i = i - 1;
}
ms = ms - 1;

}
}

Figure 1: A C program to increment Port B.

1

EE 308 Lab 5 Spring 2003

PreLab

For the pre-lab write the programs for Part 4 of this lab.

The Lab

1. Type in the above C program (or download it from the web) and give it the name inc.c.
Open a Command window. Compile the program as described in the TIPS section at the
end of this lab.

You should now have the files inc.la, inc.h12, inc.s19 and inc.map in your directory.

(a) inc.la is the assembly language listing generated by the C compiler. Look at the
file and try to understand what it does. Note that there may be some things which
do not make sense to you. At the very least, find the assembly language code which
increments Port B. (Note that the C compiler produces assembly code in decimal rather
than hexadecimal.)

(b) Look at the file inc.map. This shows the addresses of the start of the functions in the
program, as well as the addresses of any global variables. (Since the inc.c program does
not use any global variables, none will appear in the inc.map file. The local variables
used in inc.c are allocated on the stack when they are needed.)
Note that the function and variable names are preceded by an underscore. Note also
that there is a function _exit. Find the address of this function.

(c) Look at the file inc.s19. This contains the op codes that will be loaded into the HC12.
Reverse assemble the _exit function. What does this do?

2. Load the file inc.h12 into your ZAP simulator and run it. Note that you can see both the
assembly code which the HC12 will execute and the C code used to generate the assembly
code.

3. Load the file inc.s19 into your HC12 and run it. Verify that Port B increments.

4. Using the program inc.c as a model, write a C program to implement the program from
Lab 4.

5. Compile and run your program. Have an instructor verify that it works.

6. Look at the lab05.map file for this week’s lab, and determine how many bytes the program
takes (the length of the .text segment). Compare this to the length of last week’s program
written in assembly.

7. Put your program in the EEPROM at address 0x0400. Remember, when you put code into
EEPROM you need to do some setup which DBug12 normally does for you. It is easiest
to do this in assembly language. You could add this to the crts.s file and have a special
startup file for whenever you want to load code into EEPROM. Alternatively, you could add
the following as the first few instructions of your C program:

2

EE 308 Lab 5 Spring 2003

_asm(" ldaa #$55");
_asm(" staa $003f");
_asm(" coma");
_asm(" staa $003f");
_asm(" clr $003c");
_asm(" ldab #$11");
_asm(" nop");
_asm(" stab $0010");
_asm(" ldab #$00");
_asm(" stab $0035");
_asm(" ldab #$05");
_asm(" stab $0034");
_asm(" nop");
_asm(" nop");
_asm(" nop");
_asm(" nop");
_asm("l1: brclr $0037,#$08,l1");
_asm(" bset $0039,#$80");

Also, note that you will want the array which stores the turn signal patterns into the EEPROM
(so the array will not disappear when you turn off power). You will want variables which will
change as the program is executed to be placed in RAM. You can tell the compiler to put
an array in EEPROM by defining the array as type const, and telling the linker to put the
const section in EEPROM following the text section. An example of setting up an array of
type const is

const char table[] = {0xaa, 0xbb, 0xcc};

For more information on putting your C program into EEPROM, read the TIPS section
below.

TIPS:

• To compile a C program a startup file called crts.s is needed. The file we will use will clear
initialized global variables to zero, load the stack pointer and jump to the main() function
of the C program. After the main program finishes, it returns to crts.s; the swi instruction
if crts.s returns control to DBug-12. The crts.s file which you should use can be found in
C:\CX32\CRTS.S. Here are the contents of that file:

; C STARTUP FOR MC68HC12
; Copyright (c) 1996 by COSMIC Software
;

xdef _exit, __stext
xref _main, __memory, __stack

;
switch .bss

__sbss:

3

EE 308 Lab 5 Spring 2003

switch .text
__stext :

clra ; reset the bss
clrb
ldx #__sbss ; start of bss
bra loop ; start loop

zbcl:
std 2,x+ ; clear word

loop:
cpx #__memory ; up to the end
blo zbcl ; and loop
lds #__stack ; initialize stack pointer
jsr _main ; execute main

_exit:
swi ; return to DBug12

;
end

• Copy c:\cx32\crts.s into your directory. Create a linker file lab05.lkf like this:

link command file for test program
#
+seg .text -b 0x1000 -n .text # program start address
+seg .const -a .text # constants follow code
+seg .data -b 0x2000 # data start address
crts.o # startup routine
lab05.o # application program
+def __memory=@.bss # symbol used by library
+def __stack=0x3C00 # stack pointer initial value

To put the program into EEPROM change the location of the .text segment from 0x1000
to 0x0400.

• To make compiling programs easier make a batch file called, e.g., cc.bat. An example of a
cc.bat file is:

c:\cx32\cx6812 -vl -ax +debug crts.s %1.c
c:\cx32\clnk -o %1.h12 -m %1.map %1.lkf
c:\cx32\chex -o %1.s19 %1.h12
c:\cx32\clabs %1.h12

Then to compile the file lab05.c, just give the command cc lab05.

• If you have a program which uses initialized static variables, please read the section on static
variables in the Cosmic compiler manual (available from the instructor). It may be simpler
at this point to use global variables which are initialized in the main program rather than
static initialized variables.

4

