
Copyright © COSMIC Software 1995, 2004

OSMIC
SoftwareC Version 4.6

C Cross Compiler User’s Guide
for Motorola HC12/HCS12
All Trademarks are the property of their respective owners

Table of Contents
Preface
Organization of this Manual ... 1

Chapter 1
Introduction

Introduction... 4
Document Conventions... 4

Typewriter font ... 4
Italics .. 5
[Brackets] ... 5
Conventions.. 6
Command Line ... 6
Flags ... 6

Compiler Architecture .. 8
Predefined Symbol.. 9
Linking.. 9
Programming Support Utilities... 9
Listings.. 10
Optimizations.. 11
Support for Bank Switching ... 12
Support for ROMable Code.. 12
Support for eeprom ... 13

Chapter 2
Tutorial Introduction

Acia.c, Example file.. 16
Default Compiler Operation ... 17

Compiling and Linking... 18
Step 1: Compiling... 18
Step 2: Assembler... 19
Step 3: Linking ... 20
Step 4: Generating S-Records file 23

Linking Your Application... 24
Generating Automatic Data Initialization................................. 25
Specifying Command Line Options ... 27

Chapter 3
Programming Environments

Introduction... 30
Modifying the Runtime Startup .. 32
(i)

(ii)
Description of Runtime Startup Code 32
Initializing data in RAM... 33
The const and volatile Type Qualifiers..................................... 36
Performing Input/Output in C... 37
Placing Data Objects in The Bss Section 38
Placing Data Objects in The Zero Page Section....................... 38
Placing Data Objects in the EEPROM Space........................... 40
Redefining Sections.. 41
Inlining Functions... 43
Optimizing boolean functions .. 44
Referencing Absolute Addresses.. 44
Accessing Internal Registers .. 46
Inserting Inline Assembly Instructions..................................... 47

Inlining with pragmas... 47
Inlining with _asm.. 48
Inlining Labels.. 50

Writing Interrupt Handlers ... 51
Placing Addresses in Interrupt Vectors 52
Calling a Bank Switched Function ... 53
Accessing Banked Data .. 55
Using Position Independent Code .. 57
Fuzzy Logic Support .. 58
Interfacing C to Assembly Language 59
Register Usage.. 60

Stack Model.. 61
Stack Representation .. 61

Heap Management Control with the C Compiler 63
Modifying The Heap Location ... 65

Data Representation.. 68

Chapter 4
Using The Compiler

Invoking the Compiler.. 72
Compiler Command Line Options 73

File Naming Conventions... 79
Generating Listings... 80
Generating an Error File ... 80
Return Status... 80
Examples .. 80
C Library Support ... 81

How C Library Functions are Packaged............................. 81
Inserting Assembler Code Directly 81

Linking Libraries with Your Program................................ 81
Integer Library Functions ... 81
Common Input/Output Functions....................................... 82
Functions Implemented as Macros..................................... 82
Functions Implemented as Builtins 83
Including Header Files ... 83

Descriptions of C Library Functions .. 85
Generate inline assembly code ... 86
Abort program execution.. 87
Find absolute value... 88
Arccosine.. 89
Arcsine.. 90
Arctangent .. 91
Arctangent of y/x.. 92
Convert buffer to double .. 93
Convert buffer to integer .. 94
Convert buffer to long .. 95
Allocate and clear space on the heap.................................. 96
Test or get the carry bit... 97
Round to next higher integer .. 98
Verify the recorded checksum.. 99
Verify the recorded checksum.. 100
Verify the recorded checksum.. 101
Verify the recorded checksum.. 102
Cosine ... 103
Hyperbolic cosine... 104
Divide with quotient and remainder 105
Copy a buffer to an eeprom buffer 106
Erase the full eeprom space.. 107
Propagate fill character throughout eeprom buffer 108
Exit program execution .. 109
Exponential... 110
Find double absolute value... 111
Copy a moveable code segment in RAM......................... 112
Round to next lower integer ... 113
Find double modulus .. 114
Free space on the heap.. 115
Extract fraction from exponent part 116
Get character from input stream 117
Get a text line from input stream...................................... 118
Test for alphabetic or numeric character 119
Test for alphabetic character .. 120
(iii)

(iv)
Test for control character ... 121
Test for digit ... 122
Test for graphic character... 123
Test for lower-case character ... 124
Test for printing character .. 125
Test for punctuation character.. 126
Integer square root.. 127
Test for whitespace character ... 128
Test for upper-case character ... 129
Test for hexadecimal digit .. 130
Find long absolute value .. 131
Scale double exponent.. 132
Long divide with quotient and remainder 133
Natural logarithm ... 134
Common logarithm .. 135
Restore calling environment... 136
Long integer square root... 137
Allocate space on the heap ... 138
Test for maximum .. 139
Scan buffer for character .. 140
Compare two buffers for lexical order 141
Copy one buffer to another... 142
Fuzzify an input.. 143
Copy one buffer to another... 144
Propagate fill character throughout buffer 145
Test for minimum... 146
Extract fraction and integer from double 147
Test or get the carry bit... 148
Raise x to the y power .. 149
Output formatted arguments to stdout.............................. 150
Put a character to output stream 155
Put a text line to output stream... 156
Generate pseudo-random number 157
Reallocate space on the heap.. 158
Evaluate fuzzy outputs ... 159
Evaluate fuzzy outputs ... 160
Allocate new memory .. 161
Read formatted input .. 162
Save calling environment ... 166
Sin... 168
Hyperbolic sine... 169
Output arguments formatted to buffer.............................. 170

Real square root .. 171
Seed pseudo-random number generator 172
Read formatted input from a string 173
Concatenate strings... 174
Scan string for first occurrence of character..................... 175
Compare two strings for lexical order 176
Copy one string to another ... 177
Find the end of a span of characters in a set..................... 178
Find length of a string... 179
Concatenate strings of length n .. 180
Compare two n length strings for lexical order 181
Copy n length string ... 182
Find occurrence in string of character in set 183
Scan string for last occurrence of character 184
Find the end of a span of characters not in set 185
Scan string for first occurrence of string 186
Convert buffer to double .. 187
Convert buffer to long .. 188
Convert buffer to unsigned long....................................... 189
Tangent ... 190
Hyperbolic tangent ... 191
Convert character to lower-case if necessary 192
Convert character to upper-case if necessary 193
Get pointer to next argument in list 194
Stop accessing values in an argument list 196
Start accessing values in an argument list 198
Output arguments formatted to stdout 200
Output arguments formatted to buffer 201
Evaluate weighted average ... 202

Chapter 5
Using The Assembler

Invoking ca6812 ... 204
Object File... 207
Listings.. 207
Assembly Language Syntax.. 208

Instructions ... 208
Labels ... 210
Temporary Labels... 211
Constants .. 211
Expressions... 212
Macro Instructions.. 214
(v)

(vi)
Conditional Directives.. 217
Sections .. 218
Includes .. 219

Branch Optimization... 220
Old Syntax .. 220
C Style Directives... 221
Assembler Directives.. 221

Align the next instruction on a given boundary 222
Define the default base for numerical constants 223
Switch to the predefined .bsct section. 224
Turn listing of conditionally excluded code on or off...... 225
Allocate constant(s).. 226
Allocate constant block .. 227
Turn listing of debug directives on or off......................... 228
Allocate variable(s) .. 229
Conditional assembly ... 230
Conditional assembly ... 231
Stop the assembly... 232
End conditional assembly... 233
End conditional assembly... 234
End macro definition .. 235
End repeat section .. 236
Give a permanent value to a symbol 237
Assemble next byte at the next even address relative to the
 start of a section.. 238
Generate error message. ... 239
Conditional assembly ... 240
Conditional assembly ... 241
Conditional assembly ... 242
Conditional assembly ... 243
Conditional assembly ... 244
Conditional assembly ... 245
Conditional assembly ... 246
Conditional assembly ... 247
Conditional assembly ... 248
Conditional assembly ... 249
Conditional assembly ... 250
Include text from another text file.................................... 251
Turn on listing during assembly....................................... 252
Give a text equivalent to a symbol 253
Create a new local block .. 254
Define a macro ... 255

Send a message out to STDOUT...................................... 257
Terminate a macro definition ... 258
Turn on or off listing of macro expansion........................ 259
Turn off listing.. 260
Disable pagination in the listing file................................. 261
Creates absolute symbols ... 262
Sets the location counter to an offset from the beginning
 of a section.. 263
Start a new page in the listing file 264
Specify the number of lines per pages in the listing file .. 265
Repeat a list of lines a number of times 266
Repeat a list of lines a number of times 267
Restore saved section ... 269
Terminate a repeat definition.. 270
Save section .. 271
Define a new section .. 272
Give a resetable value to a symbol 274
Insert a number of blank lines before the next statement in
 the listing file. ... 275
Place code into a section... 276
Specify the number of spaces for a tab character in the
 listing file.. 277
Define default header ... 278
Declare a variable to be visible .. 279
Declare symbol as being defined elsewhere..................... 280
Declare a special external symbol 281
Declare a special external symbol 282

Chapter 6
Using The Linker

Introduction... 285
Overview... 286
Linker Command File Processing... 288

Inserting comments in Linker commands 289
Linker Options .. 290

Global Command Line Options.. 291
Segment Control Options ... 292
Segment Grouping.. 295
Linking Files on the Command line 296
Example.. 296
Include Option .. 297
Example.. 297
(vii)

(viii)
Private Region Options .. 297
Symbol Definition Option .. 298
Reserve Space Option .. 299

Section Relocation.. 300
Address Arithmetic... 300
Overlapping Control... 301

Setting Bias and Offset ... 301
Setting the Bias... 301
Setting the Offset.. 301
Using Default Placement.. 302

Linking Objects .. 303
Linking Library Objects ... 303

Library Order.. 304
Bank Switching... 306
Automatic Data Initialization ... 308

Descriptor Format... 308
Moveable Code... 309
Checksum Computation ... 310
DEFs and REFs .. 312
Special Topics... 313

Private Name Regions .. 313
Renaming Symbols .. 314
Absolute Symbol Tables .. 317

Description of The Map File .. 319
Return Value... 320
Linker Command Line Examples... 320

Chapter 7
Debugging Support

Generating Debugging Information.. 324
Generating Line Number Information.............................. 324
Generating Data Object Information................................ 324

The cprd Utility .. 326
Command Line Options ... 326
Examples .. 327

The clst utility ... 328
Command Line Options ... 328

Chapter 8
Programming Support

The cbank Utility .. 332
Command Line Options ... 332

Return Status .. 332
Examples .. 333

The chex Utility .. 334
Command Line Options ... 334
Return Status .. 336
Examples .. 336

The clabs Utility.. 337
Command Line Options ... 337
Return Status .. 338
Examples .. 338

The clib Utility.. 340
Command Line Options ... 340
Return Status .. 341
Examples .. 341

The cobj Utility... 343
Command Line Options ... 343
Return Status .. 344
Examples .. 344

The cv695 Utility .. 345
Command Line Options ... 345
Return Status .. 347
Examples .. 347

The cvdwarf Utility... 348
Command Line Options ... 348
Return Status .. 349
Examples .. 349

Chapter A
Compiler Error Messages

Parser (cp6812) Error Messages ... 352
Code Generator (cg6812) Error Messages.............................. 366
Assembler (ca6812) Error Messages 367
Linker (clnk) Error Messages ... 370

Chapter B
Modifying Compiler Operation

The Configuration File.. 374
Changing the Default Options .. 375

Creating Your Own Options... 375
Example .. 376
(ix)

(x)
Chapter C
HC12/HCS12 Machine Library

Get a long bitfield... 378
Store a long bitfield .. 379
Check stack growth .. 380
Add double to double ... 381
Compare double with double ... 382
Divide double by double .. 383
Multiply double by double ... 384
Negate a double .. 385
Move a structure in DPAGE space................................... 386
Subtract double from double .. 387
Copy a double into a double... 388
Convert double to float... 389
Convert double to integer ... 390
Convert double into long integer...................................... 391
Copy a double onto the stack ... 392
Eeprom char bit field update .. 393
Eeprom short bit field update ... 394
Eeprom long bit field update .. 395
Write a short int aligned in eeprom.................................. 396
Write a char int in eeprom.. 397
Write a double in eeprom ... 398
Write a long int in eeprom.. 399
Write a short int in eeprom... 400
Move a structure in eeprom.. 401
Move a structure in eeprom.. 402
Multiply signed int by unsigned int.................................. 403
Multiply unsigned int by signed int.................................. 404
Move a structure in EPAGE space 405
Add float to float .. 406
Compare floats ... 407
Divide float by float ... 408
Float addition.. 409
Float division.. 410
Float multiplication .. 411
Float subtraction ... 412
Multiply float by float .. 413
Subtract float from float ... 414
Convert float into double.. 415
Convert float to integer... 416
Convert float into long integer ... 417

Convert integer into double .. 418
Convert integer into float.. 419
Perform C switch statement on long 420
Perform C switch statement in PIC mode 421
Perform C switch statement.. 422
Long integer addition ... 423
Bitwise AND for long integers... 424
Long integer compare... 425
Quotient of long integer division...................................... 426
Long addition.. 427
Long bitwise AND ... 428
Quotient of long division.. 429
Long shift left ... 430
Remainder of long division .. 431
Long multiplication .. 432
Long bitwise OR... 433
Signed long shift right .. 434
Quotient of unsigned long division 435
Remainder of unsigned long division............................... 436
Unsigned long shift right .. 437
Long subtraction... 438
Long bitwise exclusive OR .. 439
Long shift left ... 440
Remainder of long integer division 441
Multiply long integer by long integer............................... 442
Negate a long integer.. 443
Bitwise OR with long integers ... 444
Signed long shift right .. 445
Long test against zero... 446
Long integer subtraction... 447
Convert long integer into double...................................... 448
Convert long integer into float ... 449
Quotient of unsigned long integer division 450
Remainder of unsigned long integer division................... 451
Unsigned long shift right .. 452
Bitwise exclusive OR with long integers 453
Compare a long integer to zero .. 454
Far pointer compare.. 455
Convert unsigned integer into double............................... 456
Convert unsigned integer into float 457
Convert unsigned long integer into double 458
Convert unsigned long integer into float 459
(xi)

(xii)
Chapter D
Compiler Passes

The cp6812 Parser .. 462
Command Line Options ... 462
Return Status .. 466
Example.. 466

The cg6812 Code Generator... 467
Command Line Options ... 467
Return Status .. 470
Example.. 470

The co6812 Assembly Language Optimizer 471
Command Line Options ... 471
Disabling Optimization .. 472
Return Status .. 472
Example.. 472

Preface
he Cross Compiler User's Guide for HC12/HCS12 is a reference
guide for programmers writing C programs for HC12/HCS12

microcontroller environments. It provides an overview of how the cross
compiler works, and explains how to compile, assemble, link and debug
programs. It also describes the programming support utilities included
with the cross compiler and provides tutorial and reference information
to help you configure executable images to meet specific requirements.
This manual assumes that you are familiar with your host operating sys-
tem and with your specific target environment.

Organization of this Manual
This manual is divided into eight chapters and four appendixes.

Chapter 1, “Introduction”, describes the basic organization of the C
compiler and programming support utilities.

Chapter 2, “Tutorial Introduction”, is a series of examples that demon-
strates how to compile, assemble and link a simple C program.

Chapter 3, “Programming Environments”, explains how to use the fea-
tures of C for HC12/HCS12 to meet the requirements of your particular
application. It explains how to create a runtime startup for your applica-
tion, and how to write C routines that perform special tasks such as:
serial I/O, direct references to hardware addresses, interrupt handling,
and assembly language calls.

T

© 2004 COSMIC Software Preface 1

Organization of this Manual

2

Chapter 4, “Using The Compiler”, describes the compiler options. This
chapter also describes the functions in the C runtime library.

Chapter 5, “Using The Assembler”, describes the HC12/HCS12 assem-
bler and its options. It explains the rules that your assembly language
source must follow, and it documents all the directives supported by the
assembler.

Chapter 6, “Using The Linker”, describes the linker and its options.
This chapter describes in detail all the features of the linker and their
use.

Chapter 7, “Debugging Support”, describes the support available for
COSMIC's C source level cross debugger and for other debuggers or in-
circuit emulators.

Chapter 8, “Programming Support”, describes the programming sup-
port utilities. Examples of how to use these utilities are also included.

Appendix A, “Compiler Error Messages”, is a list of compile time
error messages that the C compiler may generate.

Appendix B, “Modifying Compiler Operation”, describes the “configu-
ration file” that serves as default behaviour to the C compiler.

Appendix C, “HC12/HCS12 Machine Library”, describes the assembly
language routines that provide support for the C runtime library.

Appendix D, “Compiler Passes”, describes the specifics of the parser,
code generator and assembly language optimizer and the command line
options that each accepts.

This manual also contains an Index.
© 2004 COSMIC SoftwarePreface

CHAPTER

1

Introduction
This chapter explains how the compiler operates. It also provides a
basic understanding of the compiler architecture. This chapter includes
the following sections:

• Introduction

• Document Conventions

• Compiler Architecture

• Predefined Symbol

• Linking

• Programming Support Utilities

• Listings

• Optimizations

• Support for Bank Switching

• Support for ROMable Code

• Support for eeprom
© 2004 COSMIC Software Introduction 3

Introduction1

4

Introduction
The C cross compiler targeting the HC12/HCS12 microcontroller reads
C source files, assembly language source files, and object code files,
and produces an executable file. You can request listings that show your
C source interspersed with the assembly language code and object code
that the compiler generates. You can also request that the compiler gen-
erate an object module that contains debugging information that can be
used by COSMIC’s C source level cross debugger or by other debug-
gers or in-circuit emulators.

You begin compilation by invoking the cx6812 compiler driver with the
specific options you need and the files to be compiled.

Document Conventions
In this documentation set, we use a number of styles and typefaces to
demonstrate the syntax of various commands and to show sample text
you might type at a terminal or observe in a file. The following is a list
of these conventions.

Typewriter font
Used for user input/screen output. Typewriter (or courier) font is
used in the text and in examples to represent what you might type at a
terminal: command names, directives, switches, literal filenames, or
any other text which must be typed exactly as shown. It is also used in
other examples to represent what you might see on a screen or in a
printed listing and to denote executables.

To distinguish it from other examples or listings, input from the user
will appear in a shaded box throughout the text. Output to the terminal
or to a file will appear in a line box.

For example, if you were instructed to type the compiler command that
generates debugging information, it would appears as:

Typewriter font enclosed in a shaded box indicates that this line is
entered by the user at the terminal.

cx6812 +debug acia.c
© 2004 COSMIC SoftwareIntroduction

Document Conventions
If, however, the text included a partial listing of the file acia.c ‘an
example of text from a file or from output to the terminal’ then type-
writer font would still be used, but would be enclosed in a line box:

Italics
Used for value substitution. Italic type indicates categories of items for
which you must substitute appropriate values, such as arguments or
hypothetical filenames. For example, if the text was demonstrating a
hypothetical command line to compile and generate debugging infor-
mation for any file, it might appear as:

In this example, cx6812 +debug file.c is shown in typewriter font
because it must be typed exactly as shown. Because the filename must
be specified by the user, however, file is shown in italics.

[Brackets]
Items enclosed in brackets are optional. For example, the line:

[options]

means that zero or more options may be specified because options
appears in brackets. Conversely, the line:

options

means that one or more options must be specified because options is not
enclosed by brackets.

/* defines the ACIA as a structure */
struct acia {

char status;
char data;
} acia @0x6000;

Due to the page width limitations of this manual, a single invocation line
may be represented as two or more lines. You should, however, type the
invocation as one line unless otherwise directed.

NOTE

cx6812 +debug file.c
© 2004 COSMIC Software Introduction 5

Document Conventions1

6

As another example, the line:

file1.[o|h12]

means that one file with the extension .o or .h12 may be specified, and
the line:

file1 [file2 . . .]

means that additional files may be specified.

Conventions
All the compiler utilities share the same optional arguments syntax.
They are invoked by typing a command line.

Command Line
A command line is generally composed of three major parts:

where <program_name> is the name of the program to run, <flags> an
optional series of flags, and <files> a series of files. Each element of a
command line is usually a string separated by whitespace from all the
others.

Flags
Flags are used to select options or specify parameters. Options are rec-
ognized by their first character, which is always a ‘-’ or a ‘+’, followed
by the name of the flag (usually a single letter). Some flags are simply
yes or no indicators, but some must be followed by a value or some
additional information. The value, if required, may be a character
string, a single character, or an integer. The flags may be given in any
order, and two or more may be combined in the same argument, so long
as the second flag can’t be mistaken for a value that goes with the previ-
ous one.

It is possible for each utility to display a list of accepted options by
specifying the -help option. Each option will be displayed alphabeti-
cally on a separate line with its name and a brief description. If an
option requires additional information, then the type of information is

program_name [<flags>] <files>
© 2004 COSMIC SoftwareIntroduction

Document Conventions
indicated by one of the following code, displayed immediately after the
option name:

If the code is immediately followed by the character ‘>’, the option may
be specified more than once with different values. In that case, the
option name must be repeated for every specification.

For example, the options of the chex utility are:

chex accepts the following distinct flags:

Code Type of information

* character string

short integer

long integer

? single character

chex [options] file
-a## absolute file start address
-b## address bias
-e## entry point address
-f? output format
-h suppress header
+h* specify header string
-m# maximum data bytes per line
-n*> output only named segments
-o* output file name
-p use paged address format
-pp use paged address with mapping
-pn use paged address in bank only
-s output increasing addresses
-x* exclude named segment
© 2004 COSMIC Software Introduction 7

Compiler Architecture1

8

Compiler Architecture
The C compiler consists of several programs that work together to
translate your C source files to executable files and listings. cx6812
controls the operation of these programs automatically, using the
options you specify, and runs the programs described below in the order
listed:

cp6812 - the C preprocessor and language parser. cp6812 expands
directives in your C source and parses the resulting text.

cg6812 - the code generator. cg6812 accepts the output of cp6812 and
generates assembly language statements.

co6812 - the assembly language optimizer. co6812 optimizes the
assembly language code that cg6812 generates.

Flags Function

-a accept a long integer value

-b accept a long integer value

-e accept a long integer value

-f accept a single character

-h simply a flag indicator

+h accept a character string

-m accept a short integer value,

-n accept a character string and may be repeated

-o accept a character string

-p simply a flag indicator

-pn simply a flag indicator

-pp simply a flag indicator

-s simply a flag indicator

-x accept a character string and may be repeated
© 2004 COSMIC SoftwareIntroduction

Predefined Symbol
ca6812 - the assembler. ca6812 converts the assembly language out-
put of co6812 to a relocatable object module.

Predefined Symbol
The COSMIC compiler defines the __CSMC__ preprocessor symbol. It
expands to a numerical value whose each bit indicates if a specific
option has been activated:

bit 0: set if nowiden option specified (+nowiden)
bit 1: set if single precision option specified (+sprec)
bit 2: set if unsigned char option specified (-pu)
bit 3: set if alignment option specified (+even)
bit 4: set if reverse bitfield option specified (+rev)
bit 5: set if no enum optimization specified (-pne)

Linking
clnk combines all the object modules that make up your program with
the appropriate modules from the C library. You can also build your
own libraries and have the linker select files from them as well. The
linker generates an executable file which, after further processing with
the chex utility, can be downloaded and run on your target system. If
you specify debugging options when you invoke cx6812, the compiler
will generate a file that contains debugging information. You can then
use the COSMIC’s debugger to debug your code.

Programming Support Utilities
Once object files are produced, you run clnk (the linker) to produce an
executable image for your target system; you can use the programming
support utilities listed below to inspect the executable.

cbank - optimize the bank filling with object file. It reorganizes a
object list in order to fill as completely as possible the smallest amount
of banks and produces as result a text file containing the object file
names in the proper order.

chex - absolute hex file generator. chex translates executable images
produced by the linker into hexadecimal interchange formats, for use
© 2004 COSMIC Software Introduction 9

Listings1

10
with in-circuit emulators and PROM programmers. chex produces the
following formats:

- Motorola S-record format
- standard Intel hex format

clabs - absolute listing utility. clabs translates relocatable listings pro-
duced by the assembler by replacing all relocatable information by
absolute information. This utility must to be used only after the linker.

clib - build and maintain object module libraries. clib allows you to
collect related files into a single named library file for convenient stor-
age. You use it to build and maintain object module libraries in standard
library format.

cobj - object module inspector. cobj allows you to examine standard
format executable and relocatable object files for symbol table informa-
tion and to determine their size and configuration.

cv695 - IEEE695 format converter. cv695 allows you to generate
IEEE695 format file. This utility must to be used only after the linker.

cvdwarf - ELF/DWARF format converter. cvdwarf allows you to con-
vert a file produced by the linker into an IELF/DWARF format file.

Listings
Several options for listings are available. If you request no listings, then
error messages from the compiler are directed to your terminal, but no
additional information is provided. Each error is labelled with the C
source file name and line number where the error was detected.

If you request an assembly language and object code listing with inter-
spersed C source, the compiler merges the C source as comments
among the assembly language statements and lines of object code that it
generates. Unless you specify otherwise, the error messages are still
written to your terminal. Your listing is the listing output from the
assembler.
© 2004 COSMIC SoftwareIntroduction

Optimizations
Optimizations
The C cross compiler performs a number of compile time and optimiza-
tions that help make your application smaller and faster:

• The compiler uses registers d and x to hold the first argument of a
function call if:

1) the function does not return a structure or a double, and

2) the first argument is derived from one of the following types:

char,
short,
int, long,
float,
pointer to...,
or array of....

• The compiler will perform arithmetic operations in 8-bit precision
if the operands are 8-bit.

• The compiler eliminates unreachable code.

• Branch shortening logic chooses the smallest possible jump/
branch instructions. Jumps to jumps and jumps over jumps are
eliminated as well.

• Integer and float constant expressions are folded at compile time.

• Redundant load and store operations are removed.

• enum is large enough to represent all of its declared values, each
of which is given a name. The names of enum values occupy the
same space as type definitions, functions and object names. The
compiler provides the ability to declare an enum using the small-
est type char, int or long:

• The compiler performs multiplication by powers of two as faster
shift instructions.
© 2004 COSMIC Software Introduction 11

Support for Bank Switching1

12
• An optimized switch statement produces combinations of tests
and branches, jump tables for closely spaced case labels, a scan
table for a small group of loosely spaced case labels, or a sorted
table for an efficient search.

• The functions in the C library are packaged in three separate
libraries; one of them is built without floating point support. If
your application does not perform floating point calculations, you
can decrease its size and increase its runtime efficiency by linking
with the non-floating-point version of the modules needed.

Support for Bank Switching
The compiler supports bank switching for code and data, using the
internal window mechanism provided by the HC12/HCS12 processor.
Bank switching is supported via:

• @far type qualifier to describe a function relocated in a different
bank. Calling such a function implies a special calling sequence,
and a special return sequence. Such a function has to be defined
@far and referenced as @far in all the files using it. The com-
piler also provides a specific option +modf to automatically con-
sider all the functions to be @far. The @far type modifier is also
used to declared variables allocated in a data bank.

• Linker options are required to ensure proper physical and logical
addresses computations. The linker is also able to automatically
fill banks without any need to take care of the page boundaries.

Support for ROMable Code
The compiler provides the following features to support ROMable code
production. See Chapter 3 for more information.

• Referencing of absolute hardware addresses;

• Control of the HC12/HCS12 interrupt system;

• Automatic data initialization;

• User configurable runtime startup file;
© 2004 COSMIC SoftwareIntroduction

Support for eeprom
• Support for mixing C and assembly language code; and

• User configurable executable images suitable for direct input to a
PROM programmer or for direct downloading to a target system.

Support for eeprom
The compiler provides the following features to support eeprom han-
dling:

• @eeprom type qualifier to describe a variable as an eeprom loca-
tion. The compiler generates special sequences when the variable
is modified.

• Library functions for erasure, initialization and copy of eeprom
locations.

For information on using the compiler, see Chapter 4.
For information on using the assembler, see Chapter 5.
For information on using the linker, see Chapter 6.
For information on debugging support, see Chapter 7.
For information on using the programming utilities, see Chapter 8.
For information on the compiler passes, see Appendix D.

The basic routine to program an eeprom byte is located in the library file
eeprom.s and has been written using the default input/output address
0x. This file must be modified if using a different base address.

NOTE
© 2004 COSMIC Software Introduction 13

CHAPTER

2

Tutorial Introduction
This chapter will demonstrate, step by step, how to compile, assemble
and link the example program acia.c, which is included on your distri-
bution media. Although this tutorial cannot show all the topics relevant
to the COSMIC tools, it will demonstrate the basics of using the com-
piler for the most common applications.

In this tutorial you will find information on the following topics:

• Default Compiler Operation

• Compiling and Linking

• Linking Your Application

• Generating Automatic Data Initialization

• Specifying Command Line Options
© 2004 COSMIC Software Tutorial Introduction 15

Acia.c, Example file2

16
Acia.c, Example file
The following is a listing of acia.c. This C source file is copied during
the installation of the compiler:

/* EXAMPLE PROGRAM WITH INTERRUPT HANDLING
 * Copyright (c) 2004 by COSMIC Software
 */
#include <ioa4.h>

#define SIZE512 /* buffer size */
#define TDRE0x80 /* transmit ready bit */

/* Authorize interrupts.
 */
#define cli()_asm("andcc #$EF\n")

/* Some variables.
 */
char buffer[SIZE]; /* reception buffer */
char *ptlec; /* read pointer */
char *ptecr; /* write pointer */

/* Character reception.
 * Loops until a character is received.
 */
char getch(void)

{
char c; /* character to be returned */

while (ptlec == ptecr)/* equal pointers => loop */
;

c = *ptlec++; /* get the received char */
if (ptlec >= &buffer[SIZE])/* put in in buffer */

ptlec = buffer;
return (c);
}

/* Send a char to the SCI 0.
 */
void outch(char c)

{
while (!(SC0SR1 & TDRE))/* wait for READY */

;
SC0DRL = c;/* send it */
}

© 2004 COSMIC SoftwareTutorial Introduction

Acia.c, Example file
/* Character reception routine.
 * This routine is called on interrupt.
 * It puts the received char in the buffer.
 */
@interrupt void recept(void)

{
SC0SR1; /* clear interrupt */
ptecr++ = SC0DRL; / get the char */
if (ptecr >= &buffer[SIZE])/* put it in buffer */

ptecr = buffer;
}

/* Main program.
 * Sets up the SCI and starts an infinite
 * loop of receive transmit.
 */
void main(void)

{
ptecr = ptlec = buffer; /* initialize pointers */
SC0BDL = 52; /* initialize SCI */
SC0CR2 = 0x2c; /* parameters for interrupt */
cli(); /* authorize interrupts */
for (;;) /* loop */

outch(getch()); /* get and put a char */
}

Default Compiler Operation
By default, the compiler compiles and assembles your program. You
may then link object files using clnk to create an executable program.

As it processes the command line, cx6812 echoes the name of each
input file to the standard output file (your terminal screen by default).
You can change the amount of information the compiler sends to your
terminal screen using command line options, as described later.

According to the options you will use, the following files, recognized
by the COSMIC naming conventions, will be generated:

file.s Assembler source module
file.o Relocatable object module
file.h12 input (e.g. libraries) or output (e.g. absolute executable)

file for the linker
© 2004 COSMIC Software Tutorial Introduction 17

Compiling and Linking2

18
Compiling and Linking
To compile and assemble acia.c using default options, type:

The compiler writes the name of the input file it processes:

The result of the compilation process is an object module named acia.o
produced by the assembler. We will, now, show you how to use the dif-
ferent components.

Step 1: Compiling
The first step consists in compiling the C source file and producing an
assembly language file named acia.s.

The -s option directs cx6812 to stop after having produced the assembly
file acia.s. You can then edit this file with your favorite editor. You can
also visualize it with the appropriate system command (type, cat,
more,...). For example under MS/DOS you would type:

If you wish to get an interspersed C and assembly language file, you
should type:

The -l option directs the compiler to produce an assembly language file
with C source line interspersed in it. Please note that the C source lines
are commented in the assembly language file: they start with ‘;’.

As you use the C compiler, you may find it useful to see the various
actions taken by the compiler and to verify the options you selected.

cx6812 acia.c

acia.c:

cx6812 -s acia.c

type acia.s

cx6812 -l acia.c
© 2004 COSMIC SoftwareTutorial Introduction

Compiling and Linking
The -v option, known as verbose mode, instructs the C compiler to dis-
play all of its actions. For example if you type:

the display will look like something similar to the following:

acia.c:
cp6812 -o \2.cx1 -i\cx\h6812 -u acia.c
cg6812 -o \2.cx2 \2.cx1
co6812 -o acia.s \2.cx2

The compiler runs each pass:

Step 2: Assembler
The second step of the compilation is to assemble the code previously
produced. The relocatable object file produced is acia.o.

or

if you want to use directly the macro cross assembler.

The cross assembler can provide, when necessary, listings, symbol
table, cross reference and more. The following command will generate
a listing file named acia.ls that will also contain a cross reference:

For more information, see Chapter 5, “Using The Assembler”.

cp6812 the C parser

cg6812 the assembly code generator

co6812 the optimizer

cx6812 -v -s acia.c

cx6812 acia.s

ca6812 -i\cosmic\h6812\acia.s

ca6812 -c -l acia.s
© 2004 COSMIC Software Tutorial Introduction 19

Compiling and Linking2

20
Step 3: Linking
This step consists in linking relocatable files, also referred to as object
modules, produced by the compiler or by the assembler (<files>.o) into
an absolute executable file: acia.h12 in our example. Code and data
sections will be located at absolute memory addresses. The linker is
used with a command file (acia.lkf in this example).

An application that uses one or more object module(s) may require sev-
eral sections (code, data, interrupt vectors, etc.,...) located at different
addresses. Each object module contains several sections. The compiler
creates the following sections:

When the +ceven option is selected, the constant section is splitted in
two parts:

In our example, and in the test file provided with the compiler, the
acia.lkf file contains the following information:

Type Description

.ftext executable code in paged area (@far)

.text executable code in comme area (@near)

.const constants and literal data

.fdata variable in paged area (@far)

.data initialized static data

.bss non initialized static data

.bsct initialized data in the first 256 bytes (see @dir in
chapter 3), also called zero page

.ubsct non initialized data in the zero page

.eeprom any variable in eeprom (@eeprom)

.const single byte constants

.const.w word aligned constants
© 2004 COSMIC SoftwareTutorial Introduction

Compiling and Linking
line 1 # LINK COMMAND FILE FOR TEST PROGRAM
line 2 # Copyright (c) 1995 by COSMIC Software
line 3 #
line 4 +seg .const -b0x1c000 -o0xc000 -n.const # const
unbanked
line 5 +seg .const -a.text # page 7 unbanked
line 6 +seg .data -b 0x2000 # data start address
line 7 +def __sbss=@.bss # start address of bss
line 8 crts.o # startup routine
line 9 acia.o # application program
line 10 \cx\lib\libi.h12 # C library (if needed)
line 11 \cx\lib\libm.h12 # machine library
line 12 +seg .vector -b0x1ffb8 -o0xffb8# vectors start
line 13 vector.o # interrupt vectors file
line 14 +def __memory=@.bss # symbol used by startup
line 15 +def __stack=0x1000 #stack ptr initial value

You can create your own link command file by modifying the one pro-
vided with the compiler.

Here is the explanation of the lines in acia.lkf:

lines 1 to 3: These are comment lines. Each line can include comments.
They must be prefixed by the “#” character.

line 4: +seg .const -b0x1c000 -o0xc000 -n.const creates a
const segment located at physical address 1c000 (hexa) and logical
address c000 which is named .const (page 7 unbanked).

line 5: +seg .text -a.const creates a text (code) segment located
after the previous const segment (page 7 unbanked).

line 6: +seg .data -b0x2000 creates a data segment located at 2000
(hex address)

line 7: +def __sbss=@.bss defines a symbol __sbss equal to the
value of the current address in the .bss segment. This is used to get the
address of the start of the bss. The symbol __sbss is used by the startup
routine to reset the bss.

line 8: crts.o runtime startup code. It will be located at 0xc000
(code segment)
© 2004 COSMIC Software Tutorial Introduction 21

Compiling and Linking2

22
line 9: acia.o, the file that constitutes your application. It follows the
startup routine for code and data

line 10: libi.h12 the integer library to resolve references

line 11: libm.h12 the machine library to resolve references

line 12: +seg .vector -b0x1ffb8 -o0xffb8 creates a new con-
stant segment located at ffb8

line 13: vectors.o interrupt vectors file

line 14: +def __memory=@.bss defines a symbol __memory equal to
the value of the current address in the .bss segment. This is used to get
the address of the end of the bss. The symbol __memory is used by the
startup routine to reset the bss.

line 15: +def __stack=0x4000 defines a symbol __stack equal to the
absolute value 4000 (hex value). The symbol __stack is used by the
startup routine to initialize the stack pointer.

By default and in our example, the .bss segment follows the .data seg-
ment.

The crts.o file contains the runtime startup that performs the following
operations:

• initialize the bss, if any

• initialize the stack pointer

• call main() or any other chosen entry point.

For more information, see “Modifying the Runtime Startup” in Chapter
3.

After you have modified the linker command file, you can link by typ-
ing:

clnk -o acia.h12 acia.lkf
© 2004 COSMIC SoftwareTutorial Introduction

Compiling and Linking
Step 4: Generating S-Records file
Although acia.h12 is an executable image, it may not be in the correct
format to be loaded on your target. Use the chex utility to translate the
format produced by the linker into standard formats. To translate
acia.h12 to Motorola standard S-record format:

or

acia.hex is now an executable image in Motorola S-record format and
is ready to be loaded in your target system.

For more information about the converter, see Chapter 8, “The chex
Utility”.

chex acia.h12 >acia.hex

chex -o acia.hex acia.h12
© 2004 COSMIC Software Tutorial Introduction 23

Linking Your Application2

24
Linking Your Application
You can create as many text, data and bss segments as your application
requires. For example, assume we have one bss, two data and two text
segments. Our link command file will look like:

+seg .bsct -b0x0 # zpage start address
var_zpage.o # file with zpage variable
+seg .const -b0x1c000 -o0xc000 -n.const# const unbanked
+seg .text -a .const -n.common# page 7 unbanked
+seg .data -b 0x2000 # data start address
+seg .bss -b 0x2500 # bss start address
+def __sbss=@.bss # symbol used by startup
crts.o # startup routine
acia.o # main program
module1.o # application program
+seg .text -b 0x00000 -o0x8000# start new text section
module2.o # application program
module3.o # application program
+seg .text -a .common -n .common7 -it# Page 7 unbanked
\cx\lib\libi.h12 # C library (if needed)
\cx\lib\libm.h12 # machine library
+seg .vector -b0x1ffb8 -o0xffb8# vectors start
vector.o # interrupt vectors
+def __memory=@.bss # symbol used by startup
+def __stack=0x4000 # stack pointer initial value

In this example the linker will locate and merge crts.o, acia.o and
module1.o in a text segment at 0xc000 (page 7, unbanked), a data seg-
ment at 0x2000 and a bss segment, if needed at 0x2500. zero page
variables will be located at 0x0. The rest of the application, module2.o
and module3.o will be located in a bank at 0x8000. The libraries will
be located and merged in the page 7 (unbanked) segment named .com-
mon at 0xc000 then the interrupt vectors file, vector.o in a .vector seg-
ment at 0xffb8.For more information about the linker, see Chapter 6,
“Using The Linker”.
© 2004 COSMIC SoftwareTutorial Introduction

Generating Automatic Data Initialization
Generating Automatic Data Initialization
Usually, in embedded applications, your program must reside in ROM.

This is not an issue when your application contains code and read-only
data (such as string or const variables). All you have to do is burn a
PROM with the correct values and plug it into your application board.

The problem comes up when your application uses initial data values
that you have defined with initialized static data. These static data val-
ues must reside in RAM.

There are two types of static data initializations:

1) data that is explicitly initialized to a non-zero value:

char var1 = 25;

which is generated into the .data section and

2) data that is explicitly initialized to zero or left uninitialized:

char var2;

which is generated into the .bss section.

There is one exception to the above rules when you declare data that
will be located in the zero page, using the @dir type qualifier. In this
case, the data is generated into the .bsct section if it is initialized or gen-
erated into the .ubsct section otherwise.

The first method to ensure that these values are correct consists in add-
ing code in your application that reinitializes them from a copy that you
have created and located in ROM, at each restart of the application.

The second method is to use the crtsi.h12 start-up file:

1) that defines a symbol that will force the linker to create a copy of
the initialized RAM in ROM

2) and that will do the copy from ROM to RAM
© 2004 COSMIC Software Tutorial Introduction 25

Generating Automatic Data Initialization2

26
The following link file demonstrates how to achieve automatic data ini-
tialization.

+seg .text -b 0xfe000 -o 0xe000 -n.text# program start
+seg .const -a .text # constant follow code
+seg .bsct -b 0 -m 0x100 # zpage start address
+seg .data -b0x2000 # data start address
+def __sbss=@.bss # symbol used by startup
\cx\lib\crtsi.h12 # startup with auto-init
acia.o # main program
module1.o # module program
\cx\lib\libi.h12 # C library (if needed)
\cx\lib\libm.h12 # machine library
+def __memory=@.bss # symbol used by library
+def __stack=0x4000 # stack pointer initial value

In the above example, the text segment is located at address 0xe000,
the data segment is located at address 0x2000, immediately followed
by the bss segment that contains uninitialized data. The copy of the ini-
tialized data in ROM will follow the descriptor created by the linker
after the code segment.

In case of multiple code and data segments, a link command file could
be:

+seg .text -b 0xfe000 -o0xe000 -n.text# program start
+seg .const -a .text # constant follow code
+seg .bsct -b 0 -m 0x100 # zpage start address
+seg .data -b0x2000 # data start address
+def __sbss=@.bss # symbol used by startup
\cx\lib\crtsi.h12 # startup with auto-init
acia.o # main program
module1.o # module program
+seg .text -b0xff000 -o0xf000 # new code segment
module2.o # module program
module3.o # module program
\cx\lib\libi.h12 # C library (if needed)
\cx\lib\libm.h12 # machine library
+seg .vector -b 0x1ffb8 -o0xffb8# vectors start
vector.o # interrupt vectors
+def __memory=@.bss # symbol used by startup
+def __stack=0x4000 # stack pointer initial value

or
© 2004 COSMIC SoftwareTutorial Introduction

Specifying Command Line Options
+seg .text -b 0xfe000 -o0xe000 -n .text# program start
+seg .const -a .text # constant follow code
+seg .bsct -b 0 -m 0x100 # zpage start address
+seg .data -b0x1000 # data start address
+def __sbss=@.bss # symbol used by startup
\cx\lib\crtsi.h12 # startup with auto-init
acia.o # main program
module1.o # module program
+seg .text -b0xff000 -o0xf000 -it# set the section attribute
module2.o # module program
module3.o # module program
\cx\lib\libi.h12 # C library (if needed)
\cx\lib\libm.h12 # machine library
+seg .vector -b 0x1ffb8 -o0xffb8# vectors start
vector.o # interrupt vectors
+def __memory=@.bss # symbol used by startup
+def __stack=0x4000 # stack pointer initial value

In the first case, the initialized data will be located after the first code
segment. In the second case, the -it option instructs the linker to locate
the initialized data after the segment marked with this flag. The initial-
ized data will be located after the second code segment located at
address 0xf000.

For more information, see “Initializing data in RAM” in Chapter 3 and
“Automatic Data Initialization” in Chapter 6.

Specifying Command Line Options
You specify command line options to cx6812 to control the compilation
process.

To compile and produce a relocatable file named acia.o, type:

The -v option instructs the compiler driver to echo the name and options
of each program it calls. The -l option instructs the compiler driver to
create a mixed listing of C code and assembly language code in the file
acia.ls.

To perform the operations described above, enter the command:

cx6812 acia.c
© 2004 COSMIC Software Tutorial Introduction 27

Specifying Command Line Options2

28
When the compiler exits, the following files are left in your current
directory:

• the C source file acia.c

• the C and assembly language listing acia.ls

• the object module acia.o

It is possible to locate listings and object files in specified directories if
they are different from the current one, by using respectivally the -cl
and -co options:

This command will compile the acia.c file, create a listing named
acia.ls in the \mylist directory and an object file named acia.o in the
\myobj directory.

cx6812 allows you to compile more than one file. The input files can be
C source files or assembly source files. You can also mix all of these
files.

If your application is composed with the following files: two C source
files and one assembly source file, you would type:

This command will assemble the start.s file, and compile the two C
source files.

See “Compiler Command Line Options” in Chapter 4 for information
on these and other command line options.

cx6812 -v -l acia.c

cx6812 -cl\mylist -co\myobj acia.c

cx6812 -v start.s acia.c getchar.c
© 2004 COSMIC SoftwareTutorial Introduction

CHAPTER

3

Programming
Environments

This chapter explains how to use the COSMIC program development
system to perform special tasks required by various HC12/HCS12
applications.
© 2004 COSMIC Software Programming Environments 29

Introduction3

30
Introduction
The HC12/HCS12 COSMIC compiler is an ANSI C compiler that
offers several extensions which support special requirements of embed-
ded systems programmers. This chapter provides details about:

• Modifying the Runtime Startup

• Initializing data in RAM

• The const and volatile Type Qualifiers

• Performing Input/Output in C

• Placing Data Objects in The Bss Section

• Placing Data Objects in The Zero Page Section

• Placing Data Objects in the EEPROM Space

• Referencing Absolute Addresses

• Redefining Sections

• Inlining Functions

• Optimizing boolean functions

• Accessing Internal Registers

• Inserting Inline Assembly Instructions

• Referencing Absolute Addresses

• Writing Interrupt Handlers

• Placing Addresses in Interrupt Vectors

• Calling a Bank Switched Function

• Accessing Banked Data

• Using Position Independent Code
© 2004 COSMIC SoftwareProgramming Environments

Introduction
• Fuzzy Logic Support

• Interfacing C to Assembly Language

• Register Usage

• Heap Management Control with the C Compiler

• Data Representation
© 2004 COSMIC Software Programming Environments 31

Modifying the Runtime Startup3

32
Modifying the Runtime Startup
The runtime startup module performs many important functions to
establish a runtime environment for C. The runtime startup file included
with the standard distribution provides the following:

• Initialization of the bss section if any,

• ROM into RAM copy if required,

• Initialization of the stack pointer,

• _main or other program entry point call, and

• An exit sequence to return from the C environment. Most users
must modify the exit sequence provided to meet the needs of their
specific execution environment.

The following is a listing of the standard runtime startup file crts.h12
included on your distribution media. It does not perform automatic data
initialization. A special startup program is provided, crtsi.h12, which is
used instead of crts.h12 when you need automatic data initialization.
The runtime startup file can be placed anywhere in memory. Usually,
the startup will be “linked” with the RESET interrupt, and the startup
file may be at any convenient location.

Description of Runtime Startup Code
1 ; C STARTUP FOR MC68HC12
2 ; Copyright (c) 1996 by COSMIC Software
3 ;
4 xdef _exit, __stext
5 xref _main, __sbss, __memory, __stack
6 ;
7 __stext:
8 clra ; reset the bss
9 clrb
10 ldx #__sbss ; start of bss
11 bra loop ; start loop
12 zbcl:
13 std 2,x+ ; clear word
14 loop:
15 cpx #__memory; up to the end
16 blo zbcl ; and loop
© 2004 COSMIC SoftwareProgramming Environments

Initializing data in RAM
17 lds #__stack ; initialize stack pointer
18 ifdef PIC
19 lbsr _main
20 else
21 jsr _main ; execute main
22 endif
23 _exit:
24 bra _exit ; stay here
25 ;
26 end

_main is the entry point into the user C program.

__memory is an external symbol defined by the linker as the end of the
bss section. The start of the bss section is marked by the external sym-
bol __sbss.

__stack is an external symbol defined by the linker as an absolute
value.

Lines 8 to 16 reset the bss section.

Line 17 sets the stack pointer. You may have to modify it to meet the
needs of your application.

Line 21 calls main() in the user's C program.

Lines 23 to 24 trap a return from main(). If your application must return
to a monitor, for example, you must modify this line.

Initializing data in RAM
If you have initialized static variables, which are located in RAM, you
need to perform their initialization before you start your C program.
The clnk linker will take care of that: it moves the initialized data seg-
ments after the first text segment, or the one you have selected with the
-it option, and creates a descriptor giving the starting address, destina-
tion and size of each segment.

The table thus created and the copy of the RAM are located in ROM by
the linker, and used to do the initialization. An example of how to do
this is provided in the crtsi.s file located in the headers subdirectory.
© 2004 COSMIC Software Programming Environments 33

Initializing data in RAM3

34
; C STARTUP FOR MC68HC12
; WITH AUTOMATIC DATA INITIALISATION
; Copyright (c) 2000 by COSMIC Software
;

xdef _exit, __stext
xref _main, __sbss, __memory, __idesc__, __stack

;
__stext:

lds #__stack ; initialize stack pointer
ifdef PIC

leax __idesc__,pcr; descriptor address
ifdef MCX

subx #__idesc__ ; code offset
pshx ; on the stack

else
tfr x,d ; compute
subd #__idesc__ ; code offset
pshd ; on the stack

endif
else

ldx #__idesc__ ; descriptor address
endif

ldy 2,x+ ; start address of prom data
ibcl:

ldaa 5,x+ ; test flag byte
beq zbss ; no more segment
bpl nopg ; page indicator
leax 2,x ; skip it

nopg:
bita #$60 ; test for moveable code segment
bne dseg ; no, copy it
ldy -2,x ; reload code address
bra ibcl ; and continue with next segment

dseg:
pshx ; save pointer
tfr y,d ; start address
subd -2,x ; minus end address
ldx -4,x ; destination address

ifdef PIC
ifdef MCX

addy 2,s ; adjust code offset
else

exg d,y ; adjust
addd 2,s ; code address
exg d,y

endif
© 2004 COSMIC SoftwareProgramming Environments

Initializing data in RAM
endif
dbcl:

movb 1,y+,1,x+ ; copy from prom to ram
ibne d,dbcl ; count up and loop

ifdef PIC
ifdef MCX

suby 2,s ; restore code address
else

exg d,y ; restore
subd 2,s ; code address
exg d,y

endif
endif

pulx ; reload pointer to desc
bra ibcl ; and loop

zbss:
ldx #__sbss ; start of bss
clrb ; complete zero
bra loop ; start loop

zbcl:
std 2,x+ ; clear byte

loop:
cpx #__memory ; end of bss
blo zbcl ; no, continue

ifdef PIC
puld ; clean stack
lbsr _main ; execute main

else
jsr _main ; execute main

endif
_exit:

bra _exit ; stay here
;

end

crtsi.s performs the same function as described with the crts.s, but with
one additional step. Lines (marked in bold) in crtsi.s include code to
copy the contents of initialized static data, which has been placed in the
text section by the linker, to the desired location in RAM.

For more information, see “Generating Automatic Data Initialization”
in Chapter 2 and “Automatic Data Initialization” in Chapter 6.
© 2004 COSMIC Software Programming Environments 35

The const and volatile Type Qualifiers3

36
The const and volatile Type Qualifiers
You can add the type qualifiers const and volatile to any base type or
pointer type attribute.

Volatile types are useful for declaring data objects that appear to be in
conventional storage but are actually represented in machine registers
with special properties. You use the type qualifier volatile to declare
memory mapped input/output control registers, shared data objects, and
data objects accessed by signal handlers. The compiler will not opti-
mize references to volatile data.

An expression that stores a value in a data object of volatile type stores
the value immediately. An expression that accesses a value in a data
object of volatile type obtains the stored value for each access. Your
program will not reuse the value accessed earlier from a data object of
volatile type.

You use const to declare data objects whose stored values you do not
intend to alter during execution of your program. You can therefore
place data objects of const type in ROM or in write protected program
segments. The cross compiler generates an error message if it encoun-
ters an expression that alters the value stored in a const data object.

The volatile keyword must be used for any data object (variables) that
can be modified outside of the normal flow of the function. Without the
volatile keyword, all data objects are subject to normal redundant code
removal optimizations. Volatile MUST be used for the following condi-
tions:

1) all data objects or variables associated with a memory mapped hard-
ware register e.g. volatile char PORTD @0x05;

2) all global variable that can be modified (written to) by an interrupt
service routine either directly or indirectly. e.g. a global variable used as
a counter in an interrupt service routine.

NOTE
© 2004 COSMIC SoftwareProgramming Environments

Performing Input/Output in C
If you declare a static data object of const type at either file level or at
block level, you may specify its stored value by writing a data initial-
izer. The compiler determines its stored value from its data initializer
before program startup, and the stored value continues to exist
unchanged until program termination. If you specify no data initializer,
the stored value is zero. If you declare a data object of const type at
argument level, you tell the compiler that your program will not alter
the value stored in that argument data object by the function call. If you
declare a data object of const type and dynamic lifetime at block level,
you must specify its stored value by writing a data initializer. If you
specify no data initializer, the stored value is indeterminate.

You may specify const and volatile together, in either order. A const
volatile data object could be a Read-only status register, or a variable
whose value may be set by another program.

Examples of data objects declared with type qualifiers are:

Performing Input/Output in C
You perform input and output in C by using the C library functions
getchar, gets, printf, putchar, puts and sprintf. They are described in
chapter 4.

The C source code for these and all other C library functions is included
with the distribution, so that you can modify them to meet your specific
needs. Note that all input/output performed by C library functions is
supported by underlying calls to getchar and putchar. These two func-
tions provide access to all input/output library functions. The library is
built in such a way so that you need only modify getchar and putchar;
the rest of the library is independent of the runtime environment.

Function definitions for getchar and putchar are:

char getchar(void);
char putchar(char c);

char * const x; /* const pointer to char */
int * volatile y; /* volatile pointer to int */
const float pi = 355.0 / 113.0; /* pi is never changed */
© 2004 COSMIC Software Programming Environments 37

Placing Data Objects in The Bss Section3

38
Placing Data Objects in The Bss Section
The compiler automatically reserves space for uninitialized data object.
All such data are placed in the .bss section. All initialized static data are
placed in the .data section. The bss section is located, by default, after
the data section by the linker.

The run-time startup files, crts.s and crtsi.s, contain code which initial-
izes the bss section space to zero.

The compiler provides a special option, +nobss, which forces uninitial-
ized data to be explicitly located in the .data section. In such a case,
these variables are considered as beeing explicitely initialized to zero.

Placing Data Objects in The Zero Page Section
The zero page section, or “zpage”, refers to data that is accessed in the
internal memory of the HC12/HCS12 chip and may be accessed with
one byte address; this is the first 256 bytes of memory. Placing initial-
ized data objects in the zero page section optimizes code size and exe-
cution time.

To place data objects selectively into the zero page section, use the type
qualifier @dir when you declare the data object. For example:

A data object declared this way will be located into the section .bsct, if
it is initialized, or in the section .ubsct otherwise. An external object
name is published via a xref.b declaration at the assembly language
level.

To place data objects into the zero page on a file basis, you use the
#pragma directive of the compiler. The compiler directive:

instructs the compiler to place all data objects of storage class extern or
static into the zero page for the current unit of compilation (usually a
file). The section must end with a #pragma space [].

@dir char var;

#pragma space [] @dir
© 2004 COSMIC SoftwareProgramming Environments

Placing Data Objects in The Zero Page Section
The compiler provides a special option, +zpage, which forces the
#pragma directive described above for all files compiled with that
option.

The code generator does not check for zero page overflow.
NOTE
© 2004 COSMIC Software Programming Environments 39

Placing Data Objects in the EEPROM Space3

40
Placing Data Objects in the EEPROM Space
The compiler allows to define a variable as an eeprom location, using
the type qualifier @eeprom. This causes the compiler to produce spe-
cial code when such a variable is modified. When the compiler detects a
write to an eeprom location, it calls a machine library function which
performs the actual write. An example of such a definition is:

To place all data objects from a file into eeprom, you can use the
#pragma directive of the compiler. The directive

instructs the compiler to treat all extern and static data in the current file
as eeprom locations. The section must end with a #pragma space [].

The compiler allocates @eeprom variables in a separate section named
.eeprom, which will be located at link time. The linker directive:

will create a segment located at address 0x1000, with a maximum size
of 4096 bytes.

Due to the specific features of the HC12DP256 eeprom, you must use a
specific library to handle correctly the eeprom access. This library is
named libe.h12 and must be linked before the other libraries of the
application.

@eeprom char var;

#pragma space [] @eeprom

The library modules handling the specific eeprom control registers, the
application must include in at least one C source file one of the provided
header files specific to the actual target (for instance, iosdp256.h). Oth-
erwise, the missing symbols will have to be manually defined with +def
directives in the linker command file.

NOTE

+seg .eeprom -b0x1000 -m4096
var_eeprom.o

The code generator cannot check if the final address of an @eeprom
object will be valid after linkage.

NOTE
© 2004 COSMIC SoftwareProgramming Environments

Redefining Sections
Redefining Sections
The compiler uses by default predefined sections to output the various
components of a C program. The default sections are:

It is possible to redirect any of these components to any user defined
section by using the following pragma definition:

#pragma section <attribute> <qualified_name>

where <attribute> is either empty or one of the following sequences:

const
@dir
@eeprom
@near
@far

and <qualified_name> is a section name enclosed as follows:

(name) - parenthesis indicating a code section
[name] - square brackets indicating uninitialized data
{name} - curly braces indicating initialized data

Section Description

.ftext executable code in paged area (@far)

.text executable code in common area

.const text string and constants

.fdata variable in paged area (@far)

.data initialized variables

.bss uninitialized variables

.bsct variable in zero page (@dir)

.ubsct uninitialized variables in zero page (@dir)

.eeprom variable in eeprom (@eeprom)
© 2004 COSMIC Software Programming Environments 41

Redefining Sections3

42
A section name is a plain C identifier which does not begin with a dot
character and which is no longer than 13 characters. The compiler will
prefix automatically the section name with a dot character when passing
this information to the assembler. It is possible to switch back to the
default sections by omitting the section name in the <qualified_name>
sequence.

Each pragma directive starts redirecting the selected component from
the next declarations. Redefining the bss section forces the compiler to
produce the memory definitions for all the previous bss declarations
before to switch to the new section.

When the +ceven option is selected in order to have two different sec-
tions for aligned and non aligned constants, renaming the const section
renames both sections by applying the suffix .w to the word aligned
part.

The following directives:

redefine the default sections (or the previous one) as following:

- executable code is redirected to section .code
- strings and constants are redirected to section .string
- uninitialized variables are redirected to section .udata
- initialized data are redirected to section .idata
- zerodirect page variables are redirected to section .zpage
- eeprom variables are redirected to section .e2prom
- paged variables are redirected to section .dpage

Note that {name} and [name] are equivalent for constant, zerodirect
page, eeprom and far data sections as they are all considered as initial-
ized.

#pragma section (code)
#pragma section const {string}
#pragma section [udata]
#pragma section {idata}
#pragma section @dir {zpage}
#pragma section @eeprom {e2prom}
#pragma section @far {dpage}
© 2004 COSMIC SoftwareProgramming Environments

Inlining Functions
The following directive:

switches back the code section to the default section .text.

Inlining Functions
The compiler is able to inline a function body instead of producing a
function call. This feature allows the program to run faster but produces
a larger code. A function to be inlined has to be defined with the
@inline modifier. Such a function is kept by the compiler and does not
produced any code yet. Each time this function is called in the same
source file, the call is replaced by the full body of the inlined function.
Because inlined functions are in fact local to a source file, they should
be defined in a header file if they have to be used by several source
files. To allow the arguments to be passed properly, inlined functions
must be defined with prototypes.

The compiler allows access to specific instructions or features of the
HC12/HCS12 processor, using @inline functions. Such functions shall
be declared as external functions with the @inline modifier. The com-
piler recognizes two predefined functions when declared as follows:

@inline char carry(void);
@inline char overflow(void);

carry the carry function is used to test or get the carry bit from
the condition register. If the carry function is used in a test,
the compiler produces a bcc or bcs instruction. If the carry
function is used in any other expression, the compiler pro-
duces a code sequence setting the b register to 0 or 1
depending on the carry bit value.

overflow the overflow function is used to test or get the overflow bit
from the condition register. If the overflow function is used

#pragma section ()

The current implementation does not allow an inlined function to return
anything and such a function has to be defined with the void return type.

NOTE
© 2004 COSMIC Software Programming Environments 43

Optimizing boolean functions3

44
in a test, the compiler produces a bvc or bvs instruction. If
the overflow function is used in any other expression, the
compiler produces a code sequence setting the b register to
0 or 1 depending on the overflow bit value.

These functions are predeclared in the processor.h header file. A full
description with examples is provided in Chapter 4.

Optimizing boolean functions
When a function returns a value used as a boolean, the compiler tests
the content of the d register to setup the flags and perform the condi-
tional branch. If the function is declared with the @bool type modifier,
the compiler assumes that the flags are correctly set by the called func-
tion. It does not test the register and directly performs the conditional
branch. This feature is useful for several library functions which return
boolean values, and which are coded in assembler, thus already setting
the flags correctly. This extension can be used on a C function. In this
case, the compiler modifies the return sequence to set the flags appro-
priately before returning to the caller.

Referencing Absolute Addresses
This C compiler allows you to read from and write to absolute
addresses, and to assign an absolute address to a function entry point or
to a data object. You can give a memory location a symbolic name and
associated type, and use it as you would do with any C identifier. This
feature is useful for accessing memory mapped I/O ports or for calling
functions at known addresses in ROM.

References to absolute addresses have the general form @<address>,
where <address> is a valid memory location in your environment. For
example, to associate an I/O port at address 0x0 with the identifier
name PORTA, write a definition of the form:

where @0x0 indicates an absolute address specification and not a data
initializer. Since input/output on the HC12/HCS12 architecture is mem-

char PORTA @0x0;
© 2004 COSMIC SoftwareProgramming Environments

Referencing Absolute Addresses
ory mapped, performing I/O in this way is equivalent to writing in any
given location in memory.

To use the I/O port in your application, write:

Another solutions is to use a #define directive with a cast to the type of
the object being accessed, such as:

which is both inelegant and confusing. The COSMIC implementation is
more efficient and easier to use, at the cost of a slight loss in portability.

Note that COSMIC C does support the pointer and #define methods of
implementing I/O access.

It is also possible to define structures at absolute addresses. For exam-
ple, one can write:

Using this declaration, references to acia.status will refer to mem-
ory location 0x6000 and acia.data will refer to memory location
0x6001. This is very useful if you are building your own custom I/O
hardware that must reside at some location in the HC12/HCS12 mem-
ory map.

char c;
c = PORTA; /* to read from input port */
PORTA = c; /* to write to output port */

#define PORTA *(char *)0x0

struct acia
{
char status;
char data;
} acia @0x6000;
© 2004 COSMIC Software Programming Environments 45

Accessing Internal Registers3

46
Accessing Internal Registers
All the I/O registers are declared in the io.h files provided with the
compiler, depending on the specific derivative. Such a file should be
included by a:

in each file using the input-output registers. All the register names are
defined by assembly equates which are made public. This allows any
assembler source to use directly the input-output register names by
defining them with an xref directive. All those definitions are already
provided in the io.s files which may be included in an assembly source
by a:

All these header files assume a default location for the input-output reg-
isters depending on the actual target. This default value may be changed
by defining the C symbol _BASE by a #define directive before the
header file # include:

The default value of 0 for the register starting address as defined by the
file <iosdp256.h> is changed to 0x1000.

Header files specific to HCS12 (Star12) family members start with
“ios” while files specific to the standard HC12 family members start
with “io”.

If these compiler provided header files are not used, the compiler may
still need to access some registers (PPAGE, DPAGE, EPAGE), and
will use the code generator options -t and -r to locate them properly.

#include <iosdp256.h> /* for MCS912DP256 */

 include "iosdp256.s" ; for MCS912DP256

#define _BASE 0x1000
#include <iosdp256.h>
© 2004 COSMIC SoftwareProgramming Environments

Inserting Inline Assembly Instructions
Inserting Inline Assembly Instructions
The compiler features two ways to insert assembly instructions in a C
file. The first method uses #pragma directives to enclose assembly
instructions. The second method uses a special function call to insert
assembly instructions. The first one is more convenient for large
sequences but does not provide any connection with C object. The sec-
ond one is more convenient to interface with C objects but is more lim-
ited regarding the code length.

Inlining with pragmas
The compiler accepts the following pragma sequences to start and fin-
ish assembly instruction blocks:

The compiler also accepts shorter sequences with the same meaning:

Such an assembler block may be located anywhere, inside or outside a
function. Outside a function, it behaves syntactically as a declaration.
This means that such an assembler block cannot split a C declaration
somewhere in the middle. Inside a function, it behaves syntactically as
one C instruction. This means that there is no trailing semicolon at the
end, and no need for enclosing braces. It also means that such an assem-
bler block cannot split a C instruction or expression somewhere in the
middle.

The following example shows a correct syntax:

Directive Description

#pragma asm start assembler block

#pragma endasm end assembler block

Directive Description

#asm start assembler block

#endasm end assembler block
© 2004 COSMIC Software Programming Environments 47

Inserting Inline Assembly Instructions3

48
Inlining with _asm
The _asm() function inserts inline assembly code in your C program.
The syntax is:

The “string constant” argument is the assembly code you want embed-
ded in your C program. “arguments” follow the standard C rules for
passing arguments.

#pragma asm
xref asmvar

#pragma endasm

extern char test;

void func(void)
{
if (test)

#asm /* no need for { */
sec ; set carry bit
rol asmvar ; access assembler variable

#endasm
else

test = 1;
}

Preprocessing directives are still handled inside assembly code, but
#define symbols or macros are not replaced within assembly instruction
and operands by default. In order to enable such a replacement in the
assembly code, the compiler must be run with the -pad option.This
expansion is limited to the simple macros (without arguments).

NOTE

_asm(“string constant”, arguments...);

The argument string must be shorter than 255 characters. If you wish to
insert longer assembly code strings you will have to split your input
among consecutive calls to _asm().

NOTE
© 2004 COSMIC SoftwareProgramming Environments

Inserting Inline Assembly Instructions
The string you specify follows standard C rules. For example, carriage
returns can be denoted by the ‘\n’ character.

To produce the following assembly sequence:

you would write in your C program:

The ‘\n’ character is used to separate the instructions when writing mul-
tiple instructions in the same line.

To copy a value in the condition register, you write:

The varcc variable is passed in the d register, as a first argument. The
_asm sequence then transfers the low byte from the b register to the
condition register.

_asm() does not perform any checks on its argument string. Only the
assembler can detect errors in code passed as argument to an _asm()
call.

_asm() can be used in expressions, if the code produced by _asm com-
plies with the rules for function returns. For example:

allows to test the overflow bit. That way, you can use _asm() to write
equivalents of C functions directly in assembly language.

leas $1000,x
jsr _main

_asm(“leas $1000\njsr _main”);

_asm(“tfr b,ccr”, varcc);

if (_asm(“tfr ccr,b\n”) & 0x02)

With both methods, the assembler source is added as is to the code dur-
ing the compilation. The optimizer does not modify the specified instruc-
tions, unless the compiler is run with the -ga option.

NOTE
© 2004 COSMIC Software Programming Environments 49

Inserting Inline Assembly Instructions3

50
By default, _asm() is returning an int as any undeclared function. To
avoid the need of several definitions (usually confictuous) when _asm()
is used with different return types, the compiler implements a special
behaviour when a cast is applied to _asm(). In such a case, the cast is
considered to define the return type of _asm() instead of asking for a
type conversion. There is no need for any prototype for the _asm()
function as the parser verifies that the first argument is a string constant.

Inlining Labels
When labels are necessary in the inlined assemby code, the compiler
provides a special syntax allowing local labels to be created and han-
dled without interaction with other labels and the optimizer. The
sequence $N in the assembly source is replaced by a new label name
while the sequence $L is replaced by the label name created by the last
$N. Using this syntax, a simple wait loop may be entered as follow:

#asm
ldab #7

$N:
dbne b,$L ; loop on the previous label

#endasm
© 2004 COSMIC SoftwareProgramming Environments

Writing Interrupt Handlers
Writing Interrupt Handlers
A function declared with the type qualifier @interrupt is suitable for
direct connection to an interrupt (hardware or software). @interrupt
functions may not return any value. @interrupt functions are allowed to
have arguments, although hardware generated interrupts are not likely
to supply anything meaningful.

When you define an @interrupt function, the compiler uses the “rti”
instruction for the return sequence.

You define an @interrupt function by using the type qualifier @inter-
rupt to qualify the type returned by the function you declare. An exam-
ple of such a definition is:

You can call an @interrupt function directly from a C function. The
compiler will simulate an interrupt stack frame before jumping in the
interrupt function in order to allow the rti instruction to return properly.

Due to the HC12/HCS12 interrupt mechanism, an interrupt function
cannot be directly placed in a bank. It should be normally located in the
common part and then explicitly defined with the @near modifier if the
source file is compiled with the +modf option.

@interrupt void it_handler(void)
{
...
}

The @interrupt modifier is an extension to the ANSI standard.
NOTE
© 2004 COSMIC Software Programming Environments 51

Placing Addresses in Interrupt Vectors3

52
Placing Addresses in Interrupt Vectors
You may use either an assembly language program or a C program to
place the addresses of interrupt handlers in interrupt vectors. The
assembly language program would be similar to the following example:

where handler1 and so forth are interrupt handlers.

A small C routine that performs the same operation is:

where handler1 and so forth are interrupt handlers. Then, at link time,
include the following options on the link line:

where vector.o is the file which contains the vector table. This file is
provided in the compiler package. You should modify this vector table
as necessary for your application.

switch .const
xref handler1, handler2, handler3

vector1:dc.w handler1
vector2:dc.w handler2
vector3:dc.w handler3

end

extern void handler1(), handler2(), handler3();
void (* const vector[])() =

{
handler1,
handler2,
handler3,
};

+seg .vector -b0xfffce -o0xffce vector.o
© 2004 COSMIC SoftwareProgramming Environments

Calling a Bank Switched Function
Calling a Bank Switched Function
When using the HC12/HCS12 bank switching mechanism, it is possi-
ble to call directly a function which is located in a different bank. To
perform the correct call, it is necessary to declare the function with the
@far type modifier.

It is possible to force the compiler to build all the functions as @far
functions by using the +modf option. An example of such a definition
is:

When linking a bank switched application, several options must be used
to configure the linker properly:

-b should be specified with the physical address for each
code segment or for the first bank if the -w option is used.

-bs is automatically set with the value 14 for the HC12/HCS12
processor. The bank number extracted by the linker and
copied into the window base register, then points to a 16K
bytes block. This option is located on the command line.

-m should be specified with the maximum size of each seg-
ment, or the maximum size of all the banks if the -w option
is used.

-o should be specified with the logical starting address for
each code segment or bank. It normally is the window
base address in the 64K limits. It should be 0x8000 for the
HC12/HCS12.

-w should be specified with the window size to allow the
linker to build automatically banked segments. It should
be 0x4000 for the HC12/HCS12.

The libraries are not built as @far functions and should not be located in
a banked area, if they need to be accessed from any bank.

NOTE

@far int func(void)
{
...
}

© 2004 COSMIC Software Programming Environments 53

Calling a Bank Switched Function3

54
Assuming we are building an application with a root segment at
0xC000 and a window at 0x8000, the link command file should look
like:

given two banks, the first one obtained from func1, func2 and func3
linked at physical address 0x10000, the second obtained from func4,
func5 and func6 linked at physical address 0x14000. The window
mechanism has to be initialized with the first window at 0x8000. The
code to perform this initialization has to be located in the root segment,
for instance at the beginning of the main function. The linker should
thus be called with the following options:

It is possible to let the linker automatically fill consecutive banks by
using the -w option specifying the window size. In that case, the +seg
directive describes the first bank and if a new object file turns the bank
size large than the window size, a new bank is automatically starting
from a physical address obtained by adding the window size to the
physical starting address of the previous bank. The -m option specifies

+seg .text -b 0x10000 -o 0x8000 -m 0x4000
func1.o func2.o func3.o
+seg .text -b 0x14000 -o 0x8000 -m 0x4000
func4.o func5.o func6.o
+seg .text -b 0x1c000 -o 0xc000
main.o libm.h12

+seg .text -b 0x7f0000 -o 0x8000 -m 0x4000
func1.o func2.o func3.o
+seg .text -b 0x7f4000 -o 0x8000 -m 0x4000
func4.o func5.o func6.o
+seg .text -b 0x7fc000 -o 0xc000
main.o libm.h12

clnk -o appli.h12 -bs14 appli.lkf

Applications not using bank switching should specified the -bs0 option to
disabled the internal banking verification.

NOTE
© 2004 COSMIC SoftwareProgramming Environments

Accessing Banked Data
the maximum size of all the possible banks. With the following link
command file:

a new segment will be started automatically at physical address
0x14000 from the first object module which turns the bank size larger
than 16K. The new bank restarts with the same logical address than the
previous one, and the maximum size is adjusted by substracting the
window size to the value found in the previous bank.

Because code and data spaces are using different chip selects, the
resulting physical addresses may overlap while they do not in fact
address the same memory space. To allow the linker to verify properly
any possible overlapping, segments belonging to the same memory
kind can be grouped together with a space name defined on the segment
opening directive by using the -s option followed by an arbitrary space
name. The linker will verify overlapping between segments sharing the
same space name.

The linker also verifies that a bank is properly entered with a call
instruction. Any attempt to enter a bank with a jsr instruction will be
reported as an error, unless the jsr is issued from the same bank.

For more information, see “Bank Switching” in Chapter 6.

Accessing Banked Data
The 68HC12A4 is able to extend the data range by using a bank mech-
anism similar to the code banking. Two areas are available for data
banking, the first one located from 0x7000 to 0x7fff (4K bytes)
using the DPAGE register, the second one located from 0x0000 to
0x03ff or 0x0400 to 0x07ff (1K bytes) using the EPAGE register.

A variable can be defined in a data bank by using the @far modifier on
its declaration. By default, such a variable is located in the DPAGE

+seg .text -b 0x10000 -o 0x8000 -m 0x8000 -w 0x4000
func1.o func2.o func3.o
func4.o func5.o func6.o
+seg .text -b 0xc000 -o 0xc000
main.o libm.h12
© 2004 COSMIC Software Programming Environments 55

Accessing Banked Data3

56
area. To access the EPAGE area, the @epage modifier has to be used
along with @far. For examples:

A constant can also be defined in a code bank by using the @far modi-
fier along with the const keyword. Such a constant is accessed using the
PPAGE register. This register beeing used implicitly by any banked
code, such a constant can be accessed only by a function located in a
common (non banked) area, but declared as an @far function to ensure
that the PPAGE register is saved on function entry, and restored on
function exit. These constraints are properly checked by the compiler
and the linker.

The Star12 family processors are also able to decode external data
using the code banking mechanism, and then using the PPAGE register
to access such variables. This feature is implemented with the same
constraints than @far const objects.

By default, any @far data is produced in a separate section called
.fdata, regardless of any initialization, and any @far constant is pro-
duced in the default .text section. When using the +nofds option from
the command line, @far data are produced in the .data or .bss sections
as plain data, thus requesting @far data to be declared in a separate
source file in order to allow a correct linking.

If data banking is used, interrupt functions will have to save and restore
these registers if they are used by the interrupt code. The compiler will
detect automatically any explicit usage done by the interrupt function
itself. If the interrupt function does not use directly those registers but
calls any other function, the compiler will not save the page registers, to
keep efficiency on applications not using data bank switching. If data
bank switching is used by the called functions, the @svpage modifier
has to be used on the interrupt function declaration, such as:

@far int i; located in DPAGE area

@epage @far int j; located in EPAGE area

@far const int k; located in PPAGE area
© 2004 COSMIC SoftwareProgramming Environments

Using Position Independent Code
Linking banked data sections uses the same directives as code bank
switching. Because code and data pages sizes are not identical, an extra
option is needed to specify the page size when defining a segment.
DPAGE segments will use a -ds12 option while EPAGE segments will
use a -ds10 option. To link a DPAGE banked segment, you can use the
automatic filling option such as:

The physical address will match the RAM chip address decoded by the
CSD chip select. The maximum size specified here allows up to 4
pages.

Using Position Independent Code
The compiler has the ability to produce Position Independent Code
using the pc relative addressing modes both for function calls and con-
stant data access. The resulting code can then be executed at any loca-
tion in the 64K address range. This feature is accessed by specifying the
+pic option on the compiler command line.

By default, the data sections are still using the standard addressing
modes and then are linked to a fixed address. Options +picd and +picds
allow data to be also accessed with pc relative addressing mode. With
the +picd option, any data is mapped to the code section, thus letting

@svpage @interrupt void func_it(void)

No data can be allocated across a page boundary and then far pointers
calculations do not update the page number. This means that this feature
cannot be used to allocate large arrays whose size is larger than the page
size.

NOTE

+seg .data -ds12 -b 0x0 -o 0x7000 -m 0x4000 -w 0x1000
data1.o data2.o data3.o

Bank switching cannot be used with PIC code.
NOTE
© 2004 COSMIC Software Programming Environments 57

Fuzzy Logic Support3

58
the assembler producing an efficient offset encoding. With the +picds
option, data variables are still allocated in their usual sections, giving a
cleaner allocation schema, but a less efficient code.

The startup modules crts.s and crtsi.s and the libraries are prepared to
support PIC code, but are packaged in their standard shape. To use the
PIC feature, you need to recompile the startup routines and the libraries
with the +pic option set.

Fuzzy Logic Support
The compiler provides a set of functions packaged in a separate library
named fuzzy.h12, in order to give a direct access to the specific fuzzy
instructions provided by the HC12/HCS12. Those functions are basi-
cally provided to be used by third party fuzzy logic software tools but
may be used directly by some applications. The compiler does not pro-
vide any specific tool to design the data structures needed for using
those functions. Refer to the “HC12/HCS12 Reference Manual” for
more information about the fuzzy support.

The functions provided in the fuzzy library are:

Note that for keeping efficiency, most of these functions are directly
inlined in the code output instead of calling actual functions.

Those functions are more completely documented in the Chapter 4,
“Using The Compiler”.

memhc12 fuzzify input variables by using the mem instruction

revhc12 evaluate rules by using the rev instruction

revwhc12 evaluate rules by using the revw instruction

wavhc12 defuzzify outputs by using the wav and ediv instruction
© 2004 COSMIC SoftwareProgramming Environments

Interfacing C to Assembly Language
Interfacing C to Assembly Language
The C cross compiler translates C programs into assembly language
according to the specifications described in this section.

You may write external identifiers in both uppercase and lowercase.
The compiler prepends an underscore ‘_’ character to each identifier. If
the identifier is the name of an @far function, the compiler prepends a
‘f’ character to the extra underscore.

The compiler places banked function code in the .ftext section unless
the compiler option +nofts has been specified, and the non-banked
(common) function code in the .text section. Function code is not to be
altered or read as data. External function names are published via xdef
declarations.

Literal data such as strings, float or long constants, and switch tables,
are normally generated into the .const section. An option on the code
generator allows word aligned constants to be produced into the
.const.w section. Another option on the code generator allows constants
to be produced directly in the .text section.

The compiler generates initialized data into the .data section. External
data names are published via xref declarations. Data you declare to be
of “const” type by adding the type qualifier const to its base type is nor-
mally generated into the .const section. Initialized data declared with
the @dir space modifier will be generated into the .bsct section. Unini-
tialized data are normally generated into the .bss section or the .ubsct
section for @dir variables, unless forced to the .data section by the
compiler option +nobss. Far data are generated into the .fdata section
unless the compiler option +nofds has been specified. In such a case,
far data are allocated like plain data.

Section Declaration Reference

.bsct @dir char i =2; xdef

.ubsct @dir char i; xdef

.fdata @far int paged xdef

.data int init = 1 xdef
© 2004 COSMIC Software Programming Environments 59

Register Usage3

60
Function calls are performed according to the following:

1) Arguments are moved onto the stack from right to left. Unless the
function returns a double or a structure, the first argument is stored
in the d register if its size is less than or equal to the size of an int,
or in d,x register pair if its type is long or unwidened float.

2) A data space address is moved onto the stack if a structure or dou-
ble return area is required.

3) The function is called via a jsr _func instruction, or a call f_func if
the function is an @far function.

4) The arguments to the function are popped off the stack.

Register Usage
Except for the return value, the registers d, x, y and the condition codes
are undefined on return from a function call. The return value is in d if
it is of type char widened to short, short, integer or pointer to.... The
return value is in the register d and x if it is of type long or float. The d
register holds the low order word.

.bss int uninit xdef

.ftext @far char putchar(c); xdef

.text char putchar(c); xdef

.const const int cinit = 1; xdef

Any of above extern int out; xref

Section Declaration Reference

By default, character data is sign extended to short, and floats are
extended to doubles. This widening can be disabled at the user's option.
In that case, character and float will be left unmodified. If widening is
disabled, and the first argument to a function is of type char, and it is
stored in a register, then it will be stored in register b. Data of type short,
integer and long integer are left unmodified.

NOTE
© 2004 COSMIC SoftwareProgramming Environments

Register Usage
Stack Model
Because the stack pointer can be used to address directly the stack, no
register is dedicated as frame pointer. If automatics are needed, the
sequence:

will reserve <#> bytes onto the stack.

This sequence becomes:

if the first argument is in the d register as described above.

The stack pointer is set to the beginning of the area reserved for auto-
matic data. This is done because of addressing mode characteristics of
the HC12/HCS12. The assembler symbol OFST is set to the size of the
space needed for automatics; arguments are at OFST+4,s, OFST+6,s,
and so forth. Auto storage is on the stack at OFST-1,s and down. If no
automatics and no arguments are used, the stack frame is not built. To
return, the sequence:

will restore the previous context. Functions that do not have any argu-
ments or autos, and do not use any temporary storage (required to per-
form operations on structure data or cast float data, for example) do not
reference the frame pointer x and do not stack it.

Stack Representation
The diagrams below show the stack layout at function entry func. In this
example, func has three arguments: arg1, arg2 and arg3. The first dia-
gram describes cases where arg1 is in the d register. The second dia-
gram describes cases where arg1 is not in the d register. In both cases,
arguments are assumed to be widened, so char is widened to short and
float to double.

leas -<#>,s

pshd
leas -<#>,s

leas <#>,s
rts
© 2004 COSMIC Software Programming Environments 61

Register Usage3

62
 arg1 is in d
locals arg1 @return arg2 arg3

arg1 not in d
locals @return arg1 arg2 arg3

OFST+0 OFST+4

OFST+2
© 2004 COSMIC SoftwareProgramming Environments

Heap Management Control with the C Compiler
Heap Management Control with the C Compiler
The name heap designates a memory area in which are allocated and
deallocated memory blocks for temporary usage. A memory block is
allocated with the malloc() function, and is released with the free()
function. The malloc() function returns a pointer to the allocated area
which can be used until it is released by the free() function. Note that
the free() function has to be called with the pointer returned by malloc.
The heap allocation differs from a local variable allocation because its
life is not limited to the life of the function performing the allocation.

In an embedded application, the malloc-free mechanism is available
and automatically set up by the compiler environment and the library.
But it is possible to control externally the heap size and location. The
default compiler behaviour is to create a data area containing applica-
tion variables, heap and stack in the following way:

The heap start is the bss end, and is equal to the __memory symbol
defined by the linker with an appropriate +def directive. The stack
pointer is initialized by the application startup (crts.s) to an absolute
value, generally the end of available memory, or a value relative to the
end of the bss segment (for multi-tasking purposes for instance). The
heap grows upwards and the stack downwards until collision may
occur.

The heap management functions maintain a global pointer named heap
pointer, or simply HP, pointing to the heap top, and a linked list of
memory blocks, free or allocated, in the area between the heap start and
the heap top. In order to be able to easily modify the heap implementa-
tion, the heap management functions use a dedicated function to move
the heap pointer whenever necessary. The heap pointer is initialized to
the heap start: the heap is initially empty. When malloc needs some
memory and no space is available in the free list, it calls this dedicated
function named _sbreak to move the heap pointer upwards if possible.
_sbreak will return a NULL pointer if this move is not possible (usually

initialized variables
(data segment)

uninitialized variables
(bss segment)

heap growing upward and
stack growing downward

heap starts here stack starts here
© 2004 COSMIC Software Programming Environments 63

Heap Management Control with the C Compiler3

64
this is because the heap would overlap the stack). Therefore it is possi-
ble to change the heap default location by rewriting the _sbreak func-
tion.

The default _sbreak function provided by the library is as follows:

/* SET SYSTEM BREAK
 */
void *sbreak(int size)

{
extern char _memory;
static char *_brk = NULL;/* memory break */
char *obrk, yellow[40];

if (!_brk) /* initialize on first call */
_brk = &_memory;

obrk = _brk; /* old top */
_brk += size; /* new top */
if (yellow <= _brk || _brk < &_memory)

{ /* check boundaries */
_brk = obrk; /* restore old top */
return (NULL); /* return NULL pointer */
}

return (obrk); /* return new area start */
}

The yellow array is used to calculate the stack pointer value to check the
heap limits. This array is declared as the last local variable, so its
address is almost equal to the stack pointer once the function has been
entered. It is declared to be 40 bytes wide to allow for some security
margin. If the new top is outside the authorized limits, the function
returns a NULL pointer, otherwise, it returns the start of the new allo-
cated area. Note that the top variable _brk is a static variable initialized
to zero (NULL pointer). It is set to the heap start on the first call. It is
also possible to initialize it directly within the declaration, but in this
case, we create an initialized variable in the data segment which needs
to be initialized by the startup. The current code avoids such a require-
ment by initializing the variable to zero (in the bss segment), which is
simply done by the standard startup sequence.
© 2004 COSMIC SoftwareProgramming Environments

Heap Management Control with the C Compiler
Modifying The Heap Location
It is easy to modify the _sbreak function in order to handle the heap in a
separated memory area. The first example shown below handles the
heap area in a standard C array, which will be part of the application
variables.

The heap area is declared as an array of char simply named heap. The
algorithm is mainly the same, and once the new top is computed, it is
compared with the array limits. Note that the array is declared as a static
local variable. It is possible to have it declared as a static global varia-
ble. If you want it to be global, be careful on the selected name. You
should start it with a ‘_’ character to avoid any conflict with the applica-
tion variables.

The modified _sbreak function using an array is as follows:

/* SET SYSTEM BREAK IN AN ARRAY
 */
#define HSIZE 800/* heap size */

void *sbreak(int size)
{
static char *_brk = NULL;/* memory break */
static char heap[HSIZE];/* heap area */
char *obrk;

if (!_brk) /* initialize on first call */
_brk = heap;

obrk = _brk; /* old top */
_brk += size; /* new top */
if (&heap[HSIZE] <= _brk || _brk < heap)

{ /* check boundaries */
_brk = obrk; /* restore old top */
return (NULL); /* return NULL pointer */
}

return (obrk); /* return new area start */
}

If you need to place the heap array at a specific location, you need to
locate this module at a specific address using the linker options. In the
above example, the heap array will be located in the .bss segment, thus,
complicating the startup code which would need to zero two bss sec-
tions instead of one. Compiling this function, with the +nobss option,
© 2004 COSMIC Software Programming Environments 65

Heap Management Control with the C Compiler3

66
will force allocation of the heap, in the data segment and you can locate
it easily with linker directives as:

+seg .data -b 0x8000 # heap start
sbreak.o # sbreak function

It is also possible to handle the heap area outside of any C object, just
by defining the heap start and end values using the linker +def direc-
tives. Assuming these symbols are named _heap_start and _heap_end
in C, it is possible to define them at link time with such directives:

+def __heap_start=0x8000# heap start
+def __heap_end=0xA000 # heap end

The modified _sbreak function is as follows:

/* SET SYSTEM BREAK IN MEMORY
 */
void *sbreak(int size)

{
extern char _heap_start, _heap_end;/* heap limits */
static char *_brk = NULL;/* memory break */
char *obrk;

if (!_brk) /* initialize on first call */
_brk = &_heap_start;

obrk = _brk; /* old top */
_brk += size; /* new top */
if (&_heap_end <= _brk || _brk < &_heap_start)

{ /* check boundaries */
_brk = obrk; /* restore old top */
return (NULL); /* return NULL pointer */
}

return (obrk); /* return new area start */
}

Since the initial content of the area may be undefined, the -ib option
should be specified to exclude the segment in the automatic RAM initiali-
zation.

You need to add an extra ‘_’ character when defining a C symbol at link
time to match the C compiler naming conventions.

NOTE
© 2004 COSMIC SoftwareProgramming Environments

Heap Management Control with the C Compiler
Note that it is possible to use this _sbreak function as a malloc equiva-
lent function with some restrictions. The malloc function should be
used when the allocated memory has to be released, or if the application
has no idea about the total amount of space needed. If memory can be
allocated and never released, the free mechanism is not necessary, nor
the linked list of memory blocks built by malloc. In that case, simply
rename the _sbreak function as malloc, regardless of its implementa-
tion, and you will get a very efficient and compact malloc mechanism.
You may do the renaming in the function itself, which needs to be rec-
ompiled, or by using a #define at C level, or by renaming the function at
link time with a +def directive such as:

+pri # enter a private region
+def _malloc=__sbreak # defines malloc as _sbreak
+new # close region and forget malloc
libi.h12 # load library containing _sbreak

This sequence has to be placed just before loading libraries, or before
placing the module containing the _sbreak function. The private region
is used to forget the _malloc reference once it has been aliased to
_sbreak.
© 2004 COSMIC Software Programming Environments 67

Data Representation3

68
Data Representation
Data objects of type char are stored as one byte:

Char representation

Data objects of type short int, int and 16 bit pointers (@near) are stored
as two bytes, more significant byte first:

Short, Int, 16 bit Pointer

Data objects of type long integer are stored as four bytes, in descending
order of significance:

Long representation

Data objects of type @far pointer are stored as four bytes. The first
word is the logical address represented as 16 bit pointer, the next byte is
the paged value and the next byte is a 0.

@far pointer representation

Data objects of type float and double are represented as for the pro-
posed IEEE Floating Point Standard; four bytes (for float) or eight bytes
(for double) stored in descending order of significance. The IEEE rep-

07

015 8 7

Most Significant Byte Less Significant Byte

031 16 15

Most Significant Byte Less Significant Byte

24 23 8 7

015 0 7

Logical Address MSB Zero

8 7 0 7

PageLSB
© 2004 COSMIC SoftwareProgramming Environments

Data Representation
resentation is: most significant bit is one for negative numbers, and zero
otherwise; the next eight bits (for float) or eleven bits (for double) are
the characteristic, biased such that the binary exponent of the number is
the characteristic minus 126 (for float) or 1022 (for double); the remain-
ing bits are the fraction, starting with the weighted bit. If the character-
istic is zero, the entire number is taken as zero, and should be all zeros
to avoid confusing some routines that do not process the entire number.
Otherwise there is an assumed 0.5 (assertion of the weighted bit) added
to all fractions to put them in the interval [0.5, 1.0). The value of the
number is the fraction, multiplied by -1 if the sign bit is set, multiplied
by 2 raised to the exponent.

Float representation

Double representation

031 30

CharacteristicSign Mantissa

23 22

063 62

CharacteristicSign Mantissa

52 51
© 2004 COSMIC Software Programming Environments 69

CHAPTER

4

Using The Compiler
This chapter explains how to use the C cross compiler to compile pro-
grams on your host system. It explains how to invoke the compiler, and
describes its options. It also describes the functions which constitute the
C library. This chapter includes the following sections:

• Invoking the Compiler

• File Naming Conventions

• Generating Listings

• Generating an Error File

• C Library Support

• Descriptions of C Library Functions
© 2004 COSMIC Software Using The Compiler 71

Invoking the Compiler4

72
Invoking the Compiler
To invoke the cross compiler, type the command cx6812, followed by
the compiler options and the name(s) of the file(s) you want to compile.
All the valid compiler options are described in this chapter. Commands
to compile source files have the form:

cx6812 is the name of the compiler. The option list is optional. You
must include the name of at least one input file <file>. <file> can be a
C source file with the suffix ‘.c’, or an assembly language source file
with the suffix ‘.s’. You may specify multiple input files with any com-
bination of these suffixes in any order.

If you do not specify any command line options, cx6812 will compile
your <files> with the default options. It will also write the name of each
file as it is processed. It writes any error messages to STDERR.

The following command line:

compiles and assembles the acia.c C program, creating the relocatable
program acia.o.

If the compiler finds an error in your program, it halts compilation.
When an error occurs, the compiler sends an error message to your ter-
minal screen unless the option -e has been specified on the command
line. In this case, all error messages are written to a file whose name is
obtained by replacing the suffix .c of the source file by the suffix .err.
An error message is still output on the terminal screen to indicate that
errors have been found. Appendix A, “Compiler Error Messages”, lists
the error messages the compiler generates. If one or more command
line arguments are invalid, cx6812 processes the next file name on the
command line and begins the compilation process again.

The example command above does not specify any compiler options. In
this case, the compiler will use only default options to compile and

cx6812 [options] <files>.[c|s]

cx6812 acia.c
© 2004 COSMIC SoftwareUsing The Compiler

Invoking the Compiler
assemble your program. You can change the operation of the compiler
by specifying the options you want when you run the compiler.

To specify options to the compiler, type the appropriate option or
options on the command line as shown in the first example above.
Options should be separated with spaces. You must include the ‘-’ or
‘+’ that is part of the option name.

Compiler Command Line Options
The cx6812 compiler accepts the following command line options, each
of which is described in detail below:

-a*> specify assembler options. Up to 60 options can be speci-
fied on the same command line. See Chapter 5, “Using
The Assembler”, for the list of all accepted options.

cx6812 [options] <files>
-a*> assembler options
-ce* path for errors files
-cl* path for listings files
-co* path for objects files
-d*> define symbol
-ec all C files
-es all assembler files
-ex* prefix executables
-e create error file
-f* configuration file
-g*> code generator options
-i*> path for include
-l create listing
-no do not use optimizer
-o*> optimizer options
-p*> parser options
-s create only assembler file
-sp create only preprocessor file
-t* path for temporary files
-v verbose
-x do not execute
+*> select compiler options
© 2004 COSMIC Software Using The Compiler 73

Invoking the Compiler4

74
-ce* specify a path for the error files. By default, errors are cre-
ated in the same directoy than the source files.

-cl* specify a path for the listing files. By default, listings are
created in the same directoy than the source files.

-co* specify a path for the object files. By default, objects are
created in the same directoy than the source files.

-d*^ specify * as the name of a user-defined preprocessor sym-
bol (#define). The form of the definition is
-dsymbol[=value]; the symbol is set to 1 if value is omit-
ted. You can specify up to 60 such definitions.

-e log errors from parser in a file instead of displaying them
on the terminal screen. The error file name is defaulted to
<file>.err, and is created only if there are errors.

-ec treat all files as C source files.

-es treat all files as assembler source files.

-ex use the compiler driver’s path as prefix to quickly locate
the executable passes. Default is to use the path variable
environment. This method is faster than the default behav-
ior but reduces the command line lenght.

-f* specify * as the name of a configuration file. This file con-
tains a list of options which will be automatically used by
the compiler. If no file name is specified, then the compiler
looks for a default configuration file named cx6812.cxf in
the compiler directory as specified in the installation proc-
ess. For more information, see Appendix B, “Modifying
Compiler Operation”.

-g*> specify code generation options. Up to 60 options can be
specified. See Appendix D, “Compiler Passes”, for the list
of all accepted options.
© 2004 COSMIC SoftwareUsing The Compiler

Invoking the Compiler
-i*> define include path. You can define up to 60 different
paths. Each path is a directory name, not terminated by
any directory separator character.

-l merge C source listing with assembly language code; list-
ing output defaults to <file>.ls.

-no do not use the optimizer.

-o*> specify optimizer options. Up to 60 options can be speci-
fied. See Appendix D, “Compiler Passes”, for the list of
all accepted options.

-p*> specify parser options. Up to 60 options can be specified.
See Appendix D, “Compiler Passes”, to get the list of all
accepted options.

-s create only assembler files and stop. Do not assemble the
files produced.

-sp create only preprocessed files and stop. Do not compile
files produced. Preprocessed output defaults to <file>.p.
The produced files can be compiled as C source files.

-t* specify path for temporary files. The path is a directory
name, not terminated by any directory separator character.

-v be “verbose”. Before executing a command, print the com-
mand, along with its arguments, to STDOUT. The default
is to output only the names of each file processed. Each
name is followed by a colon and newline.

-x do not execute the passes, instead write to STDOUT the
commands which otherwise would have been performed.

+*> select a predefined compiler option. These options are pre-
defined in the configuration file. You can specify up to 20
compiler options on the command line. The following doc-
uments the available options as provided by the default
configuration file.
© 2004 COSMIC Software Using The Compiler 75

Invoking the Compiler4

76
+ceven split the constants into two sections, one for single byte
constant (.const) and one for the other ones which are sup-
posed to be accessed more efficiently when properly
aligned (.const.w).

+debug produce debug information to be used by the debug utili-
ties provided with the compiler and by any external debug-
ger.

+even align any object larger than one byte on an even boundary.

+fast produce faster code by inlining machine library calls for
long integers handling and integer switches. The code pro-
duced will be larger than without this option. For more
information, see “Inlining Functions” in Chapter 3.

+modf force all functions to be compiled as @far functions. For
more information, see “Calling a Bank Switched Func-
tion” in Chapter 3.

+nobss do not use the .bss section for variables allocated in exter-
nal memory. By default, such uninitialized variables are
defined into the .bss section. This option is useful to force
all variables to be grouped into a single section.

+nocst output literals and contants in the code section .text instead
of the specific section .const. This option should be used
when using bank switching to garantee that const object
are is the same bank than the code accessing them.

+nofds do not use the .fdata section for variables allocated in
paged memory. By default, such variables are defined into
the ..fdata section. This option is intended only for com-
patibility with previous versions.

+nofts do not use the .ftext section for banked code. By default,
banked code is allocated in the .text section. This option is
intended only for compatibility with previous versions.
© 2004 COSMIC SoftwareUsing The Compiler

Invoking the Compiler
+nowidendo not widen char and float arguments. By default, char
arguments are promoted to int before to be passed as argu-
ment.

+pgff enable support for early HC12DG128 family. This option
is necessary only if no specific header file is included in
order to locate the DPAGE register at its proper location.

+pic produce position independant code. All function calls and
const variables access are using an indexed pc relative
addressing modes. The code can then be moved anywhere.
This option enforces the +nocst option to map all the
constants in the code space. For more information, see
“Using Position Independent Code” in Chapter 3.

+picd produce position independant code and data. All function
calls and any variable access are using an indexed pc rela-
tive addressing modes. The code can then be moved any-
where. This option enforces the +nocst option to map all
the constants in the code space, and maps all the data
objects in the same code space. For more information, see
“Using Position Independent Code” in Chapter 3.

+picds produce position independant code and data. All function
calls and any variable access are using an indexed pc rela-
tive addressing modes. The code can then be moved any-
where. This option enforces the +nocst option to map all
the constants in the code space, but keeps all the data
objects in their usual sections which should be linked con-
tiguously to the code/const space. For more information,
see “Using Position Independent Code” in Chapter 3.

+proto enforce prototype declaration for functions. An error mes-
sage is issued if a function is used and no prototype decla-
ration is found for it. By default, the compiler accepts both
syntaxes without any error.

+rev reverse the bitfield filling order. By default, bitfields are
filled from the Less Significant Bit (LSB) towards the
Most Significant Bit (MSB) of a memory cell. If the +rev
© 2004 COSMIC Software Using The Compiler 77

Invoking the Compiler4

78
option is specified, bitfields are filled from the msb to the
lsb.

+split produce each C function in a separate section, thus allow-
ing the linker to suppress unused functions if the -k option
has been specified on at least one segment in the linker
command file. For more information, see “Segment Con-
trol Options” in Chapter 6.

+sprec force all floating point arithmetic to single precision. If this
option is enabled, all floats, doubles and long doubles are
treated as float, and calculation are made in single preci-
sion. In such a case, the application must be linked with the
libf.h12 library instead of libd.h12.

+std enable support for HC12. Default is HCS12.

+strict direct the compiler to enforce stronger type checking.

+zpage force all data to be defined into the .bsct section. This
option assumes that the full application declares less than
the available space in the .bsct section. The linker should
be configured to check the size. For more information, see
“Placing Data Objects in The Zero Page Section” in
Chapter 3.
© 2004 COSMIC SoftwareUsing The Compiler

File Naming Conventions
File Naming Conventions
The programs making up the C cross compiler generate the following
output file names, by default. See the documentation on a specific pro-
gram for information about how to change the default file names
accepted as input or generated as output.

Program Input File Name Output File Name

cp6812 <file>.c <file>.1

cg6812 <file>.1 <file>.2

co6812 <file>.2 <file>.s

error listing <file>.c <file>.err

assembler listing <file>.[c|s] <file>.ls

C header files <file>.h

ca6812 <file>.s <file>.o

source listing <file>.s <file>.ls

clnk <file>.o name required

cbank <file> STDOUT

chex <file> STDOUT

clabs <file.h12> <files>.la

clib <file> name required

cobj <file> STDOUT

cv695 <file> <file>.695

cvdwarf <file.h12> <file.elf>
© 2004 COSMIC Software Using The Compiler 79

Generating Listings4

80
Generating Listings
You can generate listings of the output of any (or all) the compiler
passes by specifying the -l option to cx6812. You can locate the listing
file in a different directory by using the -cl option.

The example program provided in the package shows the listing pro-
duced by compiling the C source file acia.c with the -l option:

Generating an Error File
You can generate a file containing all the error messages output by the
parser by specifying the -e option to the cx6812 compiler. You can
locate the listing file in a different directory by using the -ce option. For
example, you would type:

The error file name is obtained from the source filename by replacing
the .c suffix by the .err suffix.

Return Status
cx6812 returns success if it can process all files successfully. It prints a
message to STDERR and returns failure if there are errors in at least
one processed file.

Examples
To echo the names of each program that the compiler runs:

To save the intermediate files created by the code generator and halt
before the assembler:

cx6812 -l acia.c

cx6812 -e prog.c

cx6812 -v file.c

cx6812 -s file.c
© 2004 COSMIC SoftwareUsing The Compiler

C Library Support
C Library Support
This section describes the facilities provided by the C library. The C
cross compiler for HC12/HCS12 includes all useful functions for pro-
grammers writing applications for ROM-based systems.

How C Library Functions are Packaged
The functions in the C library are packaged in four separate sub-librar-
ies; one for machine-dependent routines (the machine library), one that
does not support floating point (the integer library), one that provides
full floating point support (the floating point library) and one that pro-
vides specific functions for fuzzy logic support (the fuzzy library). If
your application does not perform floating point calculations, you can
decrease its size and increase its runtime efficiency by including only
the integer library.

Inserting Assembler Code Directly
Assembler instructions can be quoted directly into C source files, and
entered unchanged into the output assembly stream, by use of the
_asm() function. This function is not part of any library as it is recog-
nized by the compiler itself.

Linking Libraries with Your Program
If your application requires floating point support, you must specify the
floating point library before the integer library in the linker command
file. Modules common to both libraries will therefore be loaded from
the floating point library, followed by the appropriate modules from the
floating point and integer libraries, in that order.

Integer Library Functions
The following table lists the C library functions in the integer library.

_asm atol gets isqrt
_checksum calloc isalnum isspace
_checksum16 div isalpha isupper
_checksum16x eepcpy iscntrl isxdigit
_checksumx eepera isdigit labs
_fctcpy eepset isgraph ldiv
abort exit islower longjmp
abs free isprint lsqrt
atoi getchar ispunct malloc
memchr realloc strcmp strspn
© 2004 COSMIC Software Using The Compiler 81

C Library Support4

82
memcmp sbreak strcmp strstr
memcpy scanf strcpy strtol
memmov setjmp strcspn strtoul
memset sprintf strlen tolower
printf srand strncat toupper
putchar sscanf strncpy vprintf
puts strcat strpbrk vsprintf
rand strchr strrchr

Floating Point Library Functions
The following table lists the C library functions in the float library.

acos cosh log sinh
asin exp log10 sprintf
atan fabs modf sqrt
atan2 floor pow sscanf
atof fmod printf strtod
ceil frexp scanf tan
cos ldexp sin tanh

Fuzzy Library Functions
The following table lists the C library functions in the fuzzy library.

memhc12 revhc12 revwhc12 wavhc12

Common Input/Output Functions
Two of the functions that perform stream input/output are included in
both the integer and floating point libraries. The functionalities of the
versions in the integer library are a subset of the functionalities of their
floating point counterparts. The versions in the integer library cannot
print or manipulate floating point numbers. These functions are: printf,
sprintf.

Functions Implemented as Macros
Three of the functions in the C library are actually implemented as
“macros”. Unlike other functions, which (if they do not return int) are
declared in header files and defined in a separate object module that is
linked in with your program later, functions implemented as macros are
defined using #define preprocessor directives in the header file that
declares them. Macros can therefore be used independently of any
library by including the header file that defines and declares them with
your program, as explained below. The functions in the C library that
are implemented as macros are: va_arg, va_end and va_start.
© 2004 COSMIC SoftwareUsing The Compiler

C Library Support
Functions Implemented as Builtins
A few functions of the C library are actually implemented as “builtins”.
The code for those functions is directly inlined instead of passing argu-
ments and calling a function. Arguments are built directly in registers
and the code is produced to match exactly the function behaviour.
Those functions are also provided in the library to allow them to be
called through pointers. The functions in the C library that are imple-
mented as builtins are: abs, max, min, memcpy, strcpy, strlen, strcmp,
revhc12, revwhc12 and wavhc12.

Including Header Files
If your application calls a C library function, you must include the
header file that declares the function at compile time, in order to use the
proper return type and the proper function prototyping, so that all the
expected arguments are properly evaluated. You do this by writing a
preprocessor directive of the form:

in your program, where <header_name> is the name of the appropriate
header file enclosed in angle brackets. The required header file should
be included before you refer to any function that it declares.

The names of the header files packaged with the C library and the func-
tions declared in each header are listed below.

<assert.h> - Header file for the assertion macro: assert.

<ctype.h> - Header file for the character functions: isalnum, isalpha,
iscntrl, isgraph, isprint, ispunct, isspace, isxdigit, isdigit, isupper,
islower, tolower and toupper.

<float.h> - Header file for limit constants for floating point values.

<fuzzy.h> - Header file for fuzzy functions.

<io*.h> - Header files for input-output registers. Each register has an
upper-case name which matches the standard Motorola definition..
Header files specific to HCS12 (Star12) family members start with
“ios”. Files specific to the standard HC12 family members start with

#include <header_name>
© 2004 COSMIC Software Using The Compiler 83

C Library Support4

84
“io”. For processors allowing I/O registers to be moved, registers are
mapped at a base address defaulted to 0x0. If these registers are
mapped at a different address, the preprocessor symbol _BASE must be
defined with the expected location before including the specific header
file.

<limits.h> - Header file for limit constants of the compiler.

<math.h> - Header file for mathematical functions: acos, asin, atan,
atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, ldexp, log, log10,
modf, pow, sin, sinh, sqrt, tan and tanh.

<processor.h> - Header file for inline functions: carry, overflow.

<setjmp.h> - Header file for nonlocal jumps: setjmp and longjmp

<stdarg.h> - Header file for walking argument lists: va_arg, va_end
and va_start. Use these macros with any function you write that must
accept a variable number of arguments.

<stddef.h> - Header file for types: size_t, wchar_t and ptrdiff_t.

<stdio.h> - Header file for stream input/output: getchar, gets, printf,
putchar, puts and sprintf.

<stdlib.h> - Header file for general utilities: abs, abort, atof, atoi, atol,
calloc, div, exit, free, isqrt, labs, ldiv, lsqrt, malloc, rand, realloc, srand,
strtod, strtol and strtoul.

<string.h> - Header file for string functions: memchr, memcmp, mem-
cpy, memmove, memset, strcat, strchr, strcmp, strcpy, strcspn, strlen,
strncat, strncmp, strncpy, strpbrk, strrchr, strspn and strstr.

Functions returning int - C library functions that return int and can
therefore be called without any header file, since int is the function
return type that the compiler assumed by default, are: isalnum, isalpha,
iscntrl, isgraph, isprint, ispunct, isspace, isxdigit, isdigit, isupper,
islower, sbreak, tolower and toupper.
© 2004 COSMIC SoftwareUsing The Compiler

Descriptions of C Library Functions
Descriptions of C Library Functions
The following pages describe each of the functions in the C library in
quick reference format. The descriptions are in alphabetical order by
function name.

The syntax field describes the function prototype with the return type
and the expected arguments, and if any, the header file name where this
function has been declared.
© 2004 COSMIC Software Using The Compiler 85

C Library - _asm

_asm

4

86
Description
Generate inline assembly code

Syntax

Function
_asm generates inline assembly code by copying <string constant>
and quoting it into the output assembly code stream. If extra arguments
are specified, they are processed as for a standard function. If argu-
ments are stacked, they are popped off just after the inline code pro-
duced. For more information, see “Inserting Inline Assembly
Instructions” in Chapter 3.

Return Value
Nothing, unless _asm() is used in an expression. In that case, normal
return conventions must be followed. For more information, see “Regis-
ter Usage” in Chapter 3.

Example
The sequence tsx; pshx, may be generated by the following call:

_asm(“\ttsx\n\tpshx\n”);

Notes
_asm() is not packaged in any library. It is recognized (and its argument
passed unchanged) by the compiler itself.

/* no header file need be included */
_asm(<string constant>, ...)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - abort

abort

Description

Abort program execution

Syntax

Function
abort stops the program execution by calling the exit function which is
placed by the startup module just after the call to the main function.

Return Value
abort never returns.

Example
To abort in case of error:

if (fatal_error)
abort();

See Also
exit

Notes
abort is a macro equivalent to the function name exit.

#include <stdlib.h>
void abort(void)
© 2004 COSMIC Software Using The Compiler 87

C Library - abs

abs

4

88
Description
Find absolute value

Syntax

Function
abs obtains the absolute value of i. No check is made to see that the
result can be properly represented.

Return Value
abs returns the absolute value of i, expressed as an int.

Example
To print out a debit or credit balance:

printf(“balance %d%s\n”, abs(bal), (bal < 0)? “CR” : “”);

See Also
labs, fabs

Notes
abs is packaged in the integer library.

#include <stdlib.h>
int abs(int i)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - acos

acos

Description

Arccosine

Syntax

Function
acos computes the angle in radians the cosine of which is x, to full dou-
ble precision.

Return Value
acos returns the closest internal representation to acos(x), expressed as
a double floating value in the range [0, pi]. If x is outside the range
[-1, 1], acos returns zero.

Example
To find the arccosine of x:

theta = acos(x);

See Also
asin, atan, atan2

Notes
acos is packaged in the floating point library.

#include <math.h>
double acos(double x)
© 2004 COSMIC Software Using The Compiler 89

C Library - asin

asin

4

90
Description
Arcsine

Syntax

Function
asin computes the angle in radians the sine of which is x, to full double
precision.

Return Value
asin returns the nearest internal representation to asin(x), expressed as a
double floating value in the range [-pi/2, pi/2]. If x is outside the range
[-1, 1], asin returns zero.

Example
To compute the arcsine of y:

theta = asin(y);

See Also
acos, atan, atan2

Notes
asin is packaged in the floating point library.

#include <math.h>
double asin(double x)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - atan

atan

Description

Arctangent

Syntax

Function
atan computes the angle in radians; the tangent of which is x, atan com-
putes the angle in radians; the tangent of which is x, to full double preci-
sion.

Return Value
atan returns the nearest internal representation to atan(x), expressed as
a double floating value in the range [-pi/2, pi/2].

Example
To find the phase angle of a vector in degrees:

theta = atan(y/x) * 180.0 / pi;

See Also
acos, asin, atan2

Notes
atan is packaged in the floating point library.

#include <math.h>
double atan(double x)
© 2004 COSMIC Software Using The Compiler 91

C Library - atan2

atan2

4

92
Description
Arctangent of y/x

Syntax

Function
atan2 computes the angle in radians the tangent of which is y/x to full
double precision. If y is negative, the result is negative. If x is negative,
the magnitude of the result is greater than pi/2.

Return Value
atan2 returns the closest internal representation to atan(y/x), expressed
as a double floating value in the range [-pi, pi]. If both input arguments
are zero, atan2 returns zero.

Example
To find the phase angle of a vector in degrees:

theta = atan2(y/x) * 180.0/pi;

See Also
acos, asin, atan

Notes
atan2 is packaged in the floating point library.

#include <math.h>
double atan2(double y, double x)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - atof

atof

Description

Convert buffer to double

Syntax

Function
atof converts the string at nptr into a double. The string is taken as the
text representation of a decimal number, with an optional fraction and
exponent. Leading whitespace is skipped and an optional sign is permit-
ted; conversion stops on the first unrecognizable character. Acceptable
inputs match the pattern:

[+|-]d*[.d*][e[+|-]dd*]

where d is any decimal digit and e is the character ‘e’ or ‘E’. No checks
are made against overflow, underflow, or invalid character strings.

Return Value
atof returns the converted double value. If the string has no recogniza-
ble characters, it returns zero.

Example
To read a string from STDIN and convert it to a double at d:

gets(buf);
d = atof(buf);

See Also
atoi, atol, strtol, strtod

Notes
atof is packaged in the floating point library.

#include <stdlib.h>
double atof(char *nptr)
© 2004 COSMIC Software Using The Compiler 93

C Library - atoi

atoi

4

94
Description
Convert buffer to integer

Syntax

Function
atoi converts the string at nptr into an integer. The string is taken as the
text representation of a decimal number. Leading whitespace is skipped
and an optional sign is permitted; conversion stops on the first unrecog-
nizable character. Acceptable characters are the decimal digits. If the
stop character is l or L, it is skipped over.

No checks are made against overflow or invalid character strings.

Return Value
atoi returns the converted integer value. If the string has no recogniza-
ble characters, zero is returned.

Example
To read a string from STDIN and convert it to an int at i:

gets(buf);
i = atoi(buf);

See Also
atof, atol, strtol, strtod

Notes
atoi is packaged in the integer library.

#include <stdlib.h>
int atoi(char *nptr)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - atol

atol

Description

Convert buffer to long

Syntax

Function
atol converts the string at nptr into a long integer. The string is taken as
the text representation of a decimal number. Leading whitespace is
skipped and an optional sign is permitted; conversion stops on the first
unrecognizable character. Acceptable characters are the decimal digits.
If the stop character is l or L it is skipped over.

No checks are made against overflow or invalid character strings.

Return Value
atol returns the converted long integer. If the string has no recognizable
characters, zero is returned.

Example
To read a string from STDIN and convert it to a long l:

gets(buf);
l = atol(buf);

See Also
atof, atoi, strtol, strtod

Notes
atol is packaged in the integer library.

#include <stdlib.h>
long atol(char *nptr)
© 2004 COSMIC Software Using The Compiler 95

C Library - calloc

calloc

4

96
Description
Allocate and clear space on the heap

Syntax

Function
calloc allocates space on the heap for an item of size nbytes, where
nbytes = nelem * elsize. The space allocated is guaranteed to be at least
nbytes long, starting from the pointer returned, which is guaranteed to
be on a proper storage boundary for an object of any type. The heap is
grown as necessary. If space is exhausted, calloc returns a null pointer.
The pointer returned may be assigned to an object of any type without
casting. The allocated space is initialized to zero.

Return Value
calloc returns a pointer to the start of the allocated cell if successful;
otherwise it returns NULL.

Example
To allocate an array of ten doubles:

double *pd;
pd = calloc(10, sizeof (double));

See Also
free, malloc, realloc

Notes
calloc is packaged in the integer library.

#include <stdlib.h>
void *calloc(int nelem, int elsize)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - carry

carry

Description

Test or get the carry bit

Syntax

Function
carry is an inline function allowing to test or get the value of the carry
bit. When used in an if construct, this function expands directly to a bcc
or bcs instruction. When used in an expression, it expands in order to
build in the b register the value 0 or 1 depending on the carry bit value.

Return Value
carry returns 0 or 1 in the b register if such a value is needed.

Example
low <<= 1; produces lsl _low
if (carry()) bcc L1

++high; inc _high
L1:

low <<= 1; produces lsl _low
high = carry() tfr ccr,b

andb #1
stab _high

Notes
carry is an inline function and then is not defined in any library. It is
therefore not possible to take its address. For more information, see
“Inlining Functions” in Chapter 3.

#include <processor.h>
@inline char carry(void)
© 2004 COSMIC Software Using The Compiler 97

C Library - ceil

ceil

4

98
Description
Round to next higher integer

Syntax

Function
ceil computes the smallest integer greater than or equal to x.

Return Value
ceil returns the smallest integer greater than or equal to x, expressed as a
double floating value.

Example
x ceil(x)

5.1 6.0
5.0 5.0
0.0 0.0

-5.0 -5.0
-5.1 -5.0

See Also
floor

Notes
ceil is packaged in the floating point library.

#include <math.h>
double ceil(double x)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - _checksum

_checksum

Description

Verify the recorded checksum

Syntax

Function
_checksum scans the descriptor built by the linker and controls at the
end that the computed 8 bit checksum is equal to the one expected. For
more information, see “Checksum Computation” in Chapter 6.

Return Value
_checksum returns 0 if the checksum is correct, or a value different of 0
otherwise.

Example
if (_checksum())

abort();

Notes
The descriptor is built by the linker only if the _checksum function is
called by the application, even if there are segments marked with the
-ck option.

_checksum is packaged in the integer library.

See Also
_checksumx, _checksum16, _checksum16x

int _checksum()

The routine provided by default does not support bank switching. Provi-
sion is made in the library source file to support bank switching if
needed. Uncomment the proper PPAGE definition and re-assemble the
file to link it with the application.

NOTE
© 2004 COSMIC Software Using The Compiler 99

C Library - _checksumx

_checksumx

4

100
Description
Verify the recorded checksum

Syntax

Function
_checksumx scans the descriptor built by the linker and controls at the
end that the computed 8 bit checksum is equal to the one expected. For
more information, see “Checksum Computation” in Chapter 6.

Return Value
_checksumx returns 0 if the checksum is correct, or a value different of
0 otherwise.

Example
if (_checksumx())

abort();

Notes
The descriptor is built by the linker only if the _checksumx function is
called by the application, even if there are segments marked with the
-ck option.

_checksumx is packaged in the integer library.

See Also
_checksum, _checksum16, _checksum16x

int _checksumx()

The routine provided by default does not support bank switching. Provi-
sion is made in the library source file to support bank switching if
needed. Uncomment the proper PPAGE definition and re-assemble the
file to link it with the application.

NOTE
© 2004 COSMIC SoftwareUsing The Compiler

C Library - _checksum16

_checksum16

Description

Verify the recorded checksum

Syntax

Function
_checksum16 scans the descriptor built by the linker and controls at the
end that the computed 16 bit checksum is equal to the one expected. For
more information, see “Checksum Computation” in Chapter 6.

Return Value
_checksum16 returns 0 if the checksum is correct, or a value different of
0 otherwise.

Example
if (_checksum16())

abort();

Notes
The descriptor is built by the linker only if the _checksum16 function is
called by the application, even if there are segments marked with the
-ck option.

_checksum16 is packaged in the integer library.

See Also
_checksum, _checksumx, _checksum16x

int _checksum16()

The routine provided by default does not support bank switching. Provi-
sion is made in the library source file to support bank switching if
needed. Uncomment the proper PPAGE definition and re-assemble the
file to link it with the application.

NOTE
© 2004 COSMIC Software Using The Compiler 101

C Library - _checksum16x

_checksum16x

4

102
Description
Verify the recorded checksum

Syntax

Function
_checksum16x scans the descriptor built by the linker and controls at
the end that the computed 16 bit checksum is equal to the one expected.
For more information, see “Checksum Computation” in Chapter 6.

Return Value
_checksum16x returns 0 if the checksum is correct, or a value different
of 0 otherwise.

Example
if (_checksum16x())

abort();

Notes
The descriptor is built by the linker only if the _checksum16x function
is called by the application, even if there are segments marked with the
-ck option.

_checksum16x is packaged in the integer library.

See Also
_checksum, _checksumx, _checksum16

int _checksum16x()

The routine provided by default does not support bank switching. Provi-
sion is made in the library source file to support bank switching if
needed. Uncomment the proper PPAGE definition and re-assemble the
file to link it with the application.

NOTE
© 2004 COSMIC SoftwareUsing The Compiler

C Library - cos

cos

Description

Cosine

Syntax

Function
cos computes the cosine of x, expressed in radians, to full double preci-
sion. If the magnitude of x is too large to contain a fractional quadrant
part, the value of cos is 1.

Return Value
cos returns the nearest internal representation to cos(x) in the range
[0, pi], expressed as a double floating value. A large argument may
return a meaningless value.

Example
To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);

See Also
sin, tan

Notes
cos is packaged in the floating point library.

#include <math.h>
double cos(double x)
© 2004 COSMIC Software Using The Compiler 103

C Library - cosh

cosh

4

104
Description
Hyperbolic cosine

Syntax

Function
cosh computes the hyperbolic cosine of x to full double precision.

Return Value
cosh returns the nearest internal representation to cosh(x) expressed as a
double floating value. If the result is too large to be properly repre-
sented, cosh returns zero.

Example
To use the Moivre's theorem to compute (cosh x + sinh x) to the nth
power:

demoivre = cosh(n * x) + sinh(n * x);

See Also
exp, sinh, tanh

Notes
cosh is packaged in the floating point library.

#include <math.h>
double cosh(double x)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - div

div

Description

Divide with quotient and remainder

Syntax

Function
div divides the integer numer by the integer denom and returns the quo-
tient and the remainder in a structure of type div_t. The field quot con-
tains the quotient and the field rem contains the remainder.

Return Value
div returns a structure of type div_t containing both quotient and
remainder.

Example
To get minutes and seconds from a delay in seconds:

div_t result;

result = div(time, 60);
min = result.quot;
sec = result.rem;

See Also
ldiv

Notes
div is packaged in the integer library.

#include <stdlib.h>
div_t div(int numer, int denom)
© 2004 COSMIC Software Using The Compiler 105

C Library - eepcpy

eepcpy

4

106
Description
Copy a buffer to an eeprom buffer

Syntax

Function
eepcpy copies the first n characters starting at location s2 into the eep-
rom buffer beginning at s1.

Return Value
eepcpy returns s1.

Example
To place “first string, second string” in eepbuf[]:

eepcpy(eepbuf, “first string”, 12);
eepcpy(eepbuf + 13, “, second string”, 15);

See Also
eepset, eepera

Notes
eepcpy is packaged in the integer library.

#include <string.h>
void *eepcpy(void *s1, void *s2, unsigned int n)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - eepera

eepera

Description

Erase the full eeprom space

Syntax

Function
eepera erases the full eeprom space with the global erase sequence. It
does not erase the config register.

Return Value
Nothing.

Example
To erase the full eeprom space:

eepera();

See Also
eepset, eepcpy

Notes
eepera is packaged in the machine library.

void eepera(void)
© 2004 COSMIC Software Using The Compiler 107

C Library - eepset

eepset

4

108
Description
Propagate fill character throughout eeprom buffer

Syntax

Function
eepset floods the n character buffer starting at eeprom location s with
fill character c. The function waits for all bytes to be programmed.

Return Value
eepset returns s.

Example
To flood a 512 byte eeprom buffer with NULs:

eepset(eepbuf, ’\0’, BUFSIZ);

See Also
eepcpy, eepera

Notes
eepset is packaged in the integer library.

#include <string.h>
void *eepset(void *s, int c, unsigned int n)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - exit

exit

Description

Exit program execution

Syntax

Function
exit stops the execution of a program by switching to the startup mod-
ule just after the call to the main function. The status argument is not
used by the current implementation.

Return Value
exit never returns.

Example
To exit in case of error:

if (fatal_error)
exit();

See Also
abort

Notes
exit is in the startup module.

#include <stdlib.h>
void exit(int status)
© 2004 COSMIC Software Using The Compiler 109

C Library - exp

exp

4

110
Description
Exponential

Syntax

Function
exp computes the exponential of x to full double precision.

Return Value
exp returns the nearest internal representation to exp x, expressed as a
double floating value. If the result is too large to be properly repre-
sented, exp returns zero.

Example
To compute the hyperbolic sine of x:

sinh = (exp(x) - exp(-x)) / 2.0;

See Also
log

Notes
exp is packaged in the floating point library.

#include <math.h>
double exp(double x)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - fabs

fabs

Description

Find double absolute value

Syntax

Function
fabs obtains the absolute value of x.

Return Value
fabs returns the absolute value of x, expressed as a double floating
value.

Example
x fabs(x)

5.0 5.0
0.0 0.0

-3.7 3.7

See Also
abs, labs

Notes
fabs is packaged in the floating point library.

#include <math.h>
double fabs(double x)
© 2004 COSMIC Software Using The Compiler 111

C Library - _fctcpy

_fctcpy

4

112
Description
Copy a moveable code segment in RAM

Syntax

Function
_fctcpy copies a moveable code segment in RAM from its storage loca-
tion in ROM. _fctcpy scans the descriptor built by the linker and looks
for a moveable segment whose flag byte matches the given argument. If
such a segment is found, it is entirely copied in RAM. Any function
defined in that segment may then be called directly. For more informa-
tion, see “Moveable Code” in Chapter 6.

Return Value
_fctcpy returns a non zero value if a segment has been found and cop-
ied. It returns 0 otherwise.

Example
if (_fctcpy(‘b’))

flash();

Notes
_fctcpy is packaged in the integer library.

int _fctcpy(char name);
© 2004 COSMIC SoftwareUsing The Compiler

C Library - floor

floor

Description

Round to next lower integer

Syntax

Function
floor computes the largest integer less than or equal to x.

Return Value
floor returns the largest integer less than or equal to x, expressed as a
double floating value.

Example
x floor(x)

5.1 5.0
5.0 5.0
0.0 0.0
-5.0 -5.0
-5.1 -6.0

See Also
ceil

Notes
floor is packaged in the floating point library.

#include <math.h>
double floor(double x)
© 2004 COSMIC Software Using The Compiler 113

C Library - fmod

fmod

4

114
Description
Find double modulus

Syntax

Function
fmod computes the floating point remainder of x / y, to full double pre-
cision. The return value of f is determined using the formula:

f = x - i * y

where i is some integer, f is the same sign as x, and the absolute value of
f is less than the absolute value of y.

Return Value
fmod returns the value of f expressed as a double floating value. If y is
zero, fmod returns zero.

Example
x y fmod(x, y)

5.5 5.0 0.5
5.0 5.0 0.0
0.0 0.0 0.0

-5.5 5.0 -0.5

Notes
fmod is packaged in the floating point library.

#include <math.h>
double fmod(double x, double y)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - free

free

Description

Free space on the heap

Syntax

Function
free returns an allocated cell to the heap for subsequence reuse. The cell
pointer ptr must have been obtained by an earlier calloc, malloc, or
realloc call; otherwise the heap will become corrupted. free does its
best to check for invalid values of ptr. A NULL value for ptr is explic-
itly allowed, however, and is ignored.

Return Value
Nothing.

Example
To give back an allocated area:

free(pd);

See Also
calloc, malloc, realloc

Notes
No effort is made to lower the system break when storage is freed, so it
is quite possible that earlier activity on the heap may cause problems
later on the stack.

free is packaged in the integer library.

#include <stdlib.h>
void free(void *ptr)
© 2004 COSMIC Software Using The Compiler 115

C Library - frexp

frexp

4

116
Description
Extract fraction from exponent part

Syntax

Function
frexp partitions the double at val, which should be non-zero, into a frac-
tion in the interval [1/2, 1) times two raised to an integer power. It then
delivers the integer power to *exp, and returns the fractional portion as
the value of the function. The exponent is generally meaningless if val
is zero.

Return Value
frexp returns the power of two fraction of the double at val as the return
value of the function, and writes the exponent at *exp.

Example
To implement the sqrt(x) function:

double sqrt(double x)
{
extern double newton(double);
int n;

x = frexp(x, &n);
x = newton(x);
if (n & 1)

x *= SQRT2;
return (ldexp(x, n / 2));
}

See Also
ldexp

Notes
frexp is packaged in the floating point library.

#include <math.h>
double frexp(double val, int *exp)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - getchar

getchar

Description

Get character from input stream

Syntax

Function
getchar obtains the next input character, if any, from the user supplied
input stream. This user must rewrite this function in C or in assembly
language to provide an interface to the input mechanism of the C
library.

Return Value
getchar returns the next character from the input stream. If end of file
(break) is encountered, or a read error occurs, getchar returns EOF.

Example
To copy characters from the input stream to the output stream:

while ((c = getchar()) != EOF)
putchar(c);

See Also
putchar

Notes
getchar is packaged in the integer library.

#include <stdio.h>
int getchar(void)
© 2004 COSMIC Software Using The Compiler 117

C Library - gets

gets

4

118
Description
Get a text line from input stream

Syntax

Function
gets copies characters from the input stream to the buffer starting at s.
Characters are copied until a newline is reached or end of file is
reached. If a newline is reached, it is discarded and a NUL is written
immediately following the last character read into s.

gets uses getchar to read each character.

Return Value
gets returns s if successful. If end of file is reached, gets returns NULL.
If a read error occurs, the array contents are indeterminate and gets
returns NULL.

Example
To copy input to output, line by line:

while (puts(gets(buf)))
;

See Also
puts

Notes
There is no assured limit on the size of the line read by gets.

gets is packaged in the integer library.

#include <stdio.h>
char *gets(char *s)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - isalnum

isalnum

Description

Test for alphabetic or numeric character

Syntax

Function
isalnum tests whether c is an alphabetic character (either upper or
lower case), or a decimal digit.

Return Value
isalnum returns nonzero if the argument is an alphabetic or numeric
character; otherwise the value returned is zero.

Example
To test for a valid C identifier:

if (isalpha(*s) || *s == '_')
for (++s; isalnum(*s) || *s == '_'; ++s)

;

See Also
isalpha, isdigit, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isalnum is packaged in the integer library.

#include <ctype.h>
int isalnum(int c)
© 2004 COSMIC Software Using The Compiler 119

C Library - isalpha

isalpha

4

120
Description
Test for alphabetic character

Syntax

Function
isalpha tests whether c is an alphabetic character, either upper or lower
case.

Return Value
isalpha returns nonzero if the argument is an alphabetic character. Oth-
erwise the value returned is zero.

Example
To find the end points of an alphabetic string:

while (*first && !isalpha(*first))
++first;

for (last = first; isalpha(*last); ++last)
;

See Also
isalnum, isdigit, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isalpha is packaged in the integer library.

#include <ctype.h>
int isalpha(int c)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - iscntrl

iscntrl

Description

Test for control character

Syntax

Function
iscntrl tests whether c is a delete character (0177 in ASCII), or an ordi-
nary control character (less than 040 in ASCII).

Return Value
iscntrl returns nonzero if c is a control character; otherwise the value is
zero.

Example
To map control characters to percent signs:

for (; *s; ++s)
if (iscntrl(*s))

*s = '%';

See Also
isgraph, isprint, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

iscntrl is packaged in the integer library.

#include <ctype.h>
int iscntrl(int c)
© 2004 COSMIC Software Using The Compiler 121

C Library - isdigit

isdigit

4

122
Description
Test for digit

Syntax

Function
isdigit tests whether c is a decimal digit.

Return Value
isdigit returns nonzero if c is a decimal digit; otherwise the value
returned is zero.

Example
To convert a decimal digit string to a number:

for (sum = 0; isdigit(*s); ++s)
sum = sum * 10 + *s - '0';

See Also
isalnum, isalpha, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isdigit is packaged in the integer library.

#include <ctype.h>
int isdigit(int c)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - isgraph

isgraph

Description

Test for graphic character

Syntax

Function
isgraph tests whether c is a graphic character; i.e. any printing charac-
ter except a space (040 in ASCII).

Return Value
isgraph returns nonzero if c is a graphic character. Otherwise the value
returned is zero.

Example
To output only graphic characters:

for (; *s; ++s)
if (isgraph(*s))

putchar(*s);

See Also
iscntrl, isprint, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isgraph is packaged in the integer library.

#include <ctype.h>
int isgraph(int c)
© 2004 COSMIC Software Using The Compiler 123

C Library - islower

islower

4

124
Description
Test for lower-case character

Syntax

Function
islower tests whether c is a lower-case alphabetic character.

Return Value
islower returns nonzero if c is a lower-case character; otherwise the
value returned is zero.

Example
To convert to upper-case:

if (islower(c))
c += 'A' - 'a'; /* also see toupper() */

See Also
isalnum, isalpha, isdigit, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

islower is packaged in the integer library.

#include <ctype.h>
int islower(int c)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - isprint

isprint

Description

Test for printing character

Syntax

Function
isprint tests whether c is any printing character. Printing characters are
all characters between a space (040 in ASCII) and a tilde ‘~’ character
(0176 in ASCII).

Return Value
isprint returns nonzero if c is a printing character; otherwise the value
returned is zero.

Example
To output only printable characters:

for (; *s; ++s)
if (isprint(*s))

putchar(*s);

See Also
iscntrl, isgraph, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isprint is packaged in the integer library.

#include <ctype.h>
int isprint(int c)
© 2004 COSMIC Software Using The Compiler 125

C Library - ispunct

ispunct

4

126
Description
Test for punctuation character

Syntax

Function
ispunct tests whether c is a punctuation character. Punctuation charac-
ters include any printing character except space, a digit, or a letter.

Return Value
ispunct returns nonzero if c is a punctuation character; otherwise the
value returned is zero.

Example
To collect all punctuation characters in a string into a buffer:

for (i = 0; *s; ++s)
if (ispunct(*s))

buf[i++] = *s;

See Also
iscntrl, isgraph, isprint, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

ispunct is packaged in the integer library.

#include <ctype.h>
int ispunct(int c)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - isqrt

isqrt

Description

Integer square root

Syntax

Function
isqrt obtains the integral square root of the unsigned int i.

Return Value
isqrt returns the closest integer smaller or equal to the square root of i,
expressed as an unsigned int.

Example
To use isqrt to check whether n > 2 is a prime number:

if (!(n & 01))
return (NOTPRIME);

sq = isqrt(n);
for (div = 3; div <= sq; div += 2)

if (!(n % div))
return (NOTPRIME);

return (PRIME);

See Also
lsqrt, sqrt

Notes
isqrt is packaged in the integer library.

#include <stdlib.h>
unsigned int isqrt(unsigned int i)
© 2004 COSMIC Software Using The Compiler 127

C Library - isspace

isspace

4

128
Description
Test for whitespace character

Syntax

Function
isspace tests whether c is a whitespace character. Whitespace characters
are horizontal tab (‘\t’), newline (‘\n’), vertical tab (‘\v’), form feed
(‘\f’), carriage return (‘\r’), and space (‘ ’).

Return Value
isspace returns nonzero if c is a whitespace character; otherwise the
value returned is zero.

Example
To skip leading whitespace:

while (isspace(*s))
++s;

See Also
iscntrl, isgraph, isprint, ispunct

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isspace is packaged in the integer library.

#include <ctype.h>
int isspace(int c)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - isupper

isupper

Description

Test for upper-case character

Syntax

Function
isupper tests whether c is an upper-case alphabetic character.

Return Value
isupper returns nonzero if c is an upper-case character; otherwise the
value returned is zero.

Example
To convert to lower-case:

if (isupper(c))
c += 'a' - 'A'; /* also see tolower() */

See Also
isalnum, isalpha, isdigit, islower, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isupper is packaged in the integer library.

/* no header file need be included */
int isupper(int c)
© 2004 COSMIC Software Using The Compiler 129

C Library - isxdigit

isxdigit

4

130
Description
Test for hexadecimal digit

Syntax

Function
isxdigit tests whether c is a hexadecimal digit, i.e. in the set
[0123456789abcdefABCDEF].

Return Value
isxdigit returns nonzero if c is a hexadecimal digit; otherwise the value
returned is zero.

Example
To accumulate a hexadecimal digit:

for (sum = 0; isxdigit(*s); ++s)
if (isdigit(*s)

sum = sum * 10 + *s - '0';
else

sum = sum * 10 + tolower(*s) + (10 - 'a');

See Also
isalnum, isalpha, isdigit, islower, isupper, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isxdigit is packaged in the integer library.

#include <ctype.h>
int isxdigit(int c)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - labs

labs

Description

Find long absolute value

Syntax

Function
labs obtains the absolute value of l. No check is made to see that the
result can be properly represented.

Return Value
labs returns the absolute value of l, expressed as an long int.

Example
To print out a debit or credit balance:

printf(“balance %ld%s\n”,labs(bal),(bal < 0) ? “CR” : “”);

See Also
abs, fabs

Notes
labs is packaged in the integer library.

#include <stdlib.h>
long labs(long l)
© 2004 COSMIC Software Using The Compiler 131

C Library - ldexp

ldexp

4

132
Description
Scale double exponent

Syntax

Function
ldexp multiplies the double x by two raised to the integer power exp.

Return Value
ldexp returns the double result x * (1 << exp) expressed as a double
floating value. If a range error occurs, ldexp returns HUGE_VAL.

Example
x exp ldexp(x, exp)

1.0 1 2.0
1.0 0 1.0
1.0 -1 0.5
0.0 0 0.0

See Also
frexp, modf

Notes
ldexp is packaged in the floating point library.

#include <math.h>
double ldexp(double x, int exp)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - ldiv

ldiv

Description

Long divide with quotient and remainder

Syntax

Function
ldiv divides the long integer numer by the long integer denom and
returns the quotient and the remainder in a structure of type ldiv_t. The
field quot contains the quotient and the field rem contains the remain-
der.

Return Value
ldiv returns a structure of type ldiv_t containing both quotient and
remainder.

Example
To get minutes and seconds from a delay in seconds:

ldiv_t result;
result = ldiv(time, 60L);
min = result.quot;
sec = result.rem;

See Also
div

Notes
ldiv is packaged in the integer library.

#include <stdlib.h>
ldiv_t ldiv(long numer, long denom)
© 2004 COSMIC Software Using The Compiler 133

C Library - log

log

4

134
Description
Natural logarithm

Syntax

Function
log computes the natural logarithm of x to full double precision.

Return Value
log returns the closest internal representation to log(x), expressed as a
double floating value. If the input argument is less than zero, or is too
large to be represented, log returns zero.

Example
To compute the hyperbolic arccosine of x:

arccosh = log(x + sqrt(x * x - 1));

See Also
exp

Notes
log is packaged in the floating point library.

#include <math.h>
double log(double x)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - log10

log10

Description

Common logarithm

Syntax

Function
log10 computes the common log of x to full double precision by com-
puting the natural log of x divided by the natural log of 10. If the input
argument is less than zero, a domain error will occur. If the input argu-
ment is zero, a range error will occur.

Return Value
log10 returns the nearest internal representation to log10 x, expressed as
a double floating value. If the input argument is less than or equal to
zero, log10 returns zero.

Example
To determine the number of digits in x, where x is a positive integer
expressed as a double:

ndig = log10(x) + 1;

See Also
log

Notes
log10 is packaged in the floating point library.

#include <math.h>
double log10(double x)
© 2004 COSMIC Software Using The Compiler 135

C Library - longjmp

longjmp

4

136
Description
Restore calling environment

Syntax

Function
longjmp restores the environment saved in env by setjmp. If env has not
been set by a call to setjmp, or if the caller has returned in the mean-
time, the resulting behavior is unpredictable.

All accessible objects have their values restored when longjmp is
called, except for objects of storage class register, the values of which
have been changed between the setjmp and longjmp calls.

Return Value
When longjmp returns, program execution continues as if the corre-
sponding call to setjmp had returned the value val. longjmp cannot force
setjmp to return the value zero. If val is zero, setjmp returns the value
one.

Example
You can write a generic error handler as:

void handle(int err)
{
extern jmp_buf env;
longjmp(env, err); /* return from setjmp */
}

See Also
setjmp

Notes
longjmp is packaged in the integer library.

#include <setjmp.h>
void longjmp(jmp_buf env, int val)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - lsqrt

lsqrt

Description

Long integer square root

Syntax

Function
lsqrt obtains the integral square root of the unsigned long l.

Return Value
lsqrt returns the closest integer smaller or equal to the square root of l,
expressed as an unsigned int.

Example
To use lsqrt to check whether n > 2 is a prime number:

if (!(n & 01))
return (NOTPRIME);

sq = lsqrt(n);
for (div = 3; div <= sq; div += 2)

if (!(n % div))
return (NOTPRIME);

return (PRIME);

See Also
isqrt, sqrt

Notes
lsqrt is packaged in the integer library.

#include <stdlib.h>
unsigned int lsqrt(unsigned long l)
© 2004 COSMIC Software Using The Compiler 137

C Library - malloc

malloc

4

138
Description
Allocate space on the heap

Syntax

Function
malloc allocates space on the heap for an item of size nbytes. The space
allocated is guaranteed to be at least nbytes long, starting from the
pointer returned, which is guaranteed to be on a proper storage bound-
ary for an object of any type. The heap is grown as necessary. If space is
exhausted, malloc returns a null pointer.

Return Value
malloc returns a pointer to the start of the allocated cell if successful;
otherwise it returns NULL. The pointer returned may be assigned to an
object of any type without casting.

Example
To allocate an array of ten doubles:

double *pd;
pd = malloc(10 * sizeof *pd);

See Also
calloc, free, realloc

Notes
malloc is packaged in the integer library.

#include <stdlib.h>
void *malloc(unsigned int nbytes)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - max

max

Description

Test for maximum

Syntax

Function
max obtains the maximum of its two arguments, a and b. Since max is
implemented as a builtin function, its arguments can be any numerical
type, and type coercion occurs automatically.

Return Value
max is a numerical rvalue of the form ((a < b) ? b : a), suitably paren-
thesized.

Example
To set a new maximum level:

hiwater = max(hiwater, level);

See Also
min

Notes
max is an extension to the proposed ANSI C standard.

max is a builtin declared in the <stdlib.h> header file. You can use it by
including <stdlib.h> with your program. Because it is a builtin, max
cannot be called from non-C programs, nor can its address be taken.

#include <stdlib.h>
max(a,b)
© 2004 COSMIC Software Using The Compiler 139

C Library - memchr

memchr

4

140
Description
Scan buffer for character

Syntax

Function
memchr looks for the first occurrence of a specific character c in an n
character buffer starting at s.

Return Value
memchr returns a pointer to the first character that matches c, or NULL
if no character matches.

Example
To map keybuf[]characters into subst[] characters:

if ((t = memchr(keybuf, *s, KEYSIZ)) != NULL)
*s = subst[t - keybuf];

See Also
strchr, strcspn, strpbrk, strrchr, strspn

Notes
memchr is packaged in the integer library.

#include <string.h>
void *memchr(void *s, int c, unsigned int n)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - memcmp

memcmp

Description

Compare two buffers for lexical order

Syntax

Function
memcmp compares two text buffers, character by character, for lexical
order in the character collating sequence. The first buffer starts at s1,
the second at s2; both buffers are n characters long.

Return Value
memcmp returns a short integer greater than, equal to, or less than zero,
according to whether s1 is lexicographically greater than, equal to, or
less than s2.

Example
To look for the string “include” in name:

if (memcmp(name, "include", 7) == 0)
doinclude();

See Also
strcmp, strncmp

Notes
memcmp is packaged in the integer library.

#include <string.h>
int memcmp(void *s1, void *s2, unsigned int n)
© 2004 COSMIC Software Using The Compiler 141

C Library - memcpy

memcpy

4

142
Description
Copy one buffer to another

Syntax

Function
memcpy copies the first n characters starting at location s2 into the
buffer beginning at s1.

Return Value
memcpy returns s1.

Example
To place “first string, second string” in buf[]:

memcpy(buf, “first string”, 12);
memcpy(buf + 13, ", second string”, 15);

See Also
strcpy, strncpy

Notes
memcpy is implemented as a builtin function.

#include <string.h>
void *memcpy(void *s1, void *s2, unsigned int n)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - memhc12

memhc12

Description

Fuzzify an input

Syntax

Function
memchc12 evaluates the grade of membership of all the adjectives
associated to an input. Each adjective is described by a shape and an
output byte. The input value is specified by the crisp argument, and is
followed by a pointer t_shape to an array of shapes (four bytes each),
and a pointer t_result to an array of output addresses. The last argu-
ment nba specifies the number of output to evaluate.

Return Value
memhc12 sets the content of the array of nba bytes specified by t_shape
to the grade of membership of the input crisp according to an array of
shapes specified by t_result.

Example
memhc12(val, tabsh, tabptr, 4);

See Also
revhc12, revwhc12, wavhc12

#include <fuzzy.h>
void memhc12(char crisp, char *t_shape,

char *t_result, int nba)
© 2004 COSMIC Software Using The Compiler 143

C Library - memmove

memmove

4

144
Description
Copy one buffer to another

Syntax

Function
memmove copies the first n characters starting at location s2 into the
buffer beginning at s1. If the two buffers overlap, the function performs
the copy in the appropriate sequence, so the copy is not corrupted.

Return Value
memmove returns s1.

Example
To shift an array of characters:

memmove(buf, &buf[5], 10);

See Also
memcpy

Notes
memmove is packaged in the integer library.

#include <string.h>
void *memmove(void *s1, void *s2, unsigned int n)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - memset

memset

Description

Propagate fill character throughout buffer

Syntax

Function
memset floods the n character buffer starting at s with fill character c.

Return Value
memset returns s.

Example
To flood a 512-byte buffer with NULs:

memset(buf,'\0', BUFSIZ);

Notes
memset is packaged in the integer library.

#include <string.h>
void *memset(void *s, int c, unsigned int n)
© 2004 COSMIC Software Using The Compiler 145

C Library - min

min

4

146
Description
Test for minimum

Syntax

Function
min obtains the minimum of its two arguments, a and b. Since min is
implemented as a builtin function, its arguments can be any numerical
type, and type coercion occurs automatically.

Return Value
min is a numerical rvalue of the form ((a < b) ? a : b), suitably paren-
thesized.

Example
To set a new minimum level:

nmove = min(space, size);

See Also
max

Notes
min is an extension to the ANSI C standard.

min is a builtin declared in the <stdlib.h> header file. You can use it by
including <stdlib.h> with your program. Because it is a builtin, min
cannot be called from non-C programs, nor can its address be taken.

#include <stdlib.h>
min(a,b)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - modf

modf

Description

Extract fraction and integer from double

Syntax

Function
modf partitions the double val into an integer portion, which is deliv-
ered to *pd, and a fractional portion, which is returned as the value of
the function. If the integer portion cannot be represented properly in an
int, the result is truncated on the left without complaint.

Return Value
modf returns the signed fractional portion of val as a double floating
value, and writes the integer portion at *pd.

Example
val *pd modf(val, *pd)

5.1 5 0.1
5.0 5 0.0
4.9 4 0.9
0.0 0 0.0

-1.4 -1 -0.4

See Also
frexp, ldexp

Notes
modf is packaged in the floating point library.

#include <math.h>
double modf(double val, double *pd)
© 2004 COSMIC Software Using The Compiler 147

C Library - overflow

overflow

4

148
Description
Test or get the carry bit

Syntax

Function
overflow is an inline function allowing to test or get the value of the
overflow bit. When used in an if construct, this function expands
directly to a bvc or bvs instruction. When used in an expression, it
expands in order to build in the b register the value 0 or 1 depending on
the overflow bit value.

Return Value
overflow returns 0 or 1 in the b register if such a value is needed.

Example
low <<= 1; produces lsl _low
if (overflow()) bvc L1

++high; inc _high
L1:

low <<= 1; produces lsl _low
high = overflow() tfr ccr,b

andb #2
lsrb
stab _high

Notes
overflow is an inline function and then is not defined in any library. It is
therefore not possible to take its address. For more information, see
“Inlining Functions” in Chapter 3.

#include <processor.h>
@inline char carry(void)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - pow

pow

Description

Raise x to the y power

Syntax

Function
pow computes the value of x raised to the power of y.

Return Value
pow returns the value of x raised to the power of y, expressed as a dou-
ble floating value. If x is zero and y is less than or equal to zero, or if x is
negative and y is not an integer, pow returns zero.

Example
x y pow(x, y)

2.0 2.0 4.0
2.0 1.0 2.0
2.0 0.0 1.0
1.0 any 1.0
0.0 -2.0 0
-1.0 2.0 1.0
-1.0 2.1 0

See Also
exp

Notes
pow is packaged in the floating point library.

#include <math.h>
double pow(double x, double y)
© 2004 COSMIC Software Using The Compiler 149

C Library - printf

printf

4

150
Description
Output formatted arguments to stdout

Syntax

Function
printf writes formatted output to the output stream using the format
string at fmt and the arguments specified by ..., as described below.

printf uses putchar to output each character.

Format Specifiers
The format string at fmt consists of literal text to be output, interspersed
with conversion specifications that determine how the arguments are to
be interpreted and how they are to be converted for output. If there are
insufficient arguments for the format, the results are undefined. If the
format is exhausted while arguments remain, the excess arguments are
evaluated but otherwise ignored. printf returns when the end of the for-
mat string is encountered.

Each <conversion specification> is started by the character ‘%’. After
the ‘%’, the following appear in sequence:

<flags> - zero or more which modify the meaning of the conversion
specification.

<field width> - a decimal number which optionally specifies a mini-
mum field width. If the converted value has fewer characters than the
field width, it is padded on the left (or right, if the left adjustment flag
has been given) to the field width. The padding is with spaces unless the
field width digit string starts with zero, in which case the padding is
with zeros.

#include <stdio.h>
int printf(char *fmt,...)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - printf
<precision> - a decimal number which specifies the minimum
number of digits to appear for d, i, o, u, x, and X conversions, the
number of digits to appear after the decimal point for e, E, and f conver-
sions, the maximum number of significant digits for the g and G con-
versions, or the maximum number of characters to be printed from a
string in an s conversion. The precision takes the form of a period fol-
lowed by a decimal digit string. A null digit string is treated as zero.

h - optionally specifies that the following d, i, o, u, x, or X conversion
character applies to a short int or unsigned short int argument (the argu-
ment will have been widened according to the integral widening con-
versions, and its value must be cast to short or unsigned short before
printing). It specifies a short pointer argument if associated with the p
conversion character. If an h appears with any other conversion charac-
ter, it is ignored.

l - optionally specifies that the d, i, o, u, x, and X conversion character
applies to a long int or unsigned long int argument. It specifies a long or
far pointer argument if used with the p conversion character. If the l
appears with any other conversion character, it is ignored.

L - optionally specifies that the following e, E, f, g, and G conversion
character applies to a long double argument. If the L appears with any
other conversion character, it is ignored.

<conversion character> - character that indicates the type of con-
version to be applied.

A field width or precision, or both, may be indicated by an asterisk ‘*’
instead of a digit string. In this case, an int argument supplies the field
width or precision. The arguments supplying field width must appear
before the optional argument to be converted. A negative field width
argument is taken as a - flag followed by a positive field width. A nega-
tive precision argument is taken as if it were missing.

The <flags> field is zero or more of the following:

space - a space will be prepended if the first character of a signed con-
version is not a sign. This flag will be ignored if space and + flags are
both specified.
© 2004 COSMIC Software Using The Compiler 151

C Library - printf4

152
- result is to be converted to an “alternate form”. For c, d, i, s, and u
conversions, the flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be zero. For p, x and X
conversion, a non-zero result will have Ox or OX prepended to it. For
e, E, f, g, and G conversions, the result will contain a decimal point,
even if no digits follow the point. For g and G conversions, trailing
zeros will not be removed from the result, as they normally are. For p
conversion, it designates hexadecimal output.

+ - result of signed conversion will begin with a plus or minus sign.

- - result of conversion will be left justified within the field.

The <conversion character> is one of the following:

% - a ‘%’ is printed. No argument is converted.

c - the least significant byte of the int argument is converted to a char-
acter and printed.

d, i, o, u, x, X - the int argument is converted to signed decimal (d or
i), unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal
notation (x or X); the letters abcdef are used for x conversion and the
letters ABCDEF are used for X conversion. The precision specifies the
minimum number of digits to appear; if the value being converted can
be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with
precision of zero is no characters.

e, E - the double argument is converted in the style [-]d.ddde+dd,
where there is one digit before the decimal point and the number of dig-
its after it is equal to the precision. If the precision is missing, six digits
are produced; if the precision is zero, no decimal point appears. The E
format code will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. However, if
the magnitude to be printed is greater than or equal to 1E+100, addi-
tional exponent digits will be printed as necessary.
© 2004 COSMIC SoftwareUsing The Compiler

C Library - printf
f - the double argument is converted to decimal notation in the style
[-]ddd.ddd, where the number of digits following the decimal point is
equal to the precision specification. If the precision is missing, it is
taken as 6. If the precision is explicitly zero, no decimal point appears.
If a decimal point appears, at least one digit appears before it.

g, G - the double argument is printed in style f or e (or in style E in the
case of a G format code), with the precision specifying the number of
significant digits. The style used depends on the value converted; style
e will be used only if the exponent resulting from the conversion is less
than -4 or greater than the precision. Trailing zeros are removed from
the result; a decimal point appears only if it is followed by a digit.

n - the argument is taken to be an int * pointer to an integer into which
is written the number of characters written to the output stream so far by
this call to printf. No argument is converted.

p - the argument is taken to be a void * pointer to an object. The value
of the pointer is converted to a sequence of printable characters, and
printed as a hexadecimal number with the number of digits printed
being determined by the field width.

s - the argument is taken to be a char * pointer to a string. Characters
from the string are written up to, but not including, the terminating
NUL, or until the number of characters indicated by the precision are
written. If the precision is missing, it is taken to be arbitrarily large, so
all characters before the first NUL are printed.

If the character after ‘%’ is not a valid conversion character, the behav-
ior is undefined.

If any argument is or points to an aggregate (except for an array of char-
acters using %s conversion or any pointer using %p conversion),
unpredictable results will occur.

A nonexistent or small field width does not cause truncation of a field;
if the result is wider than the field width, the field is expanded to con-
tain the conversion result.
© 2004 COSMIC Software Using The Compiler 153

C Library - printf4

154
Return Value
printf returns the number of characters transmitted, or a negative
number if a write error occurs.

Notes
A call with more conversion specifiers than argument variables will
cause unpredictable results.

Example
To print arg, which is a double with the value 5100.53:

printf(“%8.2f\n”, arg);
printf(“%*.*f\n”, 8, 2, arg);

both forms will output: 05100.53

See Also
sprintf

Notes
printf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of printf is a subset
of the functionality of the floating point version. The integer only ver-
sion cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of printf, the following conversion
specifiers are invalid: e, E, f, g and G. The L modifier is also invalid.

If printf encounters an invalid conversion specifier, the invalid specifier
is ignored and no special message is generated.
© 2004 COSMIC SoftwareUsing The Compiler

C Library - putchar

putchar

Description

Put a character to output stream

Syntax

Function
putchar copies c to the user specified output stream.

You must rewrite putchar in either C or assembly language to provide
an interface to the output mechanism to the C library.

Return Value
putchar returns c. If a write error occurs, putchar returns EOF.

Example
To copy input to output:

while ((c = getchar()) != EOF)
putchar(c);

See Also
getchar

Notes
putchar is packaged in the integer library.

#include <stdio.h>
int putchar(c)
© 2004 COSMIC Software Using The Compiler 155

C Library - puts

puts

4

156
Description
Put a text line to output stream

Syntax

Function
puts copies characters from the buffer starting at s to the output stream
and appends a newline character to the output stream.

puts uses putchar to output each character. The terminating NUL is not
copied.

Return Value
puts returns zero if successful, or else nonzero if a write error occurs.

Example
To copy input to output, line by line:

while (puts(gets(buf)))
;

See Also
gets

Notes
puts is packaged in the integer library.

#include <stdio.h>
int puts(char *s)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - rand

rand

Description

Generate pseudo-random number

Syntax

Function
rand computes successive pseudo-random integers in the range
[0, 32767], using a linear multiplicative algorithm which has a period of
2 raised to the power of 32.

Example
int dice()

{
return (rand() % 6 + 1);
}

Return Value
rand returns a pseudo-random integer.

See Also
srand

Notes
rand is packaged in the integer library.

#include <stdlib.h>
int rand(void)
© 2004 COSMIC Software Using The Compiler 157

C Library - realloc

realloc

4

158
Description
Reallocate space on the heap

Syntax

Function
realloc grows or shrinks the size of the cell pointed to by ptr to the size
specified by nbytes. The contents of the cell will be unchanged up to the
lesser of the new and old sizes. The cell pointer ptr must have been
obtained by an earlier calloc, malloc, or realloc call; otherwise the heap
will become corrupted.

Return Value
realloc returns a pointer to the start of the possibly moved cell if suc-
cessful. Otherwise realloc returns NULL and the cell and ptr are
unchanged. The pointer returned may be assigned to an object of any
type without casting.

Example
To adjust p to be n doubles in size:

p = realloc(p, n * sizeof(double));

See Also
calloc, free, malloc

Notes
realloc is packaged in the integer library.

#include <stdlib.h>
void *realloc(void *ptr, unsigned int nbytes)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - revhc12

revhc12

Description

Evaluate fuzzy outputs

Syntax

Function
revhc12 evaluates fuzzy outputs based on evaluation rules which are
specified by the pointer rules. The base address of input and output
bytes is specified by the pointer in_out. Refer to the “HC12/HCS12
Reference Manual”, for a complete description of the rules encoding.

Return Value
revhc12 sets the output bytes to the result values according to the evalu-
ation rules.

Example
revhc12(rules, base);

See Also
memhc12, revwhc12, wavhc12

Notes
revhc12 is a builtin function declared in the <fuzzy.h> header file.

#include <fuzzy.h>
void revhc12(char *rules, char *in_out)
© 2004 COSMIC Software Using The Compiler 159

C Library - revwhc12

revwhc12

4

160
Description
Evaluate fuzzy outputs

Syntax

Function
revwhc12 evaluates fuzzy outputs based on evaluation rules which are
specified by the pointer rules. If the weight pointer is provided, it
should point to an array of byte weights used to ponderate the evalua-
tion. Otherwise weight has to be specified has the NULL pointer. Refer
to the “HC12/HCS12 Reference Manual”, for a complete description of
the rules encoding.

Return Value
revwhc12 sets the output bytes to the result values according to the
evaluation rules.

Example
revwhc12(rules, NULL);

See Also
memhc12, revhc12, wavhc12

Notes
revwhc12 is a builtin function declared in the <fuzzy.h> header file.

#include <fuzzy.h>
void revwhc12(unsigned int *rules, char *weight)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - sbreak

sbreak

Description

Allocate new memory

Syntax

Function
sbreak modifies the program memory allocation as necessary, to make
available at least size contiguous bytes of new memory, on a storage
boundary adequate for representing any type of data. There is no guar-
antee that successive calls to sbreak will deliver contiguous areas of
memory.

Return Value
sbreak returns a pointer to the start of the new memory if successful;
otherwise the value returned is NULL.

Example
To buy space for an array of symbols:

if (!(p = sbreak(nsyms * sizeof (symbol))))
remark(“not enough memory!”, NULL);

Notes
sbreak is packaged in the integer library.

sbreak is an extension to the ANSI C standard.

/* no header file need be included */
void *sbreak(unsigned int size)
© 2004 COSMIC Software Using The Compiler 161

C Library - scanf

scanf

4

162
Description
Read formatted input

Syntax

Function
scanf reads formatted input from the output stream using the format
string at fmt and the arguments specified by ..., as described below.

scanf uses getchar to read each character.

The behavior is unpredictable if there are insufficient argument pointers
for the format. If the format string is exhausted while arguments
remain, the excess arguments are evaluated but otherwise ignored.

Format Specifiers
The format string may contain:

• any number of spaces, horizontal tabs, and newline characters
which cause input to be read up to the next non-whitespace char-
acter, and

• ordinary characters other than ‘%’ which must match the next
character of the input stream.

Each <conversion specification>, the definition of which follows, con-
sists of the character ‘%’, an optional assignment-suppressing character
‘*’, an optional maximum field width, an optional h, l or L indicating
the size of the receiving object, and a <conversion character>,
described below.

A conversion specification directs the conversion of the next input
field. The result is placed in the object pointed to by the subsequent
argument, unless assignment suppression was indicated by a ‘*’. An

#include <stdio.h>
int scanf(char *fmt,...)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - scanf
input field is a string of non-space characters; it extends to the next con-
flicting character or until the field width, if specified, is exhausted.

The conversion specification indicates the interpretation of the input
field; the corresponding pointer argument must be a restricted type. The
<conversion character> is one of the following:

% - a single % is expected in the input at this point; no assignment
occurs.

If the character after ‘%’ is not a valid conversion character, the behav-
ior is undefined.

c - a character is expected; the subsequent argument must be of type
pointer to char. The normal behavior (skip over space characters) is
suppressed in this case; to read the next non-space character, use %1s.
If a field width is specified, the corresponding argument must refer to a
character array; the indicated number of characters is read.

d - a decimal integer is expected; the subsequent argument must be a
pointer to integer.

e, f, g - a float is expected; the subsequent argument must be a pointer
to float. The input format for floating point numbers is an optionally
signed sequence of digits, possibly containing a decimal point, followed
by an optional exponent field consisting of an E or e, followed by an
optionally signed integer.

i - an integer is expected; the subsequent argument must be a pointer to
integer. If the input field begins with the characters 0x or 0X, the field is
taken as a hexadecimal integer. If the input field begins with the charac-
ter 0, the field is taken as an octal integer. Otherwise, the input field is
taken as a decimal integer.

n - no input is consumed; the subsequent argument must be an int *
pointer to an integer into which is written the number of characters read
from the input stream so far by this call to scanf.

o - an octal integer is expected; the subsequent argument must be a
pointer to integer.
© 2004 COSMIC Software Using The Compiler 163

C Library - scanf4

164
p - a pointer is expected; the subsequent argument must be a void *
pointer. The format of the input field should be the same as that pro-
duced by the %p conversion of printf. On any input other than a value
printed earlier during the same program execution, the behavior of the
%p conversion is undefined.

s - a character string is expected; the subsequent argument must be a
char * pointer to an array large enough to hold the string and a terminat-
ing NUL, which will be added automatically. The input field is termi-
nated by a space, a horizontal tab, or a newline, which is not part of the
field.

u - an unsigned decimal integer is expected; the subsequent argument
must be a pointer to integer.

x - a hexadecimal integer is expected; a subsequent argument must be a
pointer to integer.

[- a string that is not to be delimited by spaces is expected; the subse-
quent argument must be a char * just as for %s. The left bracket is fol-
lowed by a set of characters and a right bracket; the characters between
the brackets define a set of characters making up the string. If the first
character is not a circumflex ‘^’, the input field consists of all charac-
ters up to the first character that is not in the set between the brackets; if
the first character after the left bracket is a circumflex, the input field
consists of all characters up to the first character that is in the set of the
remaining characters between the brackets. A NUL character will be
appended to the input.

The conversion characters d, i, o, u and x may be preceded by l to indi-
cate that the subsequent argument is a pointer to long int rather than a
pointer to int, or by h to indicate that it is a pointer to short int. Simi-
larly, the conversion characters e and f may be preceded by l to indicate
that the subsequent argument is a pointer to double rather than a pointer
to float, or by L to indicate a pointer to long double.

The conversion characters e, g or x may be capitalized. However, the
use of upper case has no effect on the conversion process and both
upper and lower case input is accepted.
© 2004 COSMIC SoftwareUsing The Compiler

C Library - scanf
If conversion terminates on a conflicting input character, that character
is left unread in the input stream. Trailing white space (including a
newline) is left unread unless matched in the control string. The success
of literal matches and suppressed assignments is not directly determina-
ble other than via the %n conversion.

Return Value
scanf returns the number of assigned input items, which can be zero if
there is an early conflict between an input character and the format, or
EOF if end of file is encountered before the first conflict or conversion.

Example
To be certain of a dubious request:

printf(“are you sure?”);
if (scanf(“%c”, &ans) && (ans == 'Y' || ans == 'y'))

scrog();

See Also
sscanf

Notes
scanf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of scanf is a subset
of the functionality of the floating point version. The integer only ver-
sion cannot read or manipulate floating point numbers. If your pro-
grams call the integer only version of scanf, the following conversion
specifiers are invalid: e, f, g and p. The L flag is also invalid.

If an invalid conversion specifier is encountered, it is ignored.
© 2004 COSMIC Software Using The Compiler 165

C Library - setjmp

setjmp

4

166
Description
Save calling environment

Syntax

Function
setjmp saves the calling environment in env for later use by the
longjmp function.

Since setjmp manipulates the stack, it should never be used except as
the single operand in a switch statement.

Return Value
setjmp returns zero on its initial call, or the argument to a longjmp call
that uses the same env.

Example
To call any event until it returns 0 or 1 and calls longjmp, which will
then start execution at the function event0 or event1:

static jmp_buf ev[2];

switch (setjmp(ev[0]))
{

case 0: /* registered */
break;

default: /* event 0 occurred */
event0();
next();
}

switch (setjmp(ev[1])
{

case 0: /* registered */
break;

default: /* event 1 occurred */
event1();
next();

#include <setjmp.h>
int setjmp(jmp_buf env)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - setjmp
}
next();

...
next()

{
int i;

for (; ;)
{
i = anyevent();
if (i == 0 || i == 1)

longjmp(ev[i]);
}

}

See Also
longjmp

Notes
setjmp is packaged in the integer library.
© 2004 COSMIC Software Using The Compiler 167

C Library - sin

sin

4

168
Description
Sin

Syntax

Function
sin computes the sine of x, expressed in radians, to full double preci-
sion. If the magnitude of x is too large to contain a fractional quadrant
part, the value of sin is 0.

Return Value
sin returns the closest internal representation to sin(x) in the range
[-pi/2, pi/2], expressed as a double floating value. A large argument
may return a meaningless result.

Example
To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);

See Also
cos, tan

Notes
sin is packaged in the floating point library.

#include <math.h>
double sin(double x)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - sinh

sinh

Description

Hyperbolic sine

Syntax

Function
sinh computes the hyperbolic sine of x to full double precision.

Return Value
sinh returns the closest internal representation to sinh(x), expressed as a
double floating value. If the result is too large to be properly repre-
sented, sinh returns zero.

Example
To obtain the hyperbolic sine of complex z:

typedef struct
{
double x, iy;
}complex;

complex z;

z.x = sinh(z.x) * cos(z.iy);
z.iy = cosh(z.x) * sin(z.iy);

See Also
cosh, exp, tanh

Notes
sinh is packaged in the floating point library.

#include <math.h>
double sinh(double x)
© 2004 COSMIC Software Using The Compiler 169

C Library - sprintf

sprintf

4

170
Description
Output arguments formatted to buffer

Syntax

Function
sprintf writes formatted to the buffer pointed at by s using the format
string at fmt and the arguments specified by ..., in exactly the same way
as printf. See the description of the printf function for information on
the format conversion specifiers. A NUL character is written after the
last character in the buffer.

Return Value
sprintf returns the numbers of characters written, not including the ter-
minating NUL character.

Example
To format a double at d into buf:

sprintf(buf, “%10f\n”, d);

See Also
printf

Notes
sprintf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of sprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of sprintf, the following conversion
specifiers are invalid: e, E, f, g and G. The L flag is also invalid.

#include <stdio.h>
int sprintf(char *s, char fmt,...)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - sqrt

sqrt

Description

Real square root

Syntax

Function
sqrt computes the square root of x to full double precision.

Return Value
sqrt returns the nearest internal representation to sqrt(x), expressed as a
double floating value. If x is negative, sqrt returns zero.

Example
To use sqrt to check whether n > 2 is a prime number:

if (!(n & 01))
return (NOTPRIME);

sq = sqrt((double)n);
for (div = 3; div <= sq; div += 2)

if (!(n % div))
return (NOTPRIME);

return (PRIME);

See Also
isqrt, lsqrt

Notes
sqrt is packaged in the floating point library.

#include <math.h>
double sqrt(double x)
© 2004 COSMIC Software Using The Compiler 171

C Library - srand

srand

4

172
Description
Seed pseudo-random number generator

Syntax

Function
srand uses nseed as a seed for a new sequence of pseudo-random num-
bers to be returned by subsequent calls to rand. If srand is called with
the same seed value, the sequence of pseudo-random numbers will be
repeated. The initial seed value used by rand and srand is 0.

Return Value
Nothing.

Example
To set up a new sequence of random numbers:

srand(103);

See Also
rand

Notes
srand is packaged in the integer library.

#include <stdlib.h>
void srand(unsigned char nseed)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - sscanf

sscanf

Description

Read formatted input from a string

Syntax

Function
sscanf reads formatted input from the NUL-terminated string pointed at
by s using the format string at fmt and the arguments specified by ..., in
exactly the same way as scanf. See the description of the scanf function
for information on the format conversion specifiers.

Return Value
sscanf returns the number of assigned input items, which can be zero if
there is an early conflict between an input character and the format, or
EOF if the end of the string is encountered before the first conflict or
conversion.

See Also
scanf

Notes
sscanf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of sscanf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of sscanf, the following conversion
specifiers are invalid: e, f, g and p. The L flag is also invalid.

#include <stdio.h>
int sscanf(schar *, char *fmt,...)
© 2004 COSMIC Software Using The Compiler 173

C Library - strcat

strcat

4

174
Description
Concatenate strings

Syntax

Function
strcat appends a copy of the NUL terminated string at s2 to the end of
the NUL terminated string at s1. The first character of s2 overlaps the
NUL at the end of s1. A terminating NUL is always appended to s1.

Return Value
strcat returns s1.

Example
To place the strings “first string, second string” in buf[]:

buf[0] = '\0';
strcpy(buf, “first string”);
strcat(buf, “, second string”);

See Also
strncat

Notes
There is no way to specify the size of the destination area to prevent
storage overwrites.

strcat is packaged in the integer library.

#include <string.h>
char *strcat(char *s1, char *s2)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - strchr

strchr

Description

Scan string for first occurrence of character

Syntax

Function
strchr looks for the first occurrence of a specific character c in a NUL
terminated target string s.

Return Value
strchr returns a pointer to the first character that matches c, or NULL if
none does.

Example
To map keystr[] characters into subst[] characters:

if (t = strchr(keystr, *s))
*s = subst[t - keystr];

See Also
memchr, strcspn, strpbrk, strrchr, strspn

Notes
strchr is packaged in the integer library.

#include <string.h>
char *strchr(char *s, int c)
© 2004 COSMIC Software Using The Compiler 175

C Library - strcmp

strcmp

4

176
Description
Compare two strings for lexical order

Syntax

Function
strcmp compares two text strings, character by character, for lexical
order in the character collating sequence. The first string starts at s1, the
second at s2. The strings must match, including their terminating NUL
characters, in order for them to be equal.

Return Value
strcmp returns an integer greater than, equal to, or less than zero,
according to whether s1 is lexicographically greater than, equal to, or
less than s2.

Example
To look for the string “include”:

if (strcmp(buf, “include”) == 0)
doinclude();

See Also
memcmp, strncmp

Notes
strcmp is packaged in the integer library.

#include <string.h>
int strcmp(char *s1, char *s2)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - strcpy

strcpy

Description

Copy one string to another

Syntax

Function
strcpy copies the NUL terminated string at s2 to the buffer pointed at
by s1. The terminating NUL is also copied.

Return Value
strcpy returns s1.

Example
To make a copy of the string s2 in dest:

strcpy(dest, s2);

See Also
memcpy, strncpy

Notes
There is no way to specify the size of the destination area, to prevent
storage overwrites.

strcpy is implemented as a builtin function.

#include <string.h>
char *strcpy(char *s1, char *s2)
© 2004 COSMIC Software Using The Compiler 177

C Library - strcspn

strcspn

4

178
Description
Find the end of a span of characters in a set

Syntax

Function
strcspn scans the string starting at s1 for the first occurrence of a char-
acter in the string starting at s2. It computes a subscript i such that:

• s1[i] is a character in the string starting at s1

• s1[i] compares equal to some character in the string starting at s2,
which may be its terminating null character.

Return Value
strcspn returns the lowest possible value of i. s1[i] designates the termi-
nating null character if none of the characters in s1 are in s2.

Example
To find the start of a decimal constant in a text string:

if (!str[i = strcspn(str, “0123456789+-”)])
printf(“can't find number\n”);

See Also
memchr, strchr, strpbrk, strrchr, strspn

Notes
strcspn is packaged in the integer library.

#include <string.h>
unsigned int strcspn(char *s1, char *s2)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - strlen

strlen

Description

Find length of a string

Syntax

Function
strlen scans the text string starting at s to determine the number of char-
acters before the terminating NUL.

Return Value
The value returned is the number of characters in the string before the
NUL.

Notes
strlen is packaged in the integer library.

#include <string.h>
unsigned int strlen(char *s)
© 2004 COSMIC Software Using The Compiler 179

C Library - strncat

strncat

4

180
Description
Concatenate strings of length n

Syntax

Function
strncat appends a copy of the NUL terminated string at s2 to the end of
the NUL terminated string at s1. The first character of s2 overlaps the
NUL at the end of s1. n specifies the maximum number of characters to
be copied, unless the terminating NUL in s2 is encountered first. A ter-
minating NUL is always appended to s1.

Return Value
strncat returns s1.

Example
To concatenate the strings “day” and “light”:

strcpy(s, “day”);
strncat(s + 3, “light”, 5);

See Also
strcat

Notes
strncat is packaged in the integer library.

#include <string.h>
char *strncat(char *s1, char *s2, unsigned int n)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - strncmp

strncmp

Description

Compare two n length strings for lexical order

Syntax

Function
strncmp compares two text strings, character by character, for lexical
order in the character collating sequence. The first string starts at s1, the
second at s2. n specifies the maximum number of characters to be com-
pared, unless the terminating NUL in s1 or s2 is encountered first. The
strings must match, including their terminating NUL character, in order
for them to be equal.

Return Value
strncmp returns an integer greater than, equal to, or less than zero,
according to whether s1 is lexicographically greater than, equal to, or
less than s2.

Example
To check for a particular error message:

if (strncmp(errmsg,
“can't write output file”, 23) == 0)
cleanup(errmsg);

See Also
memcmp, strcmp

Notes
strncmp is packaged in the integer library.

#include <string.h>
int strncmp(char *s1, char *s2, unsigned int n)
© 2004 COSMIC Software Using The Compiler 181

C Library - strncpy

strncpy

4

182
Description
Copy n length string

Syntax

Function
strncpy copies the first n characters starting at location s2 into the
buffer beginning at s1. n specifies the maximum number of characters
to be copied, unless the terminating NUL in s2 is encountered first. In
that case, additional NUL padding is appended to s2 to copy a total of n
characters.

Return Value
strncpy returns s1.

Example
To make a copy of the string s2 in dest:

strncpy(dest, s2, n);

See Also
memcpy, strcpy

Notes
If the string s2 points at is longer than n characters, the result may not
be NUL-terminated.

strncpy is packaged in the integer library.

#include <string.h>
char *strncpy(char *s1, char *s2, unsigned int n)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - strpbrk

strpbrk

Description

Find occurrence in string of character in set

Syntax

Function
strpbrk scans the NUL terminated string starting at s1 for the first
occurrence of a character in the NUL terminated set s2.

Return Value
strpbrk returns a pointer to the first character in s1 that is also contained
in the set s2, or a NULL if none does.

Example
To replace unprintable characters (as for a 64 character terminal):

while (string = strpbrk(string, “‘{|}~”))
*string = '@';

See Also
memchr, strchr, strcspn, strrchr, strspn

Notes
strpbrk is packaged in the integer library.

#include <string.h>
char *strpbrk(char *s1, char *s2)
© 2004 COSMIC Software Using The Compiler 183

C Library - strrchr

strrchr

4

184
Description
Scan string for last occurrence of character

Syntax

Function
strrchr looks for the last occurrence of a specific character c in a NUL
terminated string starting at s.

Return Value
strrchr returns a pointer to the last character that matches c, or NULL if
none does.

Example
To find a filename within a directory pathname:

if (s = strrchr(“/usr/lib/libc.user”, '/')
++s;

See Also
memchr, strchr, strpbrk, strcspn, strspn

Notes
strrchr is packaged in the integer library.

#include <string.h>
char *strrchr(char *s,int c)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - strspn

strspn

Description

Find the end of a span of characters not in set

Syntax

Function
strspn scans the string starting at s1 for the first occurrence of a charac-
ter not in the string starting at s2. It computes a subscript i such that

• s1[i] is a character in the string starting at s1

• s1[i] compares equal to no character in the string starting at s2,
except possibly its terminating null character.

Return Value
strspn returns the lowest possible value of i. s1[i] designates the termi-
nating null character if all of the characters in s1 are in s2.

Example
To check a string for characters other than decimal digits:

if (str[strspn(str, “0123456789”)])
printf(“invalid number\n”);

See Also
memchr, strcspn, strchr, strpbrk, strrchr

Notes
strspn is packaged in the integer library.

#include <string.h>
unsigned int strspn(char *s1, char *s2)
© 2004 COSMIC Software Using The Compiler 185

C Library - strstr

strstr

4

186
Description
Scan string for first occurrence of string

Syntax

Function
strstr looks for the first occurrence of a specific string s2 not including
its terminating NUL, in a NUL terminated target string s1.

Return Value
strstr returns a pointer to the first character that matches c, or NULL if
none does.

Example
To look for a keyword in a string:

if (t = strstr(buf, “LIST”))
do_list(t);

See Also
memchr, strcspn, strpbrk, strrchr, strspn

Notes
strstr is packaged in the integer library.

#include <string.h>
char *strstr(char *s1, char *s2)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - strtod

strtod

Description

Convert buffer to double

Syntax

Function
strtod converts the string at nptr into a double. The string is taken as
the text representation of a decimal number, with an optional fraction
and exponent. Leading whitespace is skipped and an optional sign is
permitted; conversion stops on the first unrecognizable character.
Acceptable inputs match the pattern:

[+|-]d*[.d*][e[+|-]dd*]

where d is any decimal digit and e is the character ‘e’ or ‘E’. If endptr is
not a null pointer, *endptr is set to the address of the first unconverted
character remaining in the string nptr. No checks are made against over-
flow, underflow, or invalid character strings.

Return Value
strtod returns the converted double value. If the string has no recogniz-
able characters, it returns zero.

Example
To read a string from STDIN and convert it to a double at d:

gets(buf);
d = strtod(buf, NULL);

See Also
atoi, atol, strtol, strtoul

Notes
strtod is packaged in the floating point library.

#include <stdlib.h>
double strtod(char *nptr, char **endptr)
© 2004 COSMIC Software Using The Compiler 187

C Library - strtol

strtol

4

188
Description
Convert buffer to long

Syntax

Function
strtol converts the string at nptr into a long integer. Leading whitespace
is skipped and an optional sign is permitted; conversion stops on the
first unrecognizable character. If base is not zero, characters a-z or A-Z
represents digits in range 10-36. If base is zero, a leading “0x” or “0X”
in the string indicates hexadecimal, a leading “0” indicates octal, other-
wise the string is take as a decimal representation. If base is 16 and a
leading “0x” or “0X” is present, it is skipped before to convert. If
endptr is not a null pointer, *endptr is set to the address of the first
unconverted character in the string nptr.

No checks are made against overflow or invalid character strings.

Return Value
strtol returns the converted long integer. If the string has no recogniza-
ble characters, zero is returned.

Example
To read a string from STDIN and convert it to a long l:

gets(buf);
l = strtol(buf, NULL, 0);

See Also
atof, atoi, strtoul, strtod

Notes
strtol is packaged in the integer library.

#include <stdlib.h>
long strtol(char *nptr, char **endptr, int base)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - strtoul

strtoul

Description

Convert buffer to unsigned long

Syntax

Function
strtoul converts the string at nptr into a long integer. Leading
whitespace is skipped and an optional sign is permitted; conversion
stops on the first unrecognizable character. If base is not zero, charac-
ters a-z or A-Z represents digits in range 10-36. If base is zero, a lead-
ing “0x” or “0X” in the string indicates hexadecimal, a leading “0”
indicates octal, otherwise the string is take as a decimal representation.
If base is 16 and a leading “0x” or “0X” is present, it is skipped before
to convert. If endptr is not a null pointer, *endptr is set to the address of
the first unconverted character in the string nptr.

No checks are made against overflow or invalid character strings.

Return Value
strtoul returns the converted long integer. If the string has no recogniza-
ble characters, zero is returned.

Example
To read a string from STDIN and convert it to a long l:

gets(buf);
l = strtoul(buf, NULL, 0);

See Also
atof, atoi, strtol, strtod

Notes
strtoul is a macro redefined to strtol.

#include <stdlib.h>
unsigned long strtoul(char *nptr, char **endptr,

int base)
© 2004 COSMIC Software Using The Compiler 189

C Library - tan

tan

4

190
Description
Tangent

Syntax

Function
tan computes the tangent of x, expressed in radians, to full double pre-
cision.

Return Value
tan returns the nearest internal representation to tan(x), in the range
[-pi/2, pi/2], expressed as a double floating value. If the number in x is
too large to be represented, tan returns zero. An argument with a large
size may return a meaningless value, i.e. when x / (2 * pi) has no frac-
tion bits.

Example
To compute the tangent of theta:

y = tan(theta);

See Also
cos, sin

Notes
tan is packaged in the floating point library.

#include <math.h>
double tan(double x)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - tanh

tanh

Description

Hyperbolic tangent

Syntax

Function
tanh computes the value of the hyperbolic tangent of x to double preci-
sion.

Return Value
tanh returns the nearest internal representation to tanh(x), expressed as
a double floating value. If the result is too large to be properly repre-
sented, tanh returns zero.

Example
To compute the hyperbolic tangent of x:

y = tanh(x);

See Also
cosh, exp, sinh

Notes
tanh is packaged in the floating point library.

#include <math.h>
double tanh(double x)
© 2004 COSMIC Software Using The Compiler 191

C Library - tolower

tolower

4

192
Description
Convert character to lower-case if necessary

Syntax

Function
tolower converts an upper-case letter to its lower-case equivalent, leav-
ing all other characters unmodified.

Return Value
tolower returns the corresponding lower-case letter, or the unchanged
character.

Example
To accumulate a hexadecimal digit:

for (sum = 0; isxdigit(*s); ++s)
if (isdigit(*s)

sum = sum * 16 + *s - '0';
else

sum = sum * 16 + tolower(*s) + (10 - 'a');

See Also
toupper

Notes
tolower is packaged in the integer library.

#include <ctype.h>
int tolower(int c)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - toupper

toupper

Description

Convert character to upper-case if necessary

Syntax

Function
toupper converts a lower-case letter to its upper-case equivalent, leav-
ing all other characters unmodified.

Return Value
toupper returns the corresponding upper-case letter, or the unchanged
character.

Example
To convert a character string to upper-case letters:

for (i = 0; i < size; ++i)
buf[i] = toupper(buf[i]);

See Also
tolower

Notes
toupper is packaged in the integer library.

#include <ctype.h>
int toupper(int c)
© 2004 COSMIC Software Using The Compiler 193

C Library - va_arg

va_arg

4

194
Description
Get pointer to next argument in list

Syntax

Function
The macro va_arg is an rvalue that computes the value of the next
argument in a variable length argument list. Information on the argu-
ment list is stored in the array data object ap. You must first initialize ap
with the macro va_start, and compute all earlier arguments in the list by
expanding va_arg for each argument.

The type of the next argument is given by the type name type. The type
name must be the same as the type of the next argument. Remember
that the compiler widens an arithmetic argument to int, and converts an
argument of type float to double. You write the type after conversion.
Write int instead of char and double instead of float.

Do not write a type name that contains any parentheses. Use a type def-
inition, if necessary, as in:

typedef int (*pfi)();
/* pointer to function returning int */
...

fun_ptr = va_arg(ap, pfi);
/* get function pointer argument */

Return Value
va_arg expands to an rvalue of type type. Its value is the value of the
next argument. It alters the information stored in ap so that the next
expansion of va_arg accesses the argument following.

Example
To write multiple strings to a file:

#include <stdarg.h>
type va_arg(va_list ap, type)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - va_arg
#include <stdio.h>
#include <stdarg.h>

main()
{
void strput();
strput(pf, “This is one string\n”, \

“and this is another...\n”, (char *)0);
}

void strput(FILE *pf,...);
void strput(char *ptr,...)
void strput(ptr)

char *ptr;
{
char ptr;
va_list va;

if (!ptr)
return;

else
{
puts(ptr);
va_start(va, ptr);
while (ptr = va_arg(va, char *)

puts(ptr);
va_end(va);
}

}

See Also
va_end, va_start

Notes
va_arg is a macro declared in the <stdarg.h> header file. You can use it
with any function that accepts a variable number of arguments, by
including <stdarg.h> with your program.
© 2004 COSMIC Software Using The Compiler 195

C Library - va_end

va_end

4

196
Description
Stop accessing values in an argument list

Syntax

Function
va_end is a macro which you must expand if you expand the macro
va_start within a function that contains a variable length argument list.
Information on the argument list is stored in the data object designated
by ap. Designate the same data object in both va_start and va_end.

You expand va_end after you have accessed all argument values with
the macro va_arg, before your program returns from the function that
contains the variable length argument list. After you expand va_end, do
not expand va_arg with the same ap. You need not expand va_arg
within the function that contains the variable length argument list.

You must write an expansion of va_end as an expression statement con-
taining a function call. The call must be followed by a semicolon.

Return Value
Nothing. va_end expands to a statement, not an expression.

Example
To write multiple strings to a file:

#include <stdio.h>
#include <stdarg.h>

main()
{
void strput();

strput(pf, “This is one string\n”, \
“and this is another...\n”, (char *)0);

}

#include <stdarg.h>
void va_end(va_list ap)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - va_end
void strput(FILE *pf,...);
void strput(char *ptr,...)
void strput(ptr)

char *ptr;
{
char ptr;
va_list va;

if (!ptr)
return;

else
{
puts(ptr);
va_start(va, ptr);
while (ptr = va_arg(va, char *)

puts(ptr);
va_end(va);
}

}

See Also
va_arg, va_start

Notes
va_end is a macro declared in the <stdarg.h> header file. You can use it
with any function that accepts a variable number of arguments, by
including <stdarg.h> with your program.
© 2004 COSMIC Software Using The Compiler 197

C Library - va_start

va_start

4

198
Description
Start accessing values in an argument list

Syntax

Function
va_start is a macro which you must expand before you expand the
macro va_arg. It initializes the information stored in the data object
designated by ap. The argument parmN must be the identifier you
declare as the name of the last specified argument in the variable length
argument list for the function. In the function prototype for the function,
parmN is the argument name you write just before the ,...

The type of parmN must be one of the types assumed by an argument
passed in the absence of a prototype. Its type must not be float or char.
Also, parmN cannot have storage class register.

If you expand va_start, you must expand the macro va_end before your
program returns from the function containing the variable length argu-
ment list.

You must write an expansion of va_start as an expression statement
containing a function call. The call must be followed by a semicolon.

Return Value
Nothing. va_start expands to a statement, not an expression.

Example
To write multiple strings to a file:

#include <stdio.h>
#include <stdarg.h>

main()
{

#include <stdarg.h>
void va_start(va_list ap, parmN)
© 2004 COSMIC SoftwareUsing The Compiler

C Library - va_start
void strput();
strput(pf, “This is one string\n”, \

“and this is another...\n”, (char *)0);
}

void strput(FILE *pf,...);
void strput(char *ptr,...)
void strput(ptr)

char *ptr;
{
char ptr;
va_list va;

if (!ptr)
return;

else
{
puts(ptr);
va_start(va, ptr);
while (ptr = va_arg(va, char *)

puts(ptr);
va_end(va);
}

}

See Also
va_arg, va_end

Notes
va_start is a macro declared in the <stdarg.h> header file. You can use
it with any function that accepts a variable number of arguments, by
including <stdarg.h> with your program.
© 2004 COSMIC Software Using The Compiler 199

C Library - vprintf

vprintf

4

200
Description
Output arguments formatted to stdout

Syntax

Function
vprintf writes formatted to the output stream using the format string at
fmt and the arguments specified by pointer ap, in exactly the same way
as printf. See the description of the printf function for information on
the format conversion specifiers. The va_start macro must be executed
before to call the vprintf function.

vprintf uses putchar to output each character.

Return Value
vprintf returns the numbers of characters transmitted.

Example
To format a double at d into buf:

va_start(aptr, fmt);
vprintf(fmt, aptr);

See Also
printf, vsprintf

Notes
vprintf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of vprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print floating point numbers. If your programs call the
integer only version of vprintf, the following conversion specifiers are
invalid: e, E, f, g and G. The L flag is also invalid.

#include <stdio.h>

int vprintf(char *s, char fmt, va_list ap)
#include <stdarg.h>
© 2004 COSMIC SoftwareUsing The Compiler

C Library - vsprintf

vsprintf

Description

Output arguments formatted to buffer

Syntax

Function
vsprintf writes formatted to the buffer pointed at by s using the format
string at fmt and the arguments specified by pointer ap, in exactly the
same way as printf. See the description of the printf function for infor-
mation on the format conversion specifiers. A NUL character is written
after the last character in the buffer. The va_start macro must be exe-
cuted before to call the vsprintf function.

Return Value
vsprintf returns the numbers of characters written, not including the ter-
minating NUL character.

Example
To format a double at d into buf:

va_start(aptr, fmt);
vsprintf(buf, fmt, aptr);

See Also
printf, vprintf

Notes
vsprintf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of vsprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print floating point numbers. If your programs call the
integer only version of vsprintf, the following conversion specifiers are
invalid: e, E, f, g and G. The L flag is also invalid.

#include <stdio.h>

int vsprintf(char *s, char fmt, va_list ap)
#include <stdarg.h>
© 2004 COSMIC Software Using The Compiler 201

C Library - wavhc12

wavhc12

4

202
Description
Evaluate weighted average

Syntax

Function
wavhc12 computes the average of the a list of products between two
arrays provided by the arguments op1 and op2. The argument nbval
specifies the number of input values to be used. Refer to the “HC12/
HCS12 Reference Manual”, for a complete description of the calcula-
tion.

Return Value
wavhc12 returns the average in the b register.

Example
res = wavhc12(tab_1, tab_2, 10);

See Also
memhc12, revhc12, revwhc12

Notes
wavhc12 is a builtin function declared in the <fuzzy.h> header file.

#include <fuzzy.h>
char wavhc12(char *op1, char *op2, int nbval)
© 2004 COSMIC SoftwareUsing The Compiler

CHAPTER

5

Using The Assembler
The ca6812 cross assembler translates your assembly language source
files into relocatable object files. The C cross compiler calls ca6812 to
assemble your code automatically, unless specified otherwise. ca6812
generates also listings if requested. This chapter includes the following
sections:

• Invoking ca6812

• Object File

• Listings

• Assembly Language Syntax

• Branch Optimization

• Old Syntax

• C Style Directives

• Assembler Directives
© 2004 COSMIC Software Using The Assembler 203

Invoking ca68125

204
Invoking ca6812
ca6812 accepts the following command line options, each of which is
described in detail below:

-a map all sections to absolute, including the predefined ones.

-b do not optimize branch instructions. By default, the assem-
bler replaces long branches by short branches wherever a
shorter instruction can be used, and short branches by long
branches wherever the displacement is too large. This opti-
mization also applies to jump and jump to subroutines
instructions.

-c produce cross-reference information. The cross-reference
information will be added at the end of the listing file; this
option enforces the -l option.

ca6812 [options] <files>
-a absolute assembler
-b do not optimizes branches
-c output cross reference
-d*> define symbol=value
+e* error file name
-ff use formfeed in listing
-ft force title in listing
-f# fill byte value
-h* include header
-i*> include path
-l output a listing
+l* listing file name
-m accept old syntax
-mi accept label syntax
-n* processor name
-o* output file name
-pe all equates public
-pl keep local symbol
-p all symbols public
-u undefined in listing
-v be verbose
-x include line debug info
-xp no path in debug info
-xx include full debug info
© 2004 COSMIC SoftwareUsing The Assembler

Invoking ca6812
-d*> where * has the form name=value, defines name to have
the value specified by value. This option is equivalent to
using an equ directive in each of the source files.

+e* log errors from assembler in the text file * instead of dis-
playing the messages on the terminal screen.

-ff use formfeed character to skip pages in listing instead of
using blank lines.

-ft output a title in listing (date, file name, page). By default,
no title is output.

-f# define the value of the filling byte used to fill any gap cre-
ated by the assembler directives. Default is 0.

-h* include the file specified by * before starting assembly. It
is equivalent to an include directive in each source file.

-i*> define a path to be used by the include directive. Up to 20
paths can be defined. A path is a directory name and is not
ended by any directory separator character.

-l create a listing file. The name of the listing file is derived
from the input file name by replacing the suffix by the ‘.ls’
extension.

+l* create a listing file in the text file *. If both -l and +l are
specified, the listing file name is given by the +l option.

-m accept the old Motorola syntax.

-mi accept label that is not ended with a ‘:’ character.

-n* select the processor type. The default type is the HCS12
processor. The allowed targets are:

a Standard processors (HC12)
s: HCS12 family.
© 2004 COSMIC Software Using The Assembler 205

Invoking ca68125

206
-o* write object code to the file *. If no file name is specified,
the output file name is derived from the input file name, by
replacing the right most extension in the input file name
with the character ‘o’. For example, if the input file name
is prog.s, the default output file name is prog.o.

-pe mark all symbols defined by an equ directive as public.
This option has the same effect than adding a xdef direc-
tive for each of those symbols.

-pl put locals in the symbol table. They are not published as
externals and will be only displayed in the linker map file.

-p mark all defined symbols as public. This option has the
same effect than adding a xdef directive for each label.

-u produce an error message in the listing file for all occur-
rence of an undefined symbol. This option enforces the -l
option.

-v display the name of each file which is processed.

-x add line debug information to the object file.

-xp do not prefix filenames in the debug information with any
absolute path name. Debuggers will have to be informed
about the actual files location.

-xx add debug information in the object file for any label
defining code or data. This option disables the -p option as
only public or used labels are selected.

Each source file specified by <files> will be assembled separately, and
will produce separate object and listing files. For each source file, if no
errors are detected, ca6812 generates an object file. If requested by the
-l or -c options, ca6812 generates a listing file even if errors are
detected. Such lines are followed by an error message in the listing.
© 2004 COSMIC SoftwareUsing The Assembler

Object File
Object File
The object file produced by the assembler is a relocatable object in a
format suitable for the linker clnk. This will normally consist of
machine code, initialized data and relocation information. The object
file also contains information about the sections used, a symbol table,
and a debug symbol table.

Listings
The listing stream contains the source code used as input to the assem-
bler, together with the hexadecimal representation of the corresponding
object code and the address for which it was generated. The contents of
the listing stream depends on the occurrence of the list, nolist, clist,
dlist and mlist directives in the source. The format of the output is as
follows:

<address> <generated_code> <source_line>

where <address> is the hexadecimal relocatable address where the
<source_line> has been assembled, <generated_code> is the hexadec-
imal representation of the object code generated by the assembler and
<source_line> is the original source line input to the assembler. If
expansion of data, macros and included files is not enabled, the
<generated_code> print will not contain a complete listing of all gen-
erated code.

Addresses in the listing output are the offsets from the start of the cur-
rent section. After the linker has been executed, the listing files may be
updated to contain absolute information by the clabs utility. Addresses
and code will be updated to reflect the actual values as built by the
linker.

Several directives are available to modify the listing display, such as
title for the page header, plen for the page length, page for starting a
new page, tabs for the tabulation characters expansion. By default, the
listing file is not paginated. Pagination is enabled by using at least one
title directive in the source file, or by specifying the -ft option on the
command line. Otherwise, the plen and page directives are simply
ignored. Some other directives such as clist, mlist or dlist control the
amount of information produced in the listing.
© 2004 COSMIC Software Using The Assembler 207

Assembly Language Syntax5

208
A cross-reference table will be appended to the listing if the -c option
has been specified. This table gives for each symbol its value, its
attributes, the line number of the line where it has been defined, and the
list of line numbers where it is referenced.

Assembly Language Syntax
The assembler ca6812 conforms to the Motorola syntax as described in
the document Assembly Language Input Standard. The assembly lan-
guage consists of lines of text in the form:

[label:] [command [operands]] [; comment]
or

; comment

where ‘:’ indicates the end of a label and ‘;’ defines the start of a com-
ment. The end of a line terminates a comment. The command field may
be an instruction, a directive or a macro call.

Instruction mnemonics and assembler directives may be written in
upper or lower case. The C compiler generates lowercase assembly lan-
guage.

A source file must end with the end directive. All the following lines
will be ignored by the assembler. If an end directive is found in an
included file, it stops only the process for the included file.

Instructions
ca6812 recognizes the following instructions:

aba bpl ediv lbls neg sev
abx bra edivs lblt nega sex
aby brclr emacs lbmi negb staa
adca brn emaxd lbne nop stab
adcb brset emaxm lbpl oraa std
adda bset emind lbra orab stop
addb bsr eminm lbrn orcc sts
addd bvc emul lbsr psha stx
anda bvs emuls lbvc pshb sty
andb call eora lbvs pshc suba
andcc cba eorb ldaa pshd subb
asl clc etbl ldab pshx subd
asla cli exg ldd pshy swi
© 2004 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
aslb clr fdiv lds pula tab
asld clra ibeq ldx pulb tap
asr clrb ibne ldy pulc tba
asra clv idiv leas puld tbeq
asrb cmpa idivs leax pulx tbl
bcc cmpb inc leay puly tbne
bclr com inca lsl rev tfr
bcs coma incb lsla revw tpa
beq comb ins lslb rol tst
bge cpd inx lsld rola tsta
bgnd cps iny lsr rolb tstb
bgt cpx jmp lsra ror tsx
bhi cpy jsr lsrb rora tsy
bhs daa lbcc lsrd rorb txs
bita dbeq lbcs maxa rtc tys
bitb dbne lbeq maxm rti wai
ble dec lbge mem rts wav
blo deca lbgt mina sba xgdx
bls decb lbhi minm sbca xgdy
blt des lbhs movb sbcb
bmi dex lble movw sec
bne dey lblo mul sei

The operand field of an instruction uses an addressing mode to
describe the instruction argument. The following example demonstrates
the accepted syntax:

tpa ; implicit
ldaa #1 ; immediate
anda var ; direct or extended
addd ,x ; indexed
orab 0,x ; indexed
ldd 1,y+ ; indexed
jmp [d,pc] ; indexed
bne loop ; relative
bset var,2 ; bit number
brset var,2,loop ; bit test and branch

The assembler chooses the smallest addressing mode where several
solutions are possible. Direct addressing mode is selected when using a
label defined in the .bsct section.

The assembler accepts pc relative addressing mode with two possible
syntaxes:
© 2004 COSMIC Software Using The Assembler 209

Assembly Language Syntax5

210
ldd 10,pc ; absolute offset
ldd symbol,pcr ; relative offset

The first syntax using the register name pc encoded the specified offset
directly in the instruction. The second syntax using the register name
pcr encodes in the instruction a relative value computed by substracting
the value of the current pc from the value of the specific offset. This is
mainly used with symbolic references.

Wherever the extended addressing mode is not accepted, the assembler
will automatically replace it by an indexed addressing mode using the
pcr relative notation if accepted by the instruction. Then, the two fol-
lowing lines produce the same code:

ldd [symbol,pcr]
ldd [symbol]; implied pcr

For an exact description of the above instructions, refer to the
Motorola’s HC12/HCS12 Reference Manual.

Labels
A source line may begin with a label. Some directives require a label on
the same line, otherwise this field is optional. A label must begin with
an alphabetic character, the underscore character ‘_’ or the period char-
acter ‘.’. It is continued by alphabetic (A-Z or a-z) or numeric (0,9)
characters, underscores, dollar signs ($) or periods. Labels are case sen-
sitive. The processor register names ‘a’, ‘b’, ‘x’ and ‘y’ are reserved and
cannot be used as labels.

data1: dc.b $56
_reg: ds.b 1

When a label is used within a macro, it may be expanded more than
once and in that case, the assembler will fail with a “multiply defined
symbol” error. In order to avoid that problem, the special sequence ‘\@’
may be used as a label prefix. This sequence will be replaced by a
unique sequence for each macro expansion. This prefix is only allowed
inside a macro definition.

wait: macro
\@loop:brset 1,PORTA,\@loop

endm
© 2004 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
Temporary Labels
The assembler allows temporary labels to be defined when there is no
need to give them an explicit name. Such a label is composed by a dec-
imal number immediately followed by a ‘$’ character. Such a label is
valid until the next standard label or the local directive. Then the same
temporary label may be redefined without getting a multiply defined
error message.

1$: deca
bne 1$

2$: decb
bne 2$

Temporary labels do not appear in the symbol table or the cross refer-
ence list.

For example, to define 3 different local blocks and create and use 3 dif-
ferent local labels named 10$:

function1:
10$: ldab var

beq 10$
stab var2
local

10$: ldaa var2
beq 10$
staa var
rts

function2:
10$: ldaa var2

suba var
bne 10$
rts

Constants
The assembler accepts numeric constants and string constants.
Numeric constants are expressed in different bases depending on a
prefix character as follows:
© 2004 COSMIC Software Using The Assembler 211

Assembly Language Syntax5

212
The assembler also accepts numerics constants in different bases
depending on a suffix character as follow:

The suffix letter can be entered uppercase or lowercase. Hexadecimal
numbers still need to start with a digit.

String constants are a series of printable characters between single or
double quote characters:

‘This is a string’
“This is also a string”

Depending on the context, a string constant will be seen either as a
series of bytes, for a data initialization, or as a numeric; in which case,
the string constant should be reduced to only one character.

hexa: dc.b ’0123456789ABCDEF’
start: cmp #’A’ ; ASCII value of ‘A’

Expressions
An expression consists of a number of labels and constants connected
together by operators. Expressions are evaluated to 32-bit precision.
Note that operators have the same precedence than in the C language.

Number Base

10 decimal (no prefix)

%1010 binary

@12 octal

$A hexadecimal

Suffix Base

D, d or none decimal (no prefix)

B or b binary

Q or q octal

0AH or 0Ah hexadecimal
© 2004 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
A special label written ‘*’ is used to represent the current location
address. Note that when ‘*’ is used as the operand of an instruction, it
has the value of the program counter before code generation for that
instruction. The set of accepted operators is:

+ addition
- subtraction (negation)
* multiplication
/ division
% remainder (modulus)
& bitwise and
| bitwise or
^ bitwise exclusive or
~ bitwise complement
<< left shift
>> right shift
== equality
!= difference
< less than
<= less than or equal
> greater than
>= greater than or equal
&& logical and
|| logical or
! logical complement

These operators may be applied to constants without restrictions, but
are restricted when applied to relocatable labels. For those labels, the
addition and substraction operators only are accepted and only in the
following cases:

label + constant
label - constant
label1 - label2

An expression may also be constructed with a special operator. These
expressions cannot be used with the previous operators and have to be
specified alone.

The difference of two relocatable labels is valid only if both symbols are
not external symbols, and are defined in the same section.

NOTE
© 2004 COSMIC Software Using The Assembler 213

Assembly Language Syntax5

214
high(expression) upper byte
low(expression) lower byte
page(expression) page byte

These special operators evaluate an expression and extract the appro-
priate information from the result. The expression may be relocatable,
and may use the set of operators if allowed.

high - extract the upper byte of the 16-bit expression

low - extract the lower byte of the 16-bit expression

page - extract the page value of the expression. It is computed by the
linker according to the -bs option used. This is used to get the address
extension when bank switching is used.

Macro Instructions
A macro instruction is a list of assembler commands collected under a
unique name. This name becomes a new command for the following of
the program. A macro begins with a macro directive and ends with a
endm directive. All the lines between these two directives are recorded
and associated with the macro name specified with the macro directive.

signex:macro ; sign extension
clra ; prepare MSB
tstb ; test sign
bpl \@pos ; if not positive
coma ; invert MSB

\@pos:
endm ; end of macro

This macro is named signex and contains the code needed to perform a
sign extension of a into x. Whenever needed, this macro can be
expanded just by using its name in place of a standard instruction:

ldab char+1 ; load LSB
signex ; expand macro
std char ; store result

The resulting code will be the same as if the following code had been
written:
© 2004 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
ldab char+1 ; load LSB
clra ; prepare MSB
tstb ; test sign
bpl pos ; if not positive
coma ; invert MSB

pos:
std char ; store result

A macro may have up to 35 parameters. A parameter is written \1,
\2,... \9, \A,...\Z inside the macro body and refers explicitly to the first,
second,... ninth argument and \A to \Z to denote the tenth to 35th oper-
and on the invocation line, which are placed after the macro name, and
separated by commas. Each argument replaces each occurrence of its
corresponding parameter. An argument may be expressed as a string
constant if it contains a comma character.

A macro can also handle named arguments instead of numbered argu-
ment. In such a case, the macro directive is followed by a list of argu-
ment named, each prefixed by a \ character, and separated by commas.
Inside the macro body, arguments will be specified using the same syn-
tax or a sequence starting by a \ character followed by the argument
named placed between parenthesis. This alternate syntax is useful to
catenate the argument with a text string immediately starting with
alphanumeric characters.

The special parameter \# is replaced by a numeric value corresponding
to the number of arguments actually found on the invocation line.

In order to operate directly in memory, the previous macro may have
been written using the numbered syntax:

signex: macro ; sign extension
clra ; prepare MSB
ldab \1 ; load LSB
bpl \@pos ; if not positive
coma ; invert MSB

\@pos: std \1 ; store MSB
endm ; end of macro

And called:

signex char ; sign extend char
© 2004 COSMIC Software Using The Assembler 215

Assembly Language Syntax5

216
This macro may also be written using the named syntax:

signex: macro \value ; sign extension
clra ; prepare MSB
ldab \value ; load LSB
bpl \@pos ; if not positive
coma ; invert MSB

\@pos: std \(value) ; store MSB
endm ; end of macro

The form of a macro call is:

The special parameter \0 corresponds to an extension <ext> which may
follow the macro name, separated by the period character ‘.’. An exten-
sion is a single letter which may represent the size of the operands and
the result. For example:

table: macro
dc.\0 1,2,3,4

endm

When invoking the macro:

table.b

will generate a table of byte:

dc.b 1,2,3,4

When invoking the macro:

table.w

will generate a table of word:

dc.w 1,2,3,4

The special parameter * is replaced by a sequence containing the list of
all the passed arguments separated by commas. This syntax is useful to
pass all the macro arguments to another macro or a repeatl directive.

 name>[.<ext>] [<arguments>]
© 2004 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
The directive mexit may be used at any time to stop the macro expan-
sion. It is generally used in conjunction with a conditional directive.

A macro call may be used within another macro definition. A macro
definition cannot contain another macro definition.

If a listing is produced, the macro expansion lines are printed if enabled
by the mlist directive. If enabled, the invocation line is not printed, and
all the expanded lines are printed with all the parameters replaced by
their corresponding arguments. Otherwise, the invocation line only is
printed.

Conditional Directives
A conditional directive allows parts of the program to be assembled or
not depending on a specific condition expressed in an if directive. The
condition is an expression following the if command. The expression
cannot be relocatable, and shall evaluate to a numeric result. If the con-
dition is false (expression evaluated to zero), the lines following the if
directive are skipped until an endif or else directive. Otherwise, the
lines are normally assembled. If an else directive is encountered, the
condition status is reversed, and the conditional process continues until
the next endif directive.

if debug == 1
ldx #message
jsr print
endif

If the symbol debug is equal to 1, the next two lines are assembled. Oth-
erwise they are skipped.

if offset != 1 ; if offset too large
addptr offset ; call a macro
else ; otherwise
inx ; increment X register
endif

If the symbol offset is not one, the macro addptr is expanded with off-
set as argument, otherwise the inx instruction is directly assembled.
© 2004 COSMIC Software Using The Assembler 217

Assembly Language Syntax5

218
Conditional directives may be nested. An else directive refers to the
closest previous if directive, and an endif directive refers to the closest
previous if or else directive.

If a listing is produced, the skipped lines are printed only if enabled by
the clist directive. Otherwise, only the assembled lines are printed.

Sections
The assembler allows code and data to be splitted in sections. A section
is a set of code or data referenced by a section name, and providing a
contiguous block of relocatable information. A section is defined with a
section directive, which creates a new section and redirects the follow-
ing code and data thereto. The directive switch can be used to redirect
the following code and data to another section.

data: section ; defines data section
text: section ; defines text section
start: ldx #value ; fills text section

jmp print
switch data ; use now data section

value: dc.b 1,2,3 ; fills data section

The assembler allows up to 255 different sections. A section name is
limited to 15 characters. If a section name is too long, it is simply trun-
cated without any error message.

The assembler predefines the following sections, meaning that a section
directive is not needed before to use them:

The sections .bsct and .ubsct are used for locating data in the zero page
of the processor. The zero page is defined as the memory addresses

Section Description

.text executable code

.data initialized data

.bss uninitialized data

.bsct initialized data in zero page

.ubsct uninitialized data in zero page
© 2004 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
between 0x00 and 0xFF inclusive, i.e. the memory directly addressable
by a single byte. Several processors include special instructions and/or
addressing modes that take advantage of this special address range. The
Cosmic assembler will automatically use the most efficient addressing
mode if the data objects are allocated in the .bsct, .ubsct or a section
with the same attributes. If zero page data objects are defined in another
file then the directive xref.b must be used to externally reference the
data object. This directive specifies that the address for these data
object is only one byte and therefore the assembler may use 8 bit
addressing modes.

xref var
xref.b zvar
switch .bsct

zvar2: ds.b 1
switch .bss

var2: ds.b 1
switch .text
ldaa var
ldaa zvar
ldaa var2
ldaa var2
end

Includes
The include directive specifies a file to be included and assembled in
place of the include directive. The file name is written between double
quotes, and may be any character string describing a file on the host
system. If the file cannot be found using the given name, it is searched
from all the include paths defined by the -i options on the command
line, and from the paths defined by the environment symbol CXLIB, if
such a symbol has been defined before the assembler invocation. This
symbol may contain several paths separated by the usual path separator
of the host operating system (‘;’ for MSDOS and ‘:’ for UNIX).

The -h option can specify a file to be “included”. The file specified will
be included as if the program had an include directive at its very top.
The specified file will be included before any source file specified on
the command line.
© 2004 COSMIC Software Using The Assembler 219

Branch Optimization5

220
Branch Optimization
Branch instructions are by default automatically optimized to produce
the shortest code possible. This behaviour may be disabled by the -b
option. This optimization operates on conditional branches, on jumps
and jumps to subroutine.

A conditional branch offset is limited to the range [-128,127]. If such an
instruction cannot be encoded properly, the assembler will replace it by
a sequence containing an inverted branch to the next location followed
immediately by a jump to the original target address. The assembler
keep track of the last replacement for each label, so if a long branch has
already been expanded for the same label at a location close enough
from the current instruction, the target address of the short branch will
be changed only to branch on the already existing jump instruction to
the specified label.

beq farlabel becomes bne *+5
jmp farlabel

Note that a bra instruction will be replaced by a single jmp instruction
if it cannot be encoded as a relative branch.

A jmp or jsr instruction will be replaced by a bra or bsr instruction if
the destination address is in the same section than the current one, and if
the displacement is in the range allowed by a relative branch.

Old Syntax
The -m option allows the assembler to accept old constructs which are
now obsolete. The following features are added to the standard behav-
iour:

• a comment line may begin with a ‘*’ character;

• a label starting in the first column does not need to be ended with
a ‘:’ character;

• no error message is issued if an operand of the dc.b directive is
too large;
© 2004 COSMIC SoftwareUsing The Assembler

C Style Directives
• the section directive handles numbered sections;

The comment separator at the end of an instruction is still the ‘;’ charac-
ter because the ‘*’ character is interpreted as the multiply operator.

C Style Directives
The assembler also supports C style directives matching the preproces-
sor directives of a C compiler. The following directives list shows the
equivalence with the standard directives:

Assembler Directives
This section consists of quick reference descriptions for each of the
ca6812 assembler directives.

C Style Assembler Style

#include “file” include “file”

#define label expression label: equ expression

#define label label: equ 1

#if expression if expression

#ifdef label ifdef label

#ifndef label ifndef label

#else else

#endif endif

#error “message” fail “message”

The #define directive does not implement all the text replacement fea-
tures provided by a C compiler. It can be used only to define a symbol
equal to a numerical value.

NOTE
© 2004 COSMIC Software Using The Assembler 221

C Library - align

align

5

222
Description
Align the next instruction on a given boundary

Syntax

Function
The align directive forces the next instruction to start on a specific
boundary. The align directive is followed by a constant expression
which must be positive. The next instruction will start at the next
address which is a multiple of the specified value. If bytes are added in
the section, they are set to the value of the filling byte defined by the -f
option. If <fill_value>, is specified, it will be used locally as the filling
byte, instead of the one specified by the -f option.

Example
align 3 ; next address is multiple of 3
ds.b 1

See Also
even

align <expression>,[<fill_value>]
© 2004 COSMIC SoftwareUsing The Assembler

C Library - base

base

Description

Define the default base for numerical constants

Syntax

Function
The base directive sets the default base for numerical constants begin-
ning with a digit. The base directive is followed by a constant expres-
sion which value must be one of 2, 8, 10 or 16. The decimal base is used
by default. When another base is selected, it is no more possible to enter
decimal constants.

Example
base 8 ; select octal base
lda #377 ; load $FF

base <expression>
© 2004 COSMIC Software Using The Assembler 223

C Library - bsct

bsct

5

224
Description
Switch to the predefined .bsct section.

Syntax

Function
The bsct directive switches input to a section named .bsct, also known
as the zero page section. The assembler will automatically select the
direct addressing mode when referencing an object defined in the .bsct
section.

Example
bsct

c_reg:
ds.b 1

Notes
The .bsct section is limited to 256 bytes, but the assembler does not
check the .bsct section size. This will be done by the linker.

See Also
section, switch

bsct
© 2004 COSMIC SoftwareUsing The Assembler

C Library - clist

clist

Description

Turn listing of conditionally excluded code on or off.

Syntax

Function
The clist directive controls the output in the listing file of conditionally
excluded code. It is effective if and only if listings are requested; it is
ignored otherwise.

The parts of the program to be listed are the program lines which are not
assembled as a consequence of if, else and endif directives.

See Also
if, else, endif

clist [on|off]
© 2004 COSMIC Software Using The Assembler 225

C Library - dc

dc

5

226
Description
Allocate constant(s)

Syntax

Function
The dc directive allocates and initializes storage for constants. If
<expression> is a string constant, one byte is allocated for each charac-
ter of the string. Initialization can be specified for each item by giving a
series of values separated by commas or by using a repeat count.

The dc and dc.b directives will allocate one byte per <expression>.

The dc.w directive will allocate one word per <expression>.

The dc.l directive will allocate one long word per <expression>.

Example
digit: dc.b 10,'0123456789'

dc.w digit

Note
For compatibility with previous assemblers, the directive fcb is alias to
dc.b, and the directive fdb is alias to dc.w.

dc[.size] <expression>[,<expression>...]
© 2004 COSMIC SoftwareUsing The Assembler

C Library - dcb

dcb

Description

Allocate constant block

Syntax

Function
The dcb directive allocates a memory block and initializes storage for
constants. The size area is the number of the specified value <count> of
<size>. The memory area can be initialized with the <value> specified.

The dcb and dcb.b directives will allocate one byte per <count>.

The dcb.w directive will allocate one word per <count>.

The dcb.l directive will allocate one long word per <count>.

Example
digit: dcb.b 10,5 ; allocate 10 bytes,

; all initialized to 5

dcb.<size> <count>,<value>
© 2004 COSMIC Software Using The Assembler 227

C Library - dlist

dlist

5

228
Description
Turn listing of debug directives on or off.

Syntax

Function
The dlist directive controls the visibility of any debug directives in the
listing. It is effective if and only if listings are requested; it is ignored
otherwise.

dlist [on|off]
© 2004 COSMIC SoftwareUsing The Assembler

C Library - ds

ds

Description

Allocate variable(s)

Syntax

Function
The ds directive allocates storage space for variables. <space> must be
an absolute expression. Bytes created are set to the value of the filling
byte defined by the -f option.

The ds and ds.b directives will allocate <space> bytes.

The ds.w directive will allocate <space> words.

The ds.l directive will allocate <space> long words.

Example
ptlec: ds.b 2
ptecr: ds.b 2
chrbuf: ds.w 128

Note
For compatibility with previous assemblers, the directive rmb is alias
to ds.b.

ds[.size] <space>
© 2004 COSMIC Software Using The Assembler 229

C Library - else

else

5

230
Description
Conditional assembly

Syntax

Function
The else directive follows an if directive to define an alternative condi-
tional sequence. It reverts the condition status for the following instruc-
tions up to the next matching endif directive. An else directive applies
to the closest previous if directive.

Example
if offset != 1 ; if offset too large
addptr offset ; call a macro
else ; otherwise
inx ; increment X register
endif

Note
The else and elsec directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
if, endif, clist

if <expression>
instructions
else
instructions
endif
© 2004 COSMIC SoftwareUsing The Assembler

C Library - elsec

elsec

Description

Conditional assembly

Syntax

Function
The elsec directive follows an if directive to define an alternative condi-
tional sequence. It reverts the condition status for the following instruc-
tions up to the next matching endc directive. An elsec directive applies
to the closest previous if directive.

Example
ifge offset-127 ; if offset too large
addptr offset ; call a macro
elsec ; otherwise
inx ; increment X register
endc

Note
The elsec and else directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
if, endc, clist, else

if <expression>
instructions
elsec
instructions
endc
© 2004 COSMIC Software Using The Assembler 231

C Library - end

end

5

232
Description
Stop the assembly

Syntax

Function
The end directive stops the assembly process. Any statements follow-
ing it are ignored. If the end directive is encountered in an included file,
it will stop the assembly process for the included file only.

end
© 2004 COSMIC SoftwareUsing The Assembler

C Library - endc

endc

Description

End conditional assembly

Syntax

Function
The endc directive closes an if<cc> or elsec conditional directive. The
conditional status reverts to the one existing before entering the if<cc>
directives. The endc directive applies to the closest previous if<cc> or
elsec directive.

Example
ifge offset-127 ; if offset too large
addptr offset ; call a macro
elsec ; otherwise
inx ; increment X register
endc

Note
The endc and endif directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
 if<cc>, elsec, clist, end

if<cc> <expression>
instructions
endc
© 2004 COSMIC Software Using The Assembler 233

C Library - endif

endif

5

234
Description
End conditional assembly

Syntax

Function
The endif directive closes an if or else conditional directive. The condi-
tional status reverts to the one existing before entering the if directive.
The endif directive applies to the closest previous if or else directive.

Example
if offset != 1 ; if offset too large
addptr offset ; call a macro
else ; otherwise
inx ; increment X register
endif

Note
The endif and endc directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
 if, else, clist

if <expression>
instructions
endif
© 2004 COSMIC SoftwareUsing The Assembler

C Library - endm

endm

Description

End macro definition

Syntax

Function
The endm directive is used to terminate macro definitions.

Example
; define a macro that places the length of
; a string in a byte prior to the string

ltext: macro
ds.b \@2 - \@1

\@1:
ds.b \1

\@2:
endm

See Also
mexit, macro

label: macro
 <macro_body>
 endm
© 2004 COSMIC Software Using The Assembler 235

C Library - endr

endr

5

236
Description
End repeat section

Syntax

Function
The endr directive is used to terminate repeat sections.

Example
; shift a value n times

asln: macro
repeat \1
aslb
endr
endm

; use of above macro
asln 10 ;shift 10 times

See Also
repeat, repeatl

repeat
<macro_body>
endr
© 2004 COSMIC SoftwareUsing The Assembler

C Library - equ

equ

Description

Give a permanent value to a symbol

Syntax

Function
The equ directive is used to associate a permanent value to a symbol
(label). Symbols declared with the equ directive may not subsequently
have their value altered otherwise the set directive should be used.
<expression> must be either a constant expression, or a relocatable
expression involving a symbol declared in the same section as the cur-
rent one.

Example
false: equ 0 ; initialize these values
true: equ 1
tablen:equ tabfin - tabsta;compute table length
nul: equ $0 ; define strings for ascii characters
soh: equ $1
stx: equ $2
etx: equ $3
eot: equ $4
enq: equ $5

See Also
lit, set

label: equ <expression>
© 2004 COSMIC Software Using The Assembler 237

C Library - even

even

5

238
Description
Assemble next byte at the next even address relative to the start of a
section.

Syntax

Function
The even directive forces the next assembled byte to the next even
address. If a byte is added to the section, it is set to the value of the fill-
ing byte defined by the -f option. If <fill_value> is specified, it will be
used locally as the filling byte, instead of the one specified by the -f
option.

Example
vowtab:dc.b 'aeiou'

even ; ensure aligned at even address
tentab:dc.w 1, 10, 100, 1000

even [<fill_value>]
© 2004 COSMIC SoftwareUsing The Assembler

C Library - fail

fail

Description

Generate error message.

Syntax

Function
The fail directive outputs “string” as an error message. No output file is
produced as this directive creates an assembly error. fail is generally
used with conditional directives.

Example
Max: equ 512

ifge value - Max
fail “Value too large”

fail "string"
© 2004 COSMIC Software Using The Assembler 239

C Library - if

if

5

240
Description
Conditional assembly

Syntax

Function
The if, else and endif directives allow conditional assembly. The if
directive is followed by a constant expression. If the result of the
expression is not zero, the following instructions are assembled up to
the next matching endif or else directive; otherwise, the following
instructions up to the next matching endif or else directive are skipped.

If the if statement ends with an else directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endif. So, if the if expression was not zero, the
instructions between else and endif are skipped; otherwise, the instruc-
tions between else and endif are assembled. An else directive applies to
the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
if offset != 1 ; if offset too large
addptr offset ; call a macro
else ; otherwise
inx ; increment X register
endif

See Also
else, endif, clist

if <expression> or if <expression>
instructions instructions
endif else

instructions
endif
© 2004 COSMIC SoftwareUsing The Assembler

C Library - ifc

ifc

Description

Conditional assembly

Syntax

Function
The ifc, else and endc directives allow conditional assembly. The ifc
directive is followed by a constant expression. If <string1> and
<string2> are equals, the following instructions are assembled up to the
next matching endc or elsec directive; otherwise, the following instruc-
tions up to the next matching endc or elsec directive are skipped.

If the ifc statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifc expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifc “hello”, \2 ; if “hello” equals argument
ldab #45 ; load 45
elsec ; otherwise...
ldab #0
endc

See Also
elsec, endc, clist

ifc <string1>,<string2> orifc <string1>,<string2>
instructions instructions
endc elsec

instructions
endc
© 2004 COSMIC Software Using The Assembler 241

C Library - ifdef

ifdef

5

242
Description
Conditional assembly

Syntax

Function
The ifdef, elsec and endc directives allow conditional assembly. The
ifdef directive is followed by a label <label>. If <label> is defined, the
following instructions are assembled up to the next matching endc or
elsec directive; otherwise, the following instructions up to the next
matching endc or elsec directive are skipped. <label> must be first
defined. It cannot be a forward reference.

If the ifdef statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endif. So, if the ifdef expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifdef offset1 ; if offset1 is defined
addptr offset1 ; call a macro
elsec ; otherwise
addptr offset2 ; call a macro
endif

See Also
ifndef, elsec, endc, clist

ifdef <label> or ifdef <label>
instructions instructions
endc elsec

instructions
endc
© 2004 COSMIC SoftwareUsing The Assembler

C Library - ifeq

ifeq

Description

Conditional assembly

Syntax

Function
The ifeq, elsec and endc directives allow conditional assembly. The
ifeq directive is followed by a constant expression. If the result of the
expression is equal to zero, the following instructions are assembled up
to the next matching endc or elsec directive; otherwise, the following
instructions up to the next matching endc or elsec directive are skipped.

If the ifeq statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifeq expression is equal to zero,
the instructions between elsec and endc are skipped; otherwise, the
instructions between elsec and endc are assembled. An elsec directive
applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifeq offset ; if offset nul
tsta ; just test it
elsec ; otherwise
add #offset ; add to accu
endc

See Also
elsec, endc, clist

ifeq <expression> or ifeq <expression>
instructions instructions
endc elsec

instructions
endc
© 2004 COSMIC Software Using The Assembler 243

C Library - ifge

ifge

5

244
Description
Conditional assembly

Syntax

Function
The ifge, elsec and endc directives allow conditional assembly. The
ifge directive is followed by a constant expression. If the result of the
expression is greater or equal to zero, the following instructions are
assembled up to the next matching endc or elsec directive; otherwise,
the following instructions up to the next matching endc or elsec direc-
tive are skipped.

If the ifge statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifge expression is greater or equal
to zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifge offset-127 ; if offset too large
addptr offset ; call a macro
elsec ; otherwise
inx ; increment X register
endc

See Also
elsec, endc, clist

ifge <expression> or ifge <expression>
instructions instructions
endc elsec

instructions
endc
© 2004 COSMIC SoftwareUsing The Assembler

C Library - ifgt

ifgt

Description

Conditional assembly

Syntax

Function
The ifgt, elsec and endc directives allow conditional assembly. The ifgt
directive is followed by a constant expression. If the result of the
expression is greater than zero, the following instructions are assem-
bled up to the next matching endc or elsec directive; otherwise, the fol-
lowing instructions up to the next matching endc or elsec directive are
skipped.

If the ifgt statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifgt expression was greater than
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifgt offset-127 ; if offset too large
addptr offset ; call a macro
elsec ; otherwise
inx ; increment X register
endc

See Also
elsec, endc, clist

ifgt <expression> or ifgt <expression>
instructions instructions
endc elsec

instructions
endc
© 2004 COSMIC Software Using The Assembler 245

C Library - ifle

ifle

5

246
Description
Conditional assembly

Syntax

Function
The ifle, elsec and endc directives allow conditional assembly. The ifle
directive is followed by a constant expression. If the result of the
expression is less or equal to zero, the following instructions are
assembled up to the next matching endc or elsec directive; otherwise,
the following instructions up to the next matching endc or elsec direc-
tive are skipped.

If the ifle statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifle expression was less or equal to
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifle offset-127 ; if offset small enough
inx ; increment X register
elsec ; otherwise
addptr offset ; call a macro
endc

See Also
elsec, endc, clist

ifle <expression> or ifle <expression>
instructions instructions
endc elsec

instructions
endc
© 2004 COSMIC SoftwareUsing The Assembler

C Library - iflt

iflt

Description

Conditional assembly

Syntax

Function
The iflt, else and endc directives allow conditional assembly. The iflt
directive is followed by a constant expression. If the result of the
expression is less than zero, the following instructions are assembled
up to the next matching endc or elsec directive; otherwise, the follow-
ing instructions up to the next matching endc or elsec directive are
skipped.

If the iflt statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the iflt expression was less than zero,
the instructions between elsec and endc are skipped; otherwise, the
instructions between elsec and endc are assembled. An elsec directive
applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
iflt offset-127 ; if offset small enough
inx ; increment X register
elsec ; otherwise
addptr offset ; call a macro
endc

See Also
elsec, endc, clist

iflt <expression> or iflt <expression>
instructions instructions
endc elsec

instructions
endc
© 2004 COSMIC Software Using The Assembler 247

C Library - ifnc

ifnc

5

248
Description
Conditional assembly

Syntax

Function
The ifnc, elsec and endc directives allow conditional assembly. The
ifnc directive is followed by a constant expression. If <string1> and
<string2> are differents, the following instructions are assembled up to
the next matching endc or elsec directive; otherwise, the following
instructions up to the next matching endc or elsec directive are skipped.

If the ifnc statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifnc expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifnc “hello”, \2
addptr offset ; call a macro
else ; otherwise
inx ; increment X register
endif

See Also
elsec, endc, clist

ifnc <string1>,string2> orifnc <string1><string2>
instructions instructions
endc elsec

instructions
endc
© 2004 COSMIC SoftwareUsing The Assembler

C Library - ifndef

ifndef

Description

Conditional assembly

Syntax

Function
The ifndef, else and endc directives allow conditional assembly. The
ifndef directive is followed by a label <label>. If <label> is not
defined, the following instructions are assembled up to the next match-
ing endc or elsec directive; otherwise, the following instructions up to
the next matching endc or elsec directive are skipped. <label> must be
first defined. It cannot be a forward reference.

If the ifndef statement ends with an elsec directive, the expression
result is inverted and the same process applies to the following instruc-
tions up to the next matching endif. So, if the ifndef expression was not
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifndef offset1 ; if offset1 is not defined
addptr offset2 ; call a macro
elsec ; otherwise
addptr offset1 ; call a macro
endif

See Also
ifdef, elsec, endc, clist

ifndef <label> or ifndef <label>
instructions instructions
endc elsec

instructions
endc
© 2004 COSMIC Software Using The Assembler 249

C Library - ifne

ifne

5

250
Description
Conditional assembly

Syntax

Function
The ifne, elsec and endc directives allow conditional assembly. The
ifne directive is followed by a constant expression. If the result of the
expression is not equal to zero, the following instructions are assem-
bled up to the next matching endc or elsec directive; otherwise, the fol-
lowing instructions up to the next matching endc or elsec directive are
skipped.

If the ifne statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifne expression was not equal to
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifne offset ; if offset not nul
add #offset ; add to accu
elsec ; otherwise
tsta ; just test it
endc

See Also
elsec, endc, clist

ifne <expression> or ifne <expression>
instructions instructions
endc elsec

instructions
endc
© 2004 COSMIC SoftwareUsing The Assembler

C Library - include

include

Description

Include text from another text file

Syntax

Function
The include directive causes the assembler to switch its input to the
specified filename until end of file is reached, at which point the assem-
bler resumes input from the line following the include directive in the
current file. The directive is followed by a string which gives the name
of the file to be included. This string must match exactly the name and
extension of the file to be included; the host system convention for
uppercase/lowercase characters should be respected.

Example
include “datstr” ; use data structure library
include “bldstd” ; use current build standard
include “matmac” ; use maths macros
include “ports82” ; use ports definition

include "filename"
© 2004 COSMIC Software Using The Assembler 251

C Library - list

list

5

252
Description
Turn on listing during assembly.

Syntax

Function
The list directive controls the parts of the program which will be written
to the listing file. It is effective if and only if listings are requested; it is
ignored otherwise.

Example
list ; expand source code until end or nolist
dc.b 1,2,4,8,16
end

See Also
nolist

list
© 2004 COSMIC SoftwareUsing The Assembler

C Library - lit

lit

Description

Give a text equivalent to a symbol

Syntax

Function
The lit directive is used to associate a text string to a symbol (label).
This symbol is replaced by the string content when parsed in any
assembler instruction or directive.

Example
nbr: lit “#5”

ldx nbr ; expand as ‘ldx #5’

See Also
equ, set

label: lit “string”
© 2004 COSMIC Software Using The Assembler 253

C Library - local

local

5

254
Description
Create a new local block

Syntax

Function
The local directive is used to create a new local block. When the local
directive is used, all temporary labels defined before the local directive
will be undefined after the local label. New local labels can then be
defined in the new local block. Local labels can only be referenced
within their own local block. A local label block is the area between
two standard labels or local directives or a combination of the two.

Example
var: ds.b 1
var2: ds.b 1
function1:
10$: ldab var

beq 10$
stab var2

local
10$: ldaa var2

beq 10$
staa var
rts

local
© 2004 COSMIC SoftwareUsing The Assembler

C Library - macro

macro

Description

Define a macro

Syntax

Function
The macro directive is used to define a macro. The name may be any
previously unused name, a name already used as a macro, or an instruc-
tion mnemonic for the microprocessor.

Macros are expanded when the name of a previously defined macro is
encountered. Operands, where given, follow the name and are separated
from each other by commas.

The <argument_list> is optional and, if specified, is declaring each
argument by name. Each argument name is prefixed by a \ character,
and separated from any other name by a comma. An argument name is
an identifier which may contain . and _ characters.

The <macro_body> consists of a sequence of instructions not including
the directives macro or endm. It may contain macro variables which
will be replaced, when the macro is expanded, by the corresponding
operands following the macro invocation. These macro variables take
the form \1 to \9 to denote the first to ninth operand respectively and \A
to \Z to denote the tenth to 35th operand respectively, if the macro has
been defined without any <argument_list>. Otherwise, macro variables
are denoted by their name prefixed by a \ character. The macro variable
name can also be enclosed by parenthesis to avoid unwanted concatena-
tion with the remaining text. In addition, the macro variable \# contains
the number of actual operands for a macro invocation.

The special parameter * is expanded to the full list of passed arguments
separated by commas.

label: macro <argument_list>
<macro_body>
endm
© 2004 COSMIC Software Using The Assembler 255

C Library - macro5

256
The special parameter \0 corresponds to an extension <ext> which may
follow the macro name, separated by the period character ‘.’. For more
information, see “Macro Instructions” on page 214.

A macro expansion may be terminated early by using the mexit direc-
tive which, when encountered, acts as if the end of the macro has been
reached.

The sequence ‘\@’ may be inserted in a label in order to allow a unique
name expansion. The sequence ‘\@’ will be replaced by a unique
number.

A macro can not be defined within another macro.

Example
; define a macro that places the length of a string
; in a byte in front of the string using numbered syntax
;
ltext: macro

dc.b \@2-\@1
\@1:

dc.b \1 ; text given as first operand
\@2:

endm

; define a macro that places the length of a string
; in a byte in front of the string using named syntax
;
ltext: macro \string

dc.b \@2-\@1
\@1:

dc.b \string ; text given as first operand
\@2:

endm

See Also
endm, mexit
© 2004 COSMIC SoftwareUsing The Assembler

C Library - messg

messg

Description

Send a message out to STDOUT

Syntax

Function
The messg directive is used to send a message out to the host system’s
standard output (STDOUT).

Example
messg “Test code for debug”
ldaa _#2
staa _SCR

See Also
title

messg “<text>”
messg ‘<text>’
© 2004 COSMIC Software Using The Assembler 257

C Library - mexit

mexit

5

258
Description
Terminate a macro definition

Syntax

Function
The mexit directive is used to exit from a macro definition before the
endm directive is reached. mexit is usually placed after a conditional
assembly directive.

Example
ctrace:macro

if tflag == 0
mexit

endif
jsr \1
endm

See Also
endm, macro

mexit
© 2004 COSMIC SoftwareUsing The Assembler

C Library - mlist

mlist

Description

Turn on or off listing of macro expansion.

Syntax

Function
The mlist directive controls the parts of the program which will be writ-
ten to the listing file produced by a macro expansion. It is effective if
and only if listings are requested; it is ignored otherwise.

The parts of the program to be listed are the lines which are assembled
in a macro expansion.

See Also
macro

mlist [on|off]
© 2004 COSMIC Software Using The Assembler 259

C Library - nolist

nolist

5

260
Description
Turn off listing.

Syntax

Function
The nolist directive controls the parts of the program which will be not
written to the listing file until an end or a list directive is encountered. It
is effective if and only if listings are requested; it is ignored otherwise.

See Also
list

Note
For compatibility with previous assemblers, the directive nol is alias to
nolist.

nolist
© 2004 COSMIC SoftwareUsing The Assembler

C Library - nopage

nopage

Description

Disable pagination in the listing file

Syntax

Function
The nopage directive stops the pagination mechanism in the listing out-
put. It is ignored if no listing has been required.

Example
xref mult, div
nopage
ds.b charin, charout
ds.w a, b, sum

See Also
plen, title

nopage
© 2004 COSMIC Software Using The Assembler 261

C Library - offset

offset

5

262
Description
Creates absolute symbols

Syntax

Function
The offset directive starts an absolute section which will only be used to
define symbols, and not to produce any code or data. This section starts
at the address specified by <expression>, and remains active while no
directive or instructions producing code or data is entered. This abso-
lute section is then destroyed and the current section is restored to the
one which was active when the offset directive has been entered. All the
labels defined is this section become absolute symbols.

<expression> must be a valid absolute expression. It must not contain
any forward or external references.

Example
offset 0

next:
ds.b 2

buffer:
ds.b 80

switch .text
size:

ldy next,x ; ends the offset section

offset <expresion>
© 2004 COSMIC SoftwareUsing The Assembler

C Library - org

org

Description

Sets the location counter to an offset from the beginning of a section.

Syntax

Function
<expression> must be a valid absolute expression. It must not contain
any forward or external references.

For an absolute section, the first org before any code or data defines the
starting address.

An org directive cannot define an address smaller than the location
counter of the current section.

Any gap created by an org directive is filled with the byte defined by
the -f option.

org <expression>
© 2004 COSMIC Software Using The Assembler 263

C Library - page

page

5

264
Description
Start a new page in the listing file

Syntax

Function
The page directive causes a formfeed to be inserted in the listing output
if pagination is enabled by either a title directive or the -ft option.

Example
xref mult, div
page
ds.b charin, charout
ds.w a, b, sum

See Also
plen, title

page
© 2004 COSMIC SoftwareUsing The Assembler

C Library - plen

plen

Description

Specify the number of lines per pages in the listing file

Syntax

Function
The plen directive causes <page_length> lines to be output per page in
the listing output if pagination is enabled by either a title directive or
the -ft option. If the number of lines already output on the current page
is less than <page_length>, then the new page length becomes effec-
tive with <page_length>. If the number of lines already output on the
current page is greater than or equal to <page_length>, a new page will
be started and the new page length is set to <page_length>.

Example
plen 58

See Also
page, title

plen <page_length>
© 2004 COSMIC Software Using The Assembler 265

C Library - repeat

repeat

5

266
Description
Repeat a list of lines a number of times

Syntax

Function
The repeat directive is used to cause the assembler to repeat the follow-
ing list of source line up to the next endr directive. The number of
times the source lines will be repeated is specified by the expression
operand. The repeat directive is equivalent to a macro definition fol-
lowed by the same number of calls on that macro.

A repeat directive may be terminated early by using the rexit directive
which, when encountered, acts as if the end of the repeat has been
reached.

Example
; shift a value n times
asln: macro

repeat \1
aslb
endr
endm

; use of above macro
asln 5

See Also
endr, repeatl, rexit

repeat <expression>
repeat_body

endr
© 2004 COSMIC SoftwareUsing The Assembler

C Library - repeatl

repeatl

Description

Repeat a list of lines a number of times

Syntax

Function
The repeatl directive is used to cause the assembler to repeat the fol-
lowing list of source line up to the next endr directive. The number of
times the source lines will be repeated is specified by the number of
arguments, separated with commas (with a maximum of 36 arguments)
and executed each time with the value of an argument. The repeatl
directive is equivalent to a macro definition followed by the same
number of calls on that macro with each time a different argument. The
repeat argument is denoted \1 unless the argument list is starting by a
name prefixed by a \ character. In such a case, the repeat argument is
specified by its name prefixed by a \ character.

A repeatl directive may be terminated early by using the rexit directive
which, when encountered, acts as if the end of the repeatl has been
reached.

Example
; test a value using the numbered syntax
repeatl1,2,3

addd #\1 ; add to accu
endr
end

or
; test a value using the named syntax
repeatl\count,1,2,3

addd #\count; add to accu
endr
end

repeatl <arguments>
repeat_body

endr
© 2004 COSMIC Software Using The Assembler 267

C Library - repeatl5

268
will both produce:

 2 ; test a value
 9 0000 c30001addd #1 ; add to accu
 9 0003 c30002addd #2 ; add to accu
 9 0006 c30003addd #3 ; add to accu
10 end

See Also
endr, repeat, rexit
© 2004 COSMIC SoftwareUsing The Assembler

C Library - restore

restore

Description

Restore saved section

Syntax

Function
The restore directive is used to restore the last saved section. This is
equivalent to a switch to the saved section.

Example
switch .bss
var: ds.b 1
var2: ds.b 1

save
switch .text

function1:
10$: ldab var

beq 10$
stab var2

function2:
10$: ldaa var2

suba var
bne 10$
rts
restore

var3: ds.b 1
var4: ds.b 1

switch .text

ldaa var3
staa var4

end

See Also
save, section

restore
© 2004 COSMIC Software Using The Assembler 269

C Library - rexit

rexit

5

270
Description
Terminate a repeat definition

Syntax

Function
The rexit directive is used to exit from a repeat definition before the
endr directive is reached. rexit is usually placed after a conditional
assembly directive.

Example
; shift a value n times
asln: macro

repeat \1
if \1 == 0

rexit
endif
aslb
endr
endm

; use of above macro
asln 5

See Also
endr, repeat, repeatl

rexit
© 2004 COSMIC SoftwareUsing The Assembler

C Library - save

save

Description

Save section

Syntax

Function
The save directive is used to save the current section so it may be
restored later in the source file.

Example
switch .bss

var: ds.b 1
var2: ds.b 1

save
switch .text

function1:
10$: ldab var

beq 10$
stab var2

function2:
10$: ldaa var2

suba var
bne 10$
rts
restore

var3: ds.b 1
var4: ds.b 1

switch .text

ldaa var3
staa var4

end

See Also
restore, section

save
© 2004 COSMIC Software Using The Assembler 271

C Library - section

section

5

272
Description
Define a new section

Syntax

Function
The section directive defines a new section, and indicates that the fol-
lowing program is to be assembled into a section named
<section_name>. The section directive cannot be used to redefine an
already existing section. If no name and no attributes are specified to
the section, the default is to defined the section as a text section with its
same attributes. It is possible to associate <attributes> to the new sec-
tion. An attribute is either the name of an existing section or an attribute
keyword. Attributes may be added if prefixed by a ‘+’ character or not
prefixed, or deleted if prefixed by a ‘-’ character. Several attributes may
be specified separated by commas. Attribute keywords are:

Example
CODE: section .text ; section of text
lab1: ds.b 5
DATA: section .data ; section of data
lab2: ds.b 6

switch CODE
lab3: ds.b 7

switch DATA
lab4: ds.b 8

abs absolute section

bss bss style section (no data)

hilo values are stored in descending order of significance

even enforce even starting address and size

zpage enforce 8 bit relocation

long enforce 32 bit relocation

<section_name>: section [<attributes>]
© 2004 COSMIC SoftwareUsing The Assembler

C Library - section
This will place lab1 and then lab3 into consecutive locations in sec-
tion CODE and lab2 and lab4 in consecutive locations in section
DATA.

.frame: section .bsct,even

The .frame section is declared with same attributes than the .bsct sec-
tion and with the even attribute.

.bit: section +zpage,+even,-hilo

The .bit section is declared using 8 bit relocation, with an even align-
ment and storing data with an ascending order of significance.

When the -m option is used, the section directive also accepts a number
as operand. In that case, a labelled directive is considered as a section
definition, and an unlabelled directive is considered as a section open-
ing (switch).

.rom: section1 ; define section 1
nop

.ram: section 2 ; define section 2
dc.b 1
section 1 ; switch back to section 1
nop

It is still possible to add attributes after the section number of a section
definition line, separated by a comma.

See Also
switch, bsct
© 2004 COSMIC Software Using The Assembler 273

C Library - set

set

5

274
Description
Give a resetable value to a symbol

Syntax

Function
The set directive allows a value to be associated with a symbol. Sym-
bols declared with set may be altered by a subsequent set. The equ
directive should be used for symbols that will have a constant value.
<expression> must be fully defined at the time the equ directive is
assembled.

Example
OFST: set 10

See Also
equ, lit

label: set <expression>
© 2004 COSMIC SoftwareUsing The Assembler

C Library - spc

spc

Description

Insert a number of blank lines before the next statement in the listing
file.

Syntax

Function
The spc directive causes <num_lines> blank lines to be inserted in the
listing output before the next statement.

Example
spc 5
title “new file”

If listing is requested, 5 blank lines will be inserted, then the title will be
output.

See Also
title

spc <num_lines>
© 2004 COSMIC Software Using The Assembler 275

C Library - switch

switch

5

276
Description
Place code into a section.

Syntax

Function
The switch directive switches output to the section defined with the
section directive. <section_name> is the name of the target section,
and has to be already defined. All code and data following the switch
directive up to the next section, switch, bsct or end directive are placed
in the section <section_name>.

Example
switch .bss

buffer:ds.b 512
xdef buffer

This will place buffer into the .bss section.

See Also
section, bsct

switch <section_name>
© 2004 COSMIC SoftwareUsing The Assembler

C Library - tabs

tabs

Description

Specify the number of spaces for a tab character in the listing file

Syntax

Function
The tabs directive sets the number of spaces to be substituted to the tab
character in the listing output. The minimum value of <tab_size> is 0
and the maximum value is 128.

Example
tabs 6

tabs <tab_size>
© 2004 COSMIC Software Using The Assembler 277

C Library - title

title

5

278
Description
Define default header

Syntax

Function
The title directive is used to enable the listing pagination and to set the
default page header used when a new page is written to the listing out-
put.

Example
title “My Application”

See Also
messg, page, plen

Note
For compatibility with previous assemblers, the directive ttl is alias to
title.

title "name"
© 2004 COSMIC SoftwareUsing The Assembler

C Library - xdef

xdef

Description

Declare a variable to be visible

Syntax

Function
Visibility of symbols between modules is controlled by the xdef and
xref directives. A symbol may only be declared as xdef in one module.
A symbol may be declared both xdef and xref in the same module, to
allow for usage of common headers.

Example
xdef sqrt ; allow sqrt to be called

; from another module
sqrt: ; routine to return a square root

; of a number >= zero

See Also
xref

xdef identifier[,identifier...]
© 2004 COSMIC Software Using The Assembler 279

C Library - xref

xref

5

280
Description
Declare symbol as being defined elsewhere

Syntax

Function
Visibility of symbols between modules is controlled by the xref and
xdef directives. Symbols which are defined in other modules must be
declared as xref. A symbol may be declared both xdef and xref in the
same module, to allow for usage of common headers.

The directive xref.b declares external symbols located in the .bsct sec-
tion.

Example
xref otherprog
xref.b zpage ; is in .bsct section

See Also
xdef

xref[.b] identifier[,identifier...]
© 2004 COSMIC SoftwareUsing The Assembler

C Library - xref.5

xref.5

Description

Declare a special external symbol

Syntax

Function
The directive xref.5 declares external symbols to be handled as 5 bits
signed values, allowing the assembler to encode an indexed addressing
mode with the smallest size as possible. The linker will verify that the
final value is compatible with the encoded addressing mode, and will
output an error message if not.

Example
xref.5 small

ldd small,x; short offset

See Also
xref, xref.9

xref.5 identifier[,identifier...]
© 2004 COSMIC Software Using The Assembler 281

C Library - xref.9

xref.9

5

282
Description
Declare a special external symbol

Syntax

Function
The directive xref.9 declares external symbols to be handled as 9 bits
signed values, allowing the assembler to encode an indexed addressing
mode with the appropriate size. The linker will verify that the final
value is compatible with the encoded addressing mode, and will output
an error message if not.

Example
xref.9 medium

ldd medium,x; one byte offset

See Also
xref, xref.9

xref.9 identifier[,identifier...]
© 2004 COSMIC SoftwareUsing The Assembler

CHAPTER

6

Using The Linker
This chapter discusses the clnk linker and details how it operates. It
describes each linker option, and explains how to use the linker's many
special features. It also provides example linker command lines that
show you how to perform some useful operations. This chapter includes
the following sections:

• Introduction

• Overview

• Linker Command File Processing

• Linker Options

• Section Relocation

• Setting Bias and Offset

• Linking Objects

• Linking Library Objects

• Bank Switching

• Automatic Data Initialization
© 2004 COSMIC Software Using The Linker 283

6

284
• Moveable Code

• Checksum Computation

• DEFs and REFs

• Special Topics

• Description of The Map File

• Linker Command Line Examples
© 2004 COSMIC SoftwareUsing The Linker

Introduction
Introduction
The linker combines relocatable object files, selectively loading from
libraries of such files made with clib, to create an executable image for
standalone execution or for input to other binary reformatters.

clnk will also allow the object image that it creates to have local symbol
regions, so the same library can be loaded multiple times for different
segments, and so that more control is provided over which symbols are
exposed. On microcontroller architectures this feature is useful if your
executable image must be loaded into several noncontiguous areas in
memory.

The assembler creates several sections in each object module. The
linker combines input sections in various ways, but will not break one
up. The linker then maps these combined input sections into output seg-
ments in the executable image using the options you specify.

A “segment” is a logically unified block of memory in the executable
image. An example is the code segment which contains the executable
instructions.

For most applications, the “sections” in an object module that the linker
accepts as input are equivalent to the “segments” of the executable
image that the linker generates as output.

The terms “segment” and “section” refer to different entities and are
carefully kept distinct throughout this chapter. A “section” is a contigu-
ous subcomponent of an object module that the linker treats as indivisi-
ble.

NOTE
© 2004 COSMIC Software Using The Linker 285

Overview6

286
Overview
You use the linker to build your executable program from a variety of
modules. These modules can be the output of the C cross compiler, or
can be generated from handwritten assembly language code. Some
modules can be linked unconditionally, while others can be selected
only as needed from function libraries. All input to the linker, regard-
less of its source, must be reduced to object modules, which are then
combined to produce the program file.

The output of the linker can be in the same format as its input. Thus, a
program can be built in several stages, possibly with special handling at
some of the stages. It can be used to build freestanding programs such
as system bootstraps and embedded applications. It can also be used to
make object modules that are loaded one place in memory but are
designed to execute somewhere else. For example, a data segment in
ROM to be copied into RAM at program startup can be linked to run at
its actual target memory location. Pointers will be initialized and
address references will be in place.

As a side effect of producing files that can be reprocessed, clnk retains
information in the final program file that can be quite useful. The sym-
bol table, or list of external identifiers, is handy when debugging pro-
grams, and the utility cobj can be made to produce a readable list of
symbols from an object file. Finally, each object module has in its
header useful information such as segment sizes.

In most cases, the final program file created by clnk is structurally iden-
tical to the object module input to clnk. The only difference is that the
executable file is complete and contains everything that it needs to run.
There are a variety of utilities which will take the executable file and
convert it to a form required for execution in specific microcontroller
environments. The linker itself can perform some conversions, if all
that is required is for certain portions of the executable file to be
stripped off and for segments to be relocated in a particular way. You
can therefore create executable programs using the linker that can be
passed directly to a PROM programmer.
© 2004 COSMIC SoftwareUsing The Linker

Overview
The linker works as follows:

• Options applying to the linker configuration. These options are
referred to in this chapter as “Global Command Line Options” on
page 291.

• Command file options apply only to specific sections of the object
being built. These options are referred to in this chapter as “Seg-
ment Control Options” on page 292.

• Sections can be relocated to execute at arbitrary places in physical
memory, or “stacked” on suitable storage boundaries one after the
other.

• The final output of the linker is a header, followed by all the seg-
ments and the symbol table. There may also be an additional
debug symbol table, which contains information used for debug-
ging purposes.
© 2004 COSMIC Software Using The Linker 287

Linker Command File Processing6

288
Linker Command File Processing
The command file of the linker is a small control language designed to
give the user a great deal of power in directing the actions of the linker.
The basic structure of the command file is a series of command items.
A command item is either an explicit linker option or the name of an
input file (which serves as an implicit directive to link in that file or, if it
is a library, scan it and link in any required modules of the library).

An explicit linker option consists of an option keyword followed by any
parameters that the option may require. The options fall into five
groups:

A description of each of these command line options appears below.

 Group 1

(+seg <section>) controls the creation of new segments and has
parameters which are selected from the set of local flags.

(+grp <section>) controls the section grouping.

Group 2

(+inc*) is used to include files

Group 3

(+new, +pub and +pri) controls name regions and takes no parame-
ters.

Group 4

 (+def <symbol>) is used to define symbols and aliases and takes one
required parameter, a string of the form ident1=ident2, a string of the
form ident1=constant, or a string of the form ident1=@segment.

Group 5

(+spc <segment>) is used to reserve space in a particular <segment>
and has a required parameter
© 2004 COSMIC SoftwareUsing The Linker

Linker Command File Processing
The manner in which the linker relocates the various sections is control-
led by the +seg option and its parameters. If the size of a current seg-
ment is zero when a command to start a new segment of the same name
is encountered, it is discarded. Several different sections can be redi-
rected directly to the same segment by using the +grp option.

clnk links the <files> you specify in order. If a file is a library, it is
scanned as long as there are modules to load. Only those library mod-
ules that define public symbols for which there are currently outstand-
ing unsatisfied references are included.

Inserting comments in Linker commands
Each input line may be ended by a comment, which must be prefixed by
a # character. If you have to use the # as a significant character, you can
escape it, using the syntax \#.

Here is an example for an indirect link file:

Link for EPROM
+seg .data -b0x2000 # start data address
+seg .text -b0xe000 -n .text # start eprom address
+seg .const -a .text # constants follow program
\cx32\lib\crts.h12 # startup object file
mod1.o mod2.o # input object files
\cx32\lib\libi.h12 # C library
\cx32\lib\libm.h12 # machine library
+seg .const -b0xffce # vectors eprom address
vector.o # reset and interrupt vectors
© 2004 COSMIC Software Using The Linker 289

Linker Options6

290
Linker Options
The linker accepts the following options, each of which is described in
detail below.

The output file name and the link command file must be present on
the command line. The options are described in terms of the two groups
listed above; the global options that apply to the linker, and the segment
control options that apply only to specific segments.

clnk [options] <file.lkf> [<files>]
-bs# bank size
-e* error file name
-l*> library path
-m* map file name
-o* output file name
-p phys addr in map
-s symbol table only
-sa sort symbol by address
-sl output local symbols
-v verbose
© 2004 COSMIC SoftwareUsing The Linker

Linker Options
Global Command Line Options
The global command line options that the linker accepts are:

-bs# set the window shift to #, which implies that the number of
bytes in a window is 2**#. The default value is 14 (bank
switching enabled). For more information, see the section
“Address Arithmetic” on page 300.

-e* log errors in the text file * instead of displaying the mes-
sages on the terminal screen.

-l*> specify library path. You can specify up to 20 different
paths. Each path is a directory name, not terminated by
any directory separator character.

-m* produce map information for the program being built to
file *.

-o* write output to the file *. This option is required and has no
default value.

-p display symbols with physical address instead of logical
address in the map file.

-s create an output file containing only an absolute symbol
table, but still with an object file format. The resulting file
can then be used in another link to provide the symbol
table of an existing application.

-sa display symbols sort by address instead of alphabetic order
in the map file.

-sl output local symbols in the executable file.

-v be “verbose”.

Applications not using bank switching should specified the -bs0 option to
disabled the internal banking verification.

 !! IMPORTANT !!
© 2004 COSMIC Software Using The Linker 291

Linker Options6

292
Segment Control Options
This section describes the segment control options that control the
structure of individual segments of the output module.

A group of options to control a specific segment must begin with a +seg
option. Such an option must precede any group of options so that the
linker can determine which segment the options that follow apply to.
The linker allows up to 255 different segments.

+seg <section> <options> start a new segment loading assembler
section type <section> and build it as directed by the
<options> that follow:

-a* make the current segment follow the segment *, where *
refers to a segment name given explicitly by a -n option.
Options -b, -e and -o cannot be specified if -a has been
specified.

-b* set the physical start address of the segment to *. Option -e
or -a cannot be specified if -b has been specified.

-c do not output any code/data for the segment.

-ck mark the segment you want to check. For more informa-
tion, see “Checksum Computation” on page 310.

-ds# set the bank size for paged addresses calculation. This
option overwrites the global -bs option for that segment.

-e* set the physical end address of the segment to *. Option -b
or -a cannot be specified if -e has been specified.

-f# fill the segment up to the value specified by the -m option
with bytes whose value is #. This option has no effect if no
-m option is specified for that segment.

-k mark the segment as a root segment for the unused section
suppression. This flags is usually applied on the reset and
interrupt vectors section, and as soon as it is specified at
least once in the linker command file, enables the section
suppression mechanism. This option can be used on any
© 2004 COSMIC SoftwareUsing The Linker

Linker Options
other segment to force the linker to keep it even if it is not
used.

-i? define the initialization option. Valid options are:

-m* set the maximum size of the segment to * bytes. If not
specify, there is no checking on any segment size. If a seg-
ment is declared with the -a option as following a segment
which is marked with the -m option, then set the maximum
available space for all the possible consecutive segments.

-n* set the output name of the segment to *. Segment output
names have at most 15 characters; longer names are trun-
cated. If no name is given with a -n option, the segment
inheritates a default name equal to its assembler section
name.

For example, use this option when you want to generate
the hex records for a particular PROM, such as:

You can generate the hex records for prom1 by typing:

-it use this segment to host the descriptor and
images copies of initialized data used for auto-
matic data initialization

-id initialize this segment

-ib do not initialize this segment

-is mark this segment as shared data

-ik mark this segment as checksum segment

-ic mark this segment as moveable segment

+seg .text -b0x2000 -n prom1
<object_files>
+seg .text -b0x4000 -n prom2
<object_files>
...
© 2004 COSMIC Software Using The Linker 293

Linker Options6

294
For more information, see Chapter 8, “The chex Utility”.

-o* set the logical start address of the segment to * if -b option
is specified or the logical end address if -e option is speci-
fied. The default is to set the logical address equal to the
physical address. Options -b and -e cannot be specified
both if -o has been specified.

-r* round up the starting address of the segment. The expres-
sion defines the power of two of the alignment value. The
option -r3 will align the start address to an 8 bytes bound-
ary. This option has no effect if the start address is explic-
itly defined by a -b option.

-s* define a space name for the segment. This segment will be
verified for overlapping only against segments defined
with the same space name. See “Overlapping Control” on
page 301.

-v do not verify overlapping for the segment.

-w* set the window size for banked applications, and activate
the automatic bank segment creation.

-x expandable segment. Allow a segment to spill in the next
segment of the same section type if its size exceeds the
value given by the -m option. The next segment must be
declared before the object causing the overflow. This
option has no effect if no -m option is specified for the
expendable segment. Options -e and -w cannot be speci-
fied.

Options defining a numerical value (addresses and sizes) can be entered
as constant, symbols, or simple expression combined them with ‘+’ and
‘-’ operators. Any symbol used has to be defined before to be used,
either by a +def directive or loaded as an absolute symbol from a previ-
ously loaded object file. The operators are applied from left to right

chex -n prom1 file.h12
© 2004 COSMIC SoftwareUsing The Linker

Linker Options
without any priority and parenthesis () are not allowed. Such expres-
sions CANNOT contain any whitespace. For example:

The first line defines the symbol START equals to the absolute value
1000 (hex value), the second line defines the symbol MAXSIZE equals
to the absolute value 2000 (hex value). The last line opens a .text seg-
ment located at 1100 (hex value) with a maximum size of 1f00 (hex
value). For more information, see the section “Symbol Definition
Option” on page 298.

Unless -b* is given to set the bss segment start address, the bss segment
will be made to follow the last data segment in the output file. Unless
-b* is given to set the data segment start address, the data segment will
be made to follow the last bsct segment in the output file. The bsct and
text segments are set to start at zero unless you specify otherwise by
using -b option. It is permissible for all segments to overlap, as far as
clnk is concerned; the target machine may or may not make sense of
this situation (as with separate instruction and data spaces).

Segment Grouping
Different sections can be redirected directly to the same segment with
the +grp directive:

+grp <section>=<section list>

where <section> is the name of the target section, and <section list> a
list of section names separated by commas. When loading an object file,
each section listed in the right part of the declaration will be loaded as if
it was named as defined in the left part of the declaration. The target

+def START=0x1000
+def MAXSIZE=0x2000
+seg .text -bSTART+0x100 -mMAXSIZE-0x100

A new segment of the specified type will not actually be created if the last
segment of the same name has a size of zero. However, the new options
will be processed and will override the previous values.

NOTE
© 2004 COSMIC Software Using The Linker 295

Linker Options6

296
section may be a new section name or the name of an existing section
(including the predefined ones). When using a new name, this directive
has to be preceded by a matching +seg definition.

Linking Files on the Command line
The linker supports linking objects from the command line. The link
command file has to be modified to indicate where the objects are to be
loaded using the following @# syntax.

@1, @2,... include each individual object file at its positional location
on the command line and insert them at the respective
locations in the link file (@1 is the first object file, and so
on).

@* include all of the objects on the command line and insert
them at this location in the link file.

Example
 Linking objects from the command line:

Whitespaces are not allowed aside the equal sign ‘=’ and the commas.
NOTE

clnk -o test.h12 test.lkf file1.o file2.o

Test.lkf:
+seg .text -b0x5000
+seg .data -b0x100
@1
+seg .text -b0x7000
@2

Is equivalent to

clnk -otest.h12 test.lkf
test.lkf
+seg .text -b0x5000
+seg .data -b0x100
file1.o
+seg .text -b0x7000
file2.o
© 2004 COSMIC SoftwareUsing The Linker

Linker Options
Include Option
Subparts of the link command file can be included from other files by
using the following option:

+inc* include the file specified by *. This is equivalent to
expanding the text file into the link file directly at the loca-
tion of the +inc line.

Example
 Include the file “seg2.txt” in the link file “test.lkf”:

Private Region Options
Options that control code regions are:

+new start a new region. A “region” is a user definable group of
input object modules which may have both public and pri-
vate portions. The private portions of a region are local to
that region and may not access or be accessed by anything
outside the region. By default, a new region is given public
access.

+pub make the following portion of a given region public.

+pri make the following portion of a given region private.

Test.lkf:
+seg .text -b0x5000
+seg .data -b0x100
file1.o file2.o
+seg .text -b0x7000
+inc seg2.txt

seg2.txt:
mod1.o mod2.o mod3.o

Resultant link file
+seg .text -b0x5000
+seg .data -b0x100
file1.o file2.o
+seg .text -b0x7000
mod1.o mod2.o mod3.o
© 2004 COSMIC Software Using The Linker 297

Linker Options6

298
Symbol Definition Option
The option controlling symbol definition and aliases is:

+def* define new symbols to the linker. The string * must be of
the form:

• ident=constant where ident is a valid identifier and
constant is a valid constant expressed with the standard
C language syntax. This form is used to add ident to the
symbol table as a defined absolute symbol with a value
equal to constant.

• ident1=ident2 where ident1 and ident2 are both
valid identifiers. This form is used to define aliases. The
symbol ident1 is defined as the alias for the symbol
ident2 and goes in the symbol table as an external DEF
(a DEF is an entity defined by a given module.) If
ident2 is not already in the symbol table, it is placed
there as a REF (a REF is an entity referred to by a given
module).

• ident=@section where ident is a valid identifier,
and section is the name of a section specified as the first
argument of a +seg directive. This form is used to add
ident to the symbol table as a defined symbol whose
value is the address of the next byte to be loaded in the
specified section.

• ident=start(segment) where segment is the name
given to a segment by the -n option. This form is used to
add ident to the symbol table as a defined symbol whose
value is the logical start address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

• ident=end(segment) where segment is the name
given to a segment by the -n option. This form is used to
add ident to the symbol table as a defined symbol whose
value is the logical end address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.
© 2004 COSMIC SoftwareUsing The Linker

Linker Options
• ident=pstart(segment) where segment is the name
given to a segment by the -n option. This form is used to
add ident to the symbol table as a defined symbol whose
value is the physical start address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

• ident=pend(segment) where segment is the name
given to a segment by the -n option. This form is used to
add ident to the symbol table as a defined symbol whose
value is the physical end address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

• ident=size(segment) where segment is the name
given to a segment by the -n option. This form is used to
add ident to the symbol table as a defined symbol whose
value is the size of the designated segment. This direc-
tive can be placed anywhere in the link command file,
even before the segment is defined.

For more information about DEFs and REFs, refer to the section “DEFs
and REFs” on page 312.

Reserve Space Option
The following option is used to reserve space in a given segment:

+spc <segment>=<value> reserve <value> bytes of space at the
current location in the segment named <segment>.

+spc <segment>=@section reserve a space at the current location
in the segment named <segment> equal to the current size
of the opened segment where the given section is loaded.
The size is evaluated at once, so if the reference segment
grows after that directive, there is no further modification
of the space reservation. If such a directive is used to
duplicate an existing section, it has to be placed in the link
command file after all the object files.

Whitespaces are not allowed aside the equal sign ‘=’.
NOTE
© 2004 COSMIC Software Using The Linker 299

Section Relocation6

300
Section Relocation
The linker relocates the sections of the input files into the segments of
the output file.

An absolute section, by definition, cannot and should not be relocated.
The linker will detect any conflicts between the placement of this file
and its absolute address given at compile/assemble time.

In the case of a bank switched system, it is still possible for an absolute
section to specify a physical address different from the one and at com-
pile/assembly time, the logical address MUST match the one specified
at compile/assemble time.

Address Arithmetic
The two most important parameters describing a segment are its bias
and its offset, respectively its physical and logical start addresses. In
nonsegmented architectures there is no distinction between bias and off-
set. The bias is the address of the location in memory where the seg-
ment is relocated to run. The offset of a segment will be equal to the
bias. In this case you must set only the bias. The linker sets the offset
automatically.

In the paged architecture of the HC12/HCS12, the bias is the physical
address of the start of the segment in question, as seen from memory.
The offset is the logical address of the start of the segment, as seen from
the processor.

The window shift specified by the -bs# option gives a measure of the
resolution used to hold the bias value of a segment. If the value speci-
fied by the -bs# option is n, then the resolution is 2**n. For example,
the value of n is 14 for the HC12/HCS12.

In segmented architectures, the fundamental relationship between the
bias and the offset is:

Whitespaces are not allowed aside the equal sign ‘=’.
NOTE
© 2004 COSMIC SoftwareUsing The Linker

Setting Bias and Offset
where SR is the actual value used in a segment or page register and BS
is the window shift value you specify with the -bs# option. The linker
will be able to compute the value of the page register, given the bias and
the offset of any segment.

In nonsegmented architectures both BS and SR are usually equal to
zero, so the formula becomes:

Overlapping Control
The linker is verifying that a segment does not overlap any other one,
by checking the physical addresses (bias). This control can be locally
disabled for one segment by using the -v option. For targets implement-
ing separated address spaces (such as bank switching), the linker allows
several segments to be isolated from the other ones, by giving them a
space name with the -s option. In such a case, a segment in a named
space is checked only against the other segments of the same space. The
unnamed segments are checked together.

Setting Bias and Offset
The bias and offset of a segment are controlled by the -b* option and
-o* option. The rules for dealing with these options are described
below.

Setting the Bias
If the -b* option is specified, the bias is set to the value specified by *.
Otherwise, the bias is set to the end of the last segment of the same
name. If the -e* option is specified, the bias is set to value obtain by
subtracting the segment size to the value specified by *.

Setting the Offset
If the -o* option is specified, the offset is set to the value specified by *.
Otherwise, the offset is set equal to the bias.

bias = (SR << BS) + offset

bias = offset
© 2004 COSMIC Software Using The Linker 301

Setting Bias and Offset6

302
Using Default Placement
If none of -b, -e or -o options is specified, the segment may be placed
after another one, by using the -a* option, where * is the name of
another segment. Otherwise, the linker will try to use a default place-
ment based on the segment name. The compiler produces specific sec-
tions for code (.text) and data (.data, .bss, and .bsct). By default, .text
and .bsct segments start at zero, .data segment follows the latest .text
segment, and .bss segment follows the latest .data segment. Note that
there is no default placement for the constants segment .const (and
.const.w when +ceven is selected).
© 2004 COSMIC SoftwareUsing The Linker

Linking Objects
Linking Objects
A new segment is built by concatenating the corresponding sections of
the input object modules in the order the linker encounters them. As
each input section is added to the output segment, it is adjusted to be
relocated relative to the end portion of the output segment so far con-
structed. The first input object module encountered is relocated relative
to a value that can be specified to the linker. The size of the output bss
segment is the sum of the sizes of the input bss sections.

Unless the -v option has been specified on a segment definition, the
linker checks that the segment physical address range does not overlap
any other segment of the application. Logical addresses are not checked
as bank switching creates several segments starting at the same logical
address.

Linking Library Objects
The linker will selectively include modules from a library when out-
standing references to member functions are encountered. The library
file must be place after all objects that may call it’s modules to avoid
unresolved references. The standard ANSI libraries are provided in
three versions to provide the level of support that your application
needs. This can save a significant amount of code space and execution
time when full ANSI double precision floating point support is not
needed. The first letter after “lib” in each library file denotes the library
type (d for double, f for single precision, and i for integer). See below.

libd.h12 Double Precision Library provides ANSI double precision
floating point support. Link this library before the other
libraries when needed.

libf.h12 Single Precision Library is used in conjunction with the
+sprec option to force all floats (even variables declared as
doubles) to single precision. This library is used for appli-
cations where only single precision floating point support
is needed. This library is significantly smaller and faster
than the double precision. Link this library before the other
libraries when only single precision floats are used.
© 2004 COSMIC Software Using The Linker 303

Linking Library Objects6

304
libi.h12 Integer only Library. This library is designed for applica-
tions where no floating point is used. Floats can still be
used for arithmetic but not with the standard library. Link
this library before the other libraries when only integer
libraries are needed.

libe.h12 DP256 Eeprom Library. This library is designed to give
access to the 68HC12DP256 eeprom functions. When
used, this library MUST be linked before any other librar-
ies.

fuzzy.h12 Fuzzy Library. This library is designed to give access to
the specific fuzzy instructions of the HC12/HCS12. This
library does not depend on the others and maybe located
regardless of the other ones position.

Library Order
You should link your application with the libraries in the following
orders:

Machine
Library

DP256
eeprom
Library

Integer
Only

Library

Single
Precision

Floats

Double
Precision

Floats

Libm.h12 Libe.h12 libi.h12 libf.h12 libd.h12

The +sprec compiler option MUST be used if you want to use the Single
Precision library in order to suppress normal ANSI float to double pro-
motions.

NOTE

Compiler libraries must be located in a non-banked area of memory or
duplicated in each bank that uses them.

NOTE
© 2004 COSMIC SoftwareUsing The Linker

Linking Library Objects
For more information, see “Linker Command Line Examples” on page
320.

Integer Only
Application

Single Precision
Float Application

Double Precision
Float Application

(libe.h12) (libe.h12) (libe.h12)

libi.h12 libf.h12 libd.h12

libm.h12 libi.h12 libi.h12

libm.h12 libm.h12

The libe.h12 is only necessary when building applications using eeprom
functions and targeting the DP256 derivative.

NOTE
© 2004 COSMIC Software Using The Linker 305

Bank Switching6

306
Bank Switching
The linker is able to build banked segments for large applications. Such
banks can be built explicitly, or automatically. A banked segment is
described by a physical start address, specified by the -b option, a logi-
cal start address, specified by the -o option, and a window size. The log-
ical address is the processor address, and should match the windowed
area (0x8000 to 0xbfff for the HC12/HCS12). The physical address is
the memory address and should match the hardware specifications.

A single bank is defined by using the -b and -o only. The bank size
should be specified by the -m option to check any bank overflow. Sev-
eral banks can be defined by several independent segment directives.

Multiple banks are automatically defined by using the -b, -o and -w
options. The bank size is defined by the -w option which also sets up
the automatic filling mechanism. The -m option still can be used, but
then defines the maximum available space for all the possible consecu-
tive banks. When automatic filling is activated, a new segment is started
when the current bank size exceeds the value given by the -w option.
The new bank physical start address is obtained by adding the window
size to the current bank physical start address. The new logical start
address is equal to the current bank logical start address. If a maximum
size has been specified for the current bank by the -m option, a maxi-
mum size is defined for the new bank with a new value obtained by sub-
stracting the window size to the current bank maximum size.

Here is an example for a link file using single banks:

Link for EPROM
+seg .data -b0x2000 # start data address
+seg .text -b 0x10000 -o 0x8000 -m 0x4000
func1.o func2.o func3.o
+seg .text -b 0x14000 -o 0x8000 -m 0x4000
func4.o func5.o func6.o
+seg .text -b0xc000 -o0xc000 -n.text# start eprom address
+seg .const -a .text # constants follow code
\cx\lib\crts.h12 # startup object file
mod1.o mod2.o # input object files
\cx\lib\libi.h12 # C library
\cx\lib\libm.h12 # machine library
+seg .const -b0xffce # vectors eprom address
vectors.o # reset and interrupt vectors
© 2004 COSMIC SoftwareUsing The Linker

Bank Switching
The following link file shows the use of a multiple banks: the -w option
specifies a size of the window (0x4000). In this case, when the current
bank size exceeds, a new segment is created with a logical start address
of 0x8000, and the new physical address will be 0xc000.

Link for EPROM
+seg .data -b0x2000 # start data address
+seg .text -b 0x10000 -o 0x8000 -m 0x8000 -w0x4000
func1.o func2.o func3.o
func4.o func5.o func6.o
+seg .text -b0xc000 -o0xc000 -n.text# start eprom address
+seg .const -a .text # constants follow code
\cx\lib\crts.h12 # startup object file
mod1.o mod2.o # input object files
\cx\lib\libi.h12 # C library
\cx\lib\libm.h12 # machine library
+seg .const -b0xffce # vectors eprom address
vectors.o # reset and interrupt vectors

The linker also verifies that a bank is properly entered with a call
instruction. Any attempt to enter a bank with a jsr instruction will be
reported as an error, unless the jsr is issued from the same bank.
© 2004 COSMIC Software Using The Linker 307

Automatic Data Initialization6

308
Automatic Data Initialization
The linker is able to configure the executable for an automatic data ini-
tialization. This mechanism is initiated automatically when the linker
finds the symbol __idesc__ in the symbol table, as an undefined sym-
bol. clnk first locates a segment behind which it will add an image of
the data, so called the host segment. The default behaviour is to select
the first .text segment in the executable file, but you can override this by
marking one segment with the -it option.

Then, clnk looks in the executable file for initialized segments. All the
segments .data and .bsct are selected by default, unless disabled explic-
itly by the -ib option. Otherwise, renamed segments may also be
selected by using the -id option. The -id option cannot be specified on a
bss segment, default or renamed. Once all the selected segments are
located, clnk builds a descriptor containing the starting address and
length of each such segment, and moves the descriptor and the selected
segments to the end of the host segment, without relocating the content
of the selected segments.

For more information, see “Generating Automatic Data Initialization”
in Chapter 2 and “Initializing data in RAM” in Chapter 3.

Descriptor Format
The created descriptor has the following format:

 dc.w start_prom_address ;starting address of the
; first image in prom

; for each segment:
 dc.b flag ; segment type
 dc.w start_ram_address ; start address of segment in ram
 dc.w end_prom_address ; address of last data byte

; plus one in prom
; after the last segment:
 dc.b 0

The flag byte is used to detect the end of the descriptor, and also to
specify a type for the data segment. The actual value is equal to the
code of the first letter in the segment name.

The end address in PROM of one segment gives also the starting
address in prom of the following segment, if any.
© 2004 COSMIC SoftwareUsing The Linker

Moveable Code
The address of the descriptor will be assigned to the symbol __idesc__,
which is used by the crtsi.s startup routine. So all this mechanism will
be activated just by linking the crtsi.h12file with the application, or by
referencing the symbol __idesc__ in your own startup file.

If the host segment has been opened with a -m option giving a maxi-
mum size, clnk will check that there is enough space to move all the
selected segments.

Moveable Code
The linker allows a code segment to be stored in the ROM part, but
linked at another address which is supposed to be located in RAM. This
feature is specially designed to allow an application to run FLASH pro-
gramming routines from the RAM space. This feature is sharing the
same global mechanism than initialized data, and the common descrip-
tor built by the linker contains both record types. The flag byte is used
to qualify each entry. In order to implement such a feature, the link
command file should contain a dedicated code segment marked with the
-ic option:

LINKER EXAMPLE FOR MOVEABLE CODE
#
mark this segment with -ic and link it at RAM address
#
+seg .text -b 0x100 -n boot -ic
flash.o
+seg .text -b 0x8000 -n code# application code
file.o
...

The function contained in the object flash.o is now linked at the RAM
address 0x100 but stored somewhere in the code space along with any
other initialized data. It is not necessary to link the application with the
startup routine crtsi.s if the application does not contain initialized data
but the descriptor will be built as soon as a moveable function is used
by the application, but if the crtsi.s startup is used, moveable code seg-
ments are not copied in RAM at the application start up.

In order to use such a function, it is necessary to first copy it from ROM
to RAM. This is done by calling the library function _fctcpy() with one
© 2004 COSMIC Software Using The Linker 309

Checksum Computation6

310
character argument equal to the first significant letter of the moveable
segment name. This argument allows an application to implement sev-
eral different moveable segments for different kind of situations. In
such a case, all the moveable segment names should have names with
different first character. This function returns a boolean status equal to 0
if no moveable segment has been copied, or a value different of zero
otherwise. Once the segment has been successfully copied, the RAM
function can be called directly:

if (_fctcpy(‘b’))
flash();

There is no possible name conflict between data segment names and
moveable code segment names because the linker internally marks the
flag byte differently.

Checksum Computation
This feature is activated by the detection of the symbol __ckdesc__ as
an undefined symbol. This is practically done by calling one of the pro-
vided checksum functions which uses that symbol and returns 0 if the
checksum is correct. These functions are provided in the integer library
and are the following:

_checksum() check a 8 bit checksum stored once for all the
selected segments.

_checksumx() check a 8 bit checksum stored for every selected
segments. This method allows a segment to be
dynamically reloaded by updating the correspond-
ing CRC byte.

_checksum16() check a 16 bit checksum stored once for all the
selected segments.

_checksum16x() check a 16 bit checksum stored for every selected
segments. This method allows a segment to be
dynamically reloaded by updating the correspond-
ing CRC word.

You then have to update the link command file in two ways:
© 2004 COSMIC SoftwareUsing The Linker

Checksum Computation
1) Mark the segments (usually code segments) you want to check, by
using the -ck option on the +seg line. Note that you need only to
mark the first segment of a hooked list, meaning that if a segment is
declared with -a option as following a segment which is marked
with the -ck option, it will automatically inherit the -ck marker and
will be also checked. Note also that if you are using the automatic
initialization mechanism, and if the code segment hosting the init
descriptor (-it) is also marked with -ck, the init segment and ALL
the initialization copy segments will also be checked.

2) Create an empty segment which will contain the checksum descrip-
tor. This has to be an empty segment, located wherever you want
with a -b or -a option. This segment will NOT be checked, even if
marked or hooked to a marked segment. The linker will fill this seg-
ment with a data descriptor allowing the checking function to scan
all the requested segments and compute the final crc. This segment
has to be specially marked with the option -ik to allow the linker to
recognize it as the checksum segment.

Here is an example of link command file showing how to use -ck and
-ik:

LINKER EXAMPLE FOR CHECKSUM IMPLEMENTATION
#
mark the first segment of an attached list with -ck
#
+seg .text -b 0x8000 -n code -ck# this segment is marked
+seg .const -a code -n const# this one is implicitly marked
#
create an empty segment for checksum table marked with -ik
#
+seg .cksum -a const -n cksum -ik# checksum segment
#
remaining part should contain the verification code
#
+seg .data -b 0x100
crtsi.h12
test.o
libi.h12
libm.h12
+def __memory=@.bss
© 2004 COSMIC Software Using The Linker 311

DEFs and REFs6

312
The descriptor built by the linker is a list of entries followed by the
expected CRC value, only once if functions _checksum() or
_checksum16() are called, or after each entry if functions _checksumx()
or _checksum16x() are called. An entry contains a flag byte, a start
address and an end address. The flag byte is non-zero, and is or'ed with
0x80 if the start address contains a bank value (two words, page first
then start address), otherwise it is just one word with the start address.
The end address is always one word. The last entry is always followed
by a nul byte (seen as an ending flag), and immediately followed by the
expected CRC if functions _checksum() or _checksum16() are called.
The linker compresses the list of entries by creating only one entry for
contiguous segments (as long as they are in the same space (-s* option)
and in the same bank/page).

The current linker implements only on algorithm. Starting with zero,
the CRC byte/word is first rotated one bit left (a true bit rotation), then
xor'ed with the code byte. The CRC values stored in the checksum
descriptor are the one’s complement value of the expected CRC.

DEFs and REFs
The linker builds a new symbol table based on the symbol tables in the
input object modules, but it is not a simple concatenation with adjust-
ments. There are two basic type of symbols that the linker puts into its
internal symbol table: REFs and DEFs. DEFs are symbols that are
defined in the object module in which they occur. REFs are symbols
that are referenced by the object module in which they occur, but are
not defined there.

The linker also builds a debug symbol table based on the debug symbol
tables in any of the input object modules. It builds the debug symbol
table by concatenating the debug symbol tables of each input object
module in the order it encounters them. If debugging is not enabled for
any of input object module, the debug symbol table will be of zero
length.

An incoming REF is added to the symbol table as a REF if that symbol
is not already entered in the symbol table; otherwise, it is ignored (that
reference has already been satisfied by a DEF or the reference has
already been noted). An incoming DEF is added to the symbol table as
© 2004 COSMIC SoftwareUsing The Linker

Special Topics
a DEF if that symbol is not already entered in the symbol table; its
value is adjusted to reflect how the linker is relocating the input object
module in which it occurred. If it is present as a REF, the entry is
changed to a DEF and the symbol’s adjusted value is entered in the
symbol table entry. If it is present as a DEF, an error occurs (multiply
defined symbol).

When the linker is processing a library, an object module in the library
becomes an input object module to the linker only if it has at least one
DEF which satisfies some outstanding REF in the linker's internal sym-
bol table. Thus, the simplest use of clnk is to combine two files and
check that no unused references remain.

The executable file created by the linker must have no REFs in its sym-
bol table. Otherwise, the linker emits the error message “undefined sym-
bol” and returns failure.

Special Topics
This section explains some special linker capabilities that may have
limited applicability for building most kinds of microcontroller applica-
tions.

Private Name Regions
Private name regions are used when you wish to link together a group
of files and expose only some to the symbol names that they define.
This lets you link a larger program in groups without worrying about
names intended only for local usage in one group colliding with identi-
cal names intended to be local to another group. Private name regions
let you keep names truly local, so the problem of name space pollution
is much more manageable.

An explicit use for private name regions in an HC12/HCS12 environ-
ment is in building a paged program with duplication of the most used
library functions in each page, in order to avoid extra page commuta-
tion. To avoid complaints when multiple copies of the same file rede-
fine symbols, each such contribution is placed in a private name region
accessible only to other files in the same page.

The basic sequence of commands for each island looks like:
© 2004 COSMIC Software Using The Linker 313

Special Topics6

314
Any symbols defined in <public files> are known outside this private
name region. Any symbols defined in <private libraries> are known
only within this region; hence they may safely be redefined as private to
other regions as well.

Renaming Symbols
At times it may be desirable to provide a symbol with an alias and to
hide the original name (i.e., to prevent its definition from being used by
the linker as a DEF which satisfies REFs to that symbol name). As an
example, suppose that the function func in the C library provided with
the compiler does not do everything that is desired of it for some special
application. There are three methods of handling this situation (we will
ignore the alternative of trying to live with the existing function’s defi-
ciencies).

The first method is to write a new version of the function that performs
as required and link it into the program being built before linking in the
libraries. This will cause the new definition of func to satisfy any refer-
ences to that function, so the linker does not include the version from
the library because it is not needed. This method has two major draw-
backs: first, a new function must be written and debugged to provide
something which basically already exists; second, the details of exactly
what the function must do and how it must do it may not be available,
thus preventing a proper implementation of the function.

The second approach is to write a new function, say my_func, which
does the extra processing required and then calls the standard function
func. This approach will generally work, unless the original function
func is called by other functions in the libraries. In that case, the extra
function behavior cannot occur when func is called from library func-
tions, since it is actually my_func that performs it.

+new <public files> +pri <private libraries>

All symbols defined in a private region are local symbols and will not
appear in the symbol table of the output file.

NOTE
© 2004 COSMIC SoftwareUsing The Linker

Special Topics
The third approach is to use the aliasing capabilities of the linker. Like
the second method, a new function will be written which performs the
new behavior and then calls the old function. The twist is to give the old
function a new name and hide its old name. Then the new function is
given the old function’s name and, when it calls the old function, it uses
the new name, or alias, for that function. The following linker script
provides a specific example of this technique for the function func:

line 1 +seg .text -b 0x1000
line 2 +seg .data -b0
line 3 +new
line 4 Crts.xx
line 5 +def _oldfunc=_func
line 6 +pri func.o
line 7 +new
line 8 prog.o newfunc.o
line 9 <libraries>

The main thing to note here is that func.o and new_func.o both define a
(different) function named func. The second function func defined in
newfunc.o calls the old func function by its alias oldfunc.

Name regions provide limited scope control for symbol names. The
+new command starts a new name region, which will be in effect until
the next +new command. Within a region there are public and private
name spaces. These are entered by the +pub and +pri commands; by
default, +new starts in the public name space.

Lines 1,2 are the basic linker commands for setting up a separate I/D
program. Note that there may be other options required here, either by
the system itself or by the user.

Line 3 starts a new region, initially in the public name space.

The function name func as referenced here is the name as seen by the C
programmer. The name which is used in the linker for purposes of alias-
ing is the name as seen at the object module level. For more information
on this transformation, see the section “Interfacing C to Assembly Lan-
guage” in Chapter 3.

NOTE
© 2004 COSMIC Software Using The Linker 315

Special Topics6

316
Line 4 specifies the startup code for the system being used.

Line 5 establishes the symbol _oldfunc as an alias for the symbol _func.
The symbol _oldfunc is entered in the symbol table as a public defini-
tion. The symbol _func is entered as a private reference in the current
region.

Line 6 switches to the private name space in the current region. Then
func.o is linked and provides a definition (private, of course) which sat-
isfies the reference to _func.

Line 7 starts a new name region, which is in the public name space by
default. Now no reference to the symbol _func can reach the definition
created on Line 6. That definition can only be reached now by using the
symbol _oldfunc, which is publicly defined as an alias for it.

Line 8 links the user program and the module newfunc.o, which pro-
vides a new (and public) definition of _func. In this module the old ver-
sion is accessed by its alias. This new version will satisfy all references
to _func made in prog.o and the libraries.

Line 9 links in the required libraries.

The rules governing which name space a symbol belongs to are as fol-
lows:

• Any symbol definition in the public space is public and satisfies
all outstanding and future references to that symbol.

• Any symbol definition in the private space of the current region is
private and will satisfy any private reference in the current region.

• All private definitions of a symbol must occur before a public def-
inition of that symbol. After a public definition of a symbol, any
other definition of that symbol will cause a “multiply defined sym-
bol” error.

• Any number of private definitions are allowed, but each must be
in a separate region to prevent a multiply defined symbol error.
© 2004 COSMIC SoftwareUsing The Linker

Special Topics
• Any new reference is associated with the region in which the ref-
erence is made. It can be satisfied by a private definition in that
region, or by a public definition. A previous definition of that
symbol will satisfy the reference if that definition is public, or if
the definition is private and the reference is made in the same
region as the definition.

• If a new reference to a symbol occurs, and that symbol still has an
outstanding unsatisfied reference made in another region, then
that symbol is marked as requiring a public definition to satisfy it.

• Any definition of a symbol must satisfy all outstanding references
to that symbol; therefore, a private definition of a symbol which
requires a public definition causes a blocked symbol reference
error.

• No symbol reference can “reach” any definition made earlier than
the most recent definition.

Absolute Symbol Tables
Absolute Symbol tables are used to export symbols from one application
to another, to share common functions for instance, or to use functions
already built in a ROM, from an application downloaded into RAM.
The linker option -s will modify the output file in order to contain only
a symbol table, without any code, but still with an object file format, by
using the same command file used to build the application itself. All
symbols are flagged as absolute symbols. This file can be used in
another link, and will then transmit its symbol table, allowing another
application to use those symbols as externals. Note that the linker does
not produce any map even if requested, when used with the -s option.

The basic sequence of commands looks like:

The first link builds the application itself using the appli.lkf command
file. The second link uses the same command file and creates an object

clnk -o appli.h12 -m appli.map appli.lkf
clnk -o appli.sym -s appli.lkf
© 2004 COSMIC Software Using The Linker 317

Special Topics6

318
file containing only an absolute symbol table. This file can then be used
as an input object file in any other link command file.
© 2004 COSMIC SoftwareUsing The Linker

Description of The Map File
Description of The Map File
The linker can output a map file by using the -m option. The map file
contains 4 sections: the Segment section, the Modules section, the Stack
Usage section and the Symbols section.

Segment Describe the different segments which compose the appli-
cation, specifying for each of them: the start address (in
hexa), the end address (in hexa), the length (in decimal),
and the name of the segment. Note that the end value is the
address of the byte following the last one of the segment,
meaning that an empty segment will have the same start
and end addresses. If a segment is initialized, it is dis-
played twice, the first time with its final address, the sec-
ond time with the address of the image copy.

Modules List all the modules which compose the application, giving
for each the description of all the defined sections with the
same format as in the Segment section. If an object has
been assembled with the -pl option, local symbols are dis-
played just after the module description.

Stack Usage Describe the amount of memory needed for the stack.
Each function of the application is listed by its name, fol-
lowed by a ‘>’ character indicating that this function is not
called by any other one (the main function, interrupt func-
tions, task entries...). The first number is the total size of
the stack used by the function including all the internal
calls. The second number between braces shows the stack
need for that function alone. The entry may be flagged by
the keyword “Recursive” meaning that this function is
itself recursive or is calling directly or indirectly a recur-
sive function, and that the total stack space displayed is not
accurate. The linker may detect potential but not actual
recursive functions when such functions are called by
pointer.The linker displays at the end of the list a total
stack size assuming interrupt functions cannot be them-
selves interrupted. Interrupt frames and machine library
calls are properly counted.
© 2004 COSMIC Software Using The Linker 319

Return Value6

320
Symbols List all the symbols defined in the application specifying
for each its name, its value, the section where it is defined,
and the modules where it is used. If the target processor
supports bank switching, addresses are displayed as logical
addresses by default. Physical addresses can be displayed
by specifying the -p option on the linker command line.

Return Value
clnk returns success if no error messages are printed to STDOUT; that
is, if no undefined symbols remain and if all reads and writes succeed.
Otherwise it returns failure.

Linker Command Line Examples
This section shows you how to use the linker to perform some basic
operations.

A linker command file consists of linker options, input and output file,
and libraries. The options and files are read from a command file by the
linker. For example, to create an HC12/HCS12 file from file.o you can
type at the system prompt:

where myapp.lkf contains:

+seg .text -b0x1000 -n .text # start eprom address
+seg .const -a .text # constants follow program
+seg .data -b0x100 # start data address
+def __sbss=@.bss # symbol used by startup
\cx32\lib\crts.h12 # startup object file
file1.o file2.o # input object files
\cx32\lib\libi.h12 # C library
\cx32\lib\libm.h12 # machine library
+def __memory=@.bss # symbol used by startup

The following link command file is an example for an application that
does not use floating point data types and does not require automatic
initialization.

clnk -o myapp.h12 myapp.lkf
© 2004 COSMIC SoftwareUsing The Linker

Linker Command Line Examples
demo.lkf: link command WITHOUT automatic init
+seg .text -b 0xf000 -n.text # program start address
+seg .const -a .text # constants follow program
+seg .data -b0x800 # start data address
+def __sbss=@.bss # symbol used by startup
\cx32\lib\crts.h12 # startup with NO-INIT
acia.o # main program
module1.o # module program
\cx32\lib\libi.h12 # C lib.
\cx32\lib\libm.h12 # machine lib.
+seg .const -b0xffce # vectors eprom address
vector.o # reset & interrupt vectors
+def __memory=@.bss # symbol used by library
+def __stack=0x4000 # stack pointer initial value

The following link command file is an example for an application that
uses single precision floating point data types and utilizes automatic
data initialization.

demo.lkf: link command WITH automatic init
+seg .text -b 0xf000 -n.text # program start address
+seg .const -a .text # constants follow program
+seg .data -b0x800 # start data address
+def __sbss=@.bss # symbol used by startup
\cx32\lib\crtsi.h12 # startup with auto-init
acia.o # main program
module1.o # module program
\cx32\lib\libf.h12 # single prec.
\cx32lib\libi.h12 # integer lib.
\cx32\lib\libm.h12 # machine lib.
+seg .const -b0xffce # vectors eprom address
vector.o # reset & interrupt vectors
+def __memory=@.bss # end of bss segment
+def __stack=0x4000 # stack pointer initial value
© 2004 COSMIC Software Using The Linker 321

CHAPTER

7

Debugging Support
This chapter describes the debugging support available with the cross
compiler targeting the HC12/HCS12. There are two levels of debugging
support available, so you can use either the COSMIC’s Zap C source
level cross debugger or your own debugger or in-circuit emulator to
debug your application. This chapter includes the following sections:

• Generating Debugging Information

• Generating Line Number Information

• Generating Data Object Information

• The cprd Utility

• The clst utility
© 2004 COSMIC Software Debugging Support 323

Generating Debugging Information7

324
Generating Debugging Information
The compiler generates debugging information in response to command
line options you pass to the compiler as described below. The compiler
can generate the following debugging information:

1 line number information that allows COSMIC’s C source level
debugger or another debugger or emulator to locate the address of the
code that a particular C source line (or set of lines) generates. You
may put line number information into the object module in either of
the two formats, or you can generate both line number information
and information about program data and function arguments, as
described below.

2 information about the name, type, storage class and address (abso-
lute or relative to a stack offset) of program static data objects, func-
tion arguments, and automatic data objects that functions declare.
Information about what source files produced which relocatable or
executable files. This information may be localized by address
(where the output file resides in memory). It may be written to a file,
sorted by address or alphabetical order, or it may be output to a
printer in paginated or unpaginated format.

Generating Line Number Information
The compiler puts line number information into a special debug symbol
table. The debug symbol table is part of the relocatable object file pro-
duced by a compilation. It is also part of the output of the clnk linker.
You can therefore obtain line number information about a single file, or
about all the files making up an executable program. However, the
compiler can produce line number information only for files that are
fewer than 65,535 lines in length.

Generating Data Object Information
The +debug option directs the compiler to generate information about
data objects and function arguments and return types. The debugging
information the compiler generates is the information used by the
COSMIC’s C source level cross debugger or another debugger or emu-
lator. The information produced about data objects includes their name,
scope, type and address. The address can be either absolute or relative
to a stack offset.
© 2004 COSMIC SoftwareDebugging Support

Generating Debugging Information
As with line number information alone, you can generate debugging
information about a single file or about all the files making up an exe-
cutable program.

cprd may be used to extract the debugging information from files com-
piled with the +debug option, as described below.
© 2004 COSMIC Software Debugging Support 325

The cprd Utility7

326
The cprd Utility
cprd extracts information about functions and data objects from an
object module or executable image that has been compiled with the
+debug option. cprd extracts and prints information on the name, type,
storage class and address (absolute or offset) of program static data
objects, function arguments, and automatic data objects that functions
declare. For automatic data, the address provided is an offset from the
frame pointer. For function arguments, the address provided is an offset
from the stack pointer.

Command Line Options
cprd accepts the following command line options, each of which is
described in detail below:

where <file> is an object file compiled from C source with the com-
piler command line option +debug set.

-fc* print debugging information only about the function *. By
default, cprd prints debugging information on all functions
in <file>. Note that information about global data objects
is always displayed when available.

-fl* print debugging information only about the file *. By
default, cprd prints debugging information on all C source
files.

-o* print debugging information to file *. Debugging informa-
tion is written to your terminal screen by default.

-r Display structure fields with their offset.

-s Display object size in bytes.

cprd [options] file
-fc* select function name
-fl* select file name
-o* output file name
-r recurse structure fields
-s display object size
© 2004 COSMIC SoftwareDebugging Support

The cprd Utility
By default, cprd prints debugging information about all functions and
global data objects in <file>.

Examples
The following example show sample output generated by running the
cprd utility on an object file created by compiling the program acia.c
with the compiler option +debug set.

Information extracted from acia.h12
source file acia.c:

unsigned char buffer[512] at 0x0804
unsigned char *ptlec at 0x0802
unsigned char *ptecr at 0x0800

unsigned char getch() lines 26 to 36 at 0xf016-0xf02b
 auto unsigned char c at -1 from frame pointer

void outch() lines 40 to 45 at 0xf02c-0xf032
 argument unsigned char c at 1 from frame pointer

void recept() lines 51 to 57 at 0xf033-0xf047
 (no locals)

void main() lines 63 to 71 at 0xf048-0xf061
 (no locals)

source file vectors.c:

void (*_vectab[25])() at 0x3ffce

cprd acia.h12
© 2004 COSMIC Software Debugging Support 327

The clst utility7

328
The clst utility
The clst utility takes relocatable or executable files as arguments, and
creates listings showing the C source files that were compiled or linked
to obtain those relocatable or executable files. It is a convenient utility
for finding where the source statements are implemented.

To use clst efficiently, its argument files must have been compiled with
the +debug option.

clst can be instructed to limit its display to files occupying memory in a
particular range of addresses, facilitating debugging by excluding extra-
neous data. clst will display the entire content of any files located
between the endpoints of its specified address range.

Command Line Options
clst accepts the following command line options, each of which is
described in detail below:

-a when set, cause clst to list files in alphabetical order. The
default is that they are listed by increasing addresses.

-f*> specify * as the file to be processed. Default is to process
all the files of the application. Up to 10 files can be speci-
fied.

-i*> read string * to locate the source file in a specific directory.
Source files will first be searched for in the current direc-
tory, then in the specified directories in the order they were
given to clst. You can specify up to 20 different paths Each
path is a directory name, not terminated by any directory
separator character.

clst [options> file
-a list file alphabetically
-f*> process selected file
-i*> source file
-l# page length
-o* output file name
-p suppress pagination
-r* specify a line range #:#
© 2004 COSMIC SoftwareDebugging Support

The clst utility
-l# when paginating output, make the listings # lines long. By
default, listings are paginated at 66 lines per page.

-o* redirect output from clst to file *. You can achieve a simi-
lar effect by redirecting output in the command line.

is equivalent to:

-p suppress pagination. No page breaks will be output.

-r#:# where #:# is a range specification. It must be of the form
<number>:<number>. When this flag is specified, only
those source files occupying memory in the specified
range will be listed. If part of a file occupies memory in the
specified range, that file will be listed in its entirety. The
following is a valid use of -r:

clst -o acia.lst acia.h12

clst acia.h12 >acia.lst

-r 0xe000:0xe200
© 2004 COSMIC Software Debugging Support 329

CHAPTER

8

Programming Support
This chapter describes each of the programming support utilities pack-
aged with the C cross compiler targeting the HC12/HCS12. The follow-
ing utilities are available:

The assembler is described in Chapter 5, “Using The Assembler”. The
linker is described in Chapter 6, “Using The Linker”. Support for
debugging is described in Chapter 7, “Debugging Support”.

The description of each utility tells you what tasks it can perform, the
command line options it accepts, and how you use it to perform some
commonly required operations. At the end of the chapter are a series of
examples that show you how to combine the programming support util-
ities to perform more complex operations.

cbank fill page window

chex translate object module format

clabs generate absolute listings

clib build and maintains libraries

cobj examine objects modules

cv695 generate IEEE695 format

cvdwarf generate ELF/DWARF format
© 2004 COSMIC Software Programming Support 331

The cbank Utility8

332
The cbank Utility
You use the cbank utility to optimize the bank filling with object files.
cbank is given a list of object files and a bank size. It reorganizes the
object list in order to fill as completely as possible the smallest amount
of banks and produces as result a text file containing the object file
names in the proper order. If the input file also contains bank start
addresses (using the linker syntax), segment opening directives will be
also output at the proper place with the specified information. Other-
wise the object file list is supposed to be used in conjunction with the
-w option of the linker allowing an automatic bank filling. In any cases,
the file produced by the cbank utility can be directly inserted in the
linker command file by a +inc directive.

Command Line Options
cbank accepts the following command line options, each of which is
described in detail below:

-m# fill a maximum of # banks. If cbank needs more banks than
the specified number, it will report an error message. By
default, cbank fills as many banks as necessary.

-n* sort sections whose name is equal to the string *. By
default, cbank sorts .text sections.

-o* write result to file *. The default is STDOUT.

-w## set the bank size to ##.

Return Status
cbank returns success if no error messages are printed. Otherwise it
returns failure.

cbank [options] file
-m# maximum available banks
-n* name of segment to pack
-o* output file name
-w## bank size
© 2004 COSMIC SoftwareProgramming Support

The cbank Utility
Examples
The following command:

will generate bk_list as the result file, with a page window of size
0x1000 from the given list obj_list which contains:

file1.o
file2.o
file3.o
file4.o

The result will be:
--- bank 1 --- # (3876/4096)
file1.o
file3.o
--- bank 2 --- # (3900/4096)
file2.o
--- bank 3 --- # (474/4096)
file4.o

The first value is the space used in the bank, and the second value is the
bank size.

Bank start addresses can be included into the input file, such as:

-b0x10000 -o 0x8000 -n bank1
-b0x18000 -o 0x8000 -n bank2
-b0x20000 -o 0x8000 -n bank3
file1.o
file2.o
file3.o
file4.o

The result will be:
+seg .text -b0x10000 -o0x8000 -n bank1 # (3876/4096)
file1.o
file3.o
+seg .text -b0x18000 -o0x8000 -n bank2 # (3900/4096)
file2.o
+seg .text -b0x20000 -o0x8000 -n bank3 # (474/4096)
file4.o

cbank -o bk_list -w 0x1000 obj_list
© 2004 COSMIC Software Programming Support 333

The chex Utility8

334
The chex Utility
You use the chex utility to translate executable images produced by
clnk to one of several hexadecimal interchange formats. These formats
are: Motorola S-record format, and Intel standard hex format. You can
also use chex to override text and data biases in an executable image or
to output only a portion of the executable.

The executable image is read from the input file <file>.

Command Line Options
chex accepts the following command line options, each of which is
described in detail below:

-a## the argument file is a considered as a pure binary file and
is the output address of the first byte.

-b## substract ## to any address before output.

-e## define ## as the entry point address encoded in the dedi-
cated record of the output format, if available.

-f? define output file format. Valid options are:

chex [options] file
-a## absolute file start address
-b## address bias
-e## entry point address
-f? output format
-h suppress header
+h* specify header string
-m# maximum data bytes per line
-n*> output only named segments
-o* output file name
-p use paged address format
-pl## page number for linear mapping
-pn use paged address in bank only
-pp use paged address with mapping
-s output increasing addresses
-x*> exclude named segments
© 2004 COSMIC SoftwareProgramming Support

The chex Utility
Default is to produced Motorola S-Records (-fm). Any
other letter will select the default format.

-h do not output the header sequence if such a sequence exists
for the selected format.

+h* insert * in the header sequence if such a sequence exists for
the selected format.

-m# output # maximum data bytes per line. Default is to output
32 bytes per line.

-n*> output only segments whose name is equal to the string *.
Up to twenty different names may be specified on the com-
mand line. If there are several segments with the same
name, they will all be produced. This option is used in
combination with the -n option of the linker.

-o* write output module to file *. The default is STDOUT.

-p output addresses of banked segments using a paged format
<page_number><logical_address>, instead of the
default format <physical>.

-pl## specify the page value of the segment localized between
0x8000 and 0xc000 when using a linear non-banked
application. This option enforces a paged format for this
segment.

-pn behaves as -p but only when logical address is inside the
banked area. This option has to be selected when produc-
ing an hex file for the Noral debugger.

i Intel hex format

m Motorola S19 format

2 Motorola S2 format

3 Motorola S3 format
© 2004 COSMIC Software Programming Support 335

The chex Utility8

336
-pp behaves as -p but uses paged addresses for all banked seg-
ments, mapped or unmapped. This option has to be selectd
when producing an hex file for Promic tools.

-s sort the output addresses in increasing order.

-x*> do not output segments whose name is equal to the string
*. Up to twenty different names may be specified on the
command line. If there are several segments with the same
name, they will not all be output.

Return Status
chex returns success if no error messages are printed; that is, if all
records are valid and all reads and writes succeed. Otherwise it returns
failure.

Examples
The file hello.c, consisting of:

when compiled produces the following the following Motorola
S-record format:

S00A000068656C6C6F2E6F44
S1110000020068656C6C6F20776F726C640090
S9030000FC

and the following Intel standard hex format:

:0E000000020068656C6C6F20776F726C640094
:00000001FF

char *p = {“hello world”};

chex hello.o

chex -fi hello.o
© 2004 COSMIC SoftwareProgramming Support

The clabs Utility
The clabs Utility
clabs processes assembler listing files with the associated executable
file to produce listing with updated code and address values.

clabs decodes an executable file to retrieve the list of all the files which
have been used to create the executable. For each of these files, clabs
looks for a matching listing file produced by the compiler (“.ls” file). If
such a file exists, clabs creates a new listing file (“.la” file) with abso-
lute addresses and code, extracted from the executable file.

To be able to produce any results, the compiler must have been used
with the ‘-l’ option.

Command Line Options
clabs accepts the following command line options, each of which is
described in detail below.

-a process also files located in libraries. Default is to process
only all the files of the application.

-cl* specify a path for the listing files. By default, listings are
created in the same directoy than the source files.

-l process files in the current directory only. Default is to
process all the files of the application.

-p output addresses of banked segments using a paged format
<page_number><logical_address>, instead of the
default format <physical>.

clabs [options] file
-a process also library files
-cl* listings files
-l restrict to local directory
-p use paged address format
-pn use paged address in bank only
-pp use paged address with mapping
-r* relocatable listing suffix
-s* absolute listing suffix
-v echo processed file names
© 2004 COSMIC Software Programming Support 337

The clabs Utility8

338
-pn behaves as -p but only when logical address is inside the
banked area.

-pp behaves as -p but uses paged addresses for all banked seg-
ments, mapped or unmapped.

-r* specify the input suffix, including or not the dot ‘.’ charac-
ter. Default is “.ls”

-s* specify the output suffix, including or not the dot ‘.’ char-
acter. Default is “.la”

-v be verbose. The name of each module of the application is
output to STDOUT.

<file> specifies one file, which must be in executable format.

Return Status
clabs returns success if no error messages are printed; that is, if all reads
and writes succeed. An error message is output if no relocatable listing
files are found. Otherwise it returns failure.

Examples
The following command line:

will output:

crts.ls
acia.ls
vector.ls

and creates the following files:

crts.la
acia.la
vector.la

The following command line:

clabs -v acia.h12
© 2004 COSMIC SoftwareProgramming Support

The clabs Utility
will look for files with the suffix “.lst”:

The following command line:

will generate:

crts.lx
acia.lx
vector.lx

clabs -r.lst acia.h12

clabs -s.lx acia.h12
© 2004 COSMIC Software Programming Support 339

The clib Utility8

340
The clib Utility
clib builds and maintains object module libraries. clib can also be used
to collect arbitrary files in one place. <library> is the name of an exist-
ing library file or, in the case of replace or create operations, the name
of the library to be constructed.

Command Line Options
clib accepts the following command line options, each of which is
described in detail below:

-a include absolute symbols in the library symbol table.

-c create a library containing <files>. Any existing <library>
of the same name is removed before the new one is cre-
ated.

-d delete from the library the zero or more files in <files>.

-i* take object files from a list *. You can put several files per
line or put one file per line. Each lines can include com-
ments. They must be prefixed by the ‘#’ character. If the
command line contains <files>, then <files> will be also
added to the library.

-l when a library is built with this flag set, all the modules of
the library will be loaded at link time. By default, the
linker only loads modules necessary for the application.

clib [options] <library> <files>
-a accept absolute symbols
-c create a new library
-d delete modules from library
-i* object list filename
-l load all library at link
-r replace modules in library
-s list symbols in library
-t list files in library
-v be verbose
-x extract modules from library
© 2004 COSMIC SoftwareProgramming Support

The clib Utility
-r in an existing library, replace the zero or more files in
<files>. If no library <library> exists, create a library
containing <files>. The files in <files> not present in the
library are added to it.

-s list the symbols defined in the library with the module
name to which they belong.

-t list the files in the library.

-v be verbose

-x extract the files in <files> that are present in the library
into discrete files with the same names. If no <files> are
specified, all files in the library are extracted.

At most one of the options -[c r t x] may be specified at the same time.
If none of these is specified, the -t option is assumed.

Return Status
clib returns success if no problems are encountered. Otherwise it
returns failure. After most failures, an error message is printed to
STDERR and the library file is not modified. Output from the -t, -s
options, and verbose remarks, are written to STDOUT.

Examples
To build a library and check its contents:

will output:

one.o
two.o
three.o

To build a library from a list file:

clib -c libc one.o two.o three.o
clib -t libc

clib -ci list libc six.o seven.o
© 2004 COSMIC Software Programming Support 341

The clib Utility8

342
where list contains:

files for the libc library
one.o
two.o
three.o
four.o
five.o
© 2004 COSMIC SoftwareProgramming Support

The cobj Utility
The cobj Utility
You use cobj to inspect relocatable object files or executable. Such files
may have been output by the assembler or by the linker. cobj can be
used to check the size and configuration of relocatable object files or to
output information from their symbol tables.

Command Line Options
cobj accepts the following options, each of which is described in detail
below.

<file> specifies a file, which must be in relocatable format or executa-
ble format.

-d output in hexadecimal the data part of each section.

-h display all the fields of the object file header.

-n display the name, size and attribute of each section.

-o* write output module to file *. The default is STDOUT.

-r output in symbolic form the relocation part of each section.

-s display the symbol table.

-v display seek addresses inside the object file.

-x display the debug symbol table.

If none of these options is specified, the default is -hns.

cobj [options] file
-d output data flows
-h output header
-n output sections
-o* output file name
-r output relocation flows
-s output symbol table
-v display file addresses
-x output debug symbols
© 2004 COSMIC Software Programming Support 343

The cobj Utility8

344
Return Status
cobj returns success if no diagnostics are produced (i.e. if all reads are
successful and all file formats are valid).

Examples
For example, to get the symbol table:

symbols:

_main: 0000003e section .text defined public
_outch: 0000001b section .text defined public
_buffer: 00000000 section .bss defined public
_ptecr: 00000000 section .bsct defined public zpage
_getch: 00000000 section .text defined public
_ptlec: 00000002 section .bsct defined public zpage
_recept: 00000028 section .text defined public

The information for each symbol is: name, address, section to which it
belongs and attribute.

cobj -s acia.o
© 2004 COSMIC SoftwareProgramming Support

The cv695 Utility
The cv695 Utility
cv695 is the utility used to convert a file produced by the linker into an
IEEE695 format file.

Command Line Options
cv695 accepts the following options, each of which is described in
detail below.

<file> specifies a file, which must be in executable format.

-V4 output information as per as cv695 converter V4.x version.
This flag is provided for compatibility with older version
of cv695 version. DO NOT USE UNLESS SPECIFI-
CALLY INSTRUCTION TO DO SO.

+bit patch bit variables into chars because IEEE695 format
does not handle bit variables.

-dpage output banked data addresses. DO NOT USE THIS
OPTION ON NON BANKED DATA APPLICATION.
THIS FLAG IS CURRENTLY ONLY MEANING-
FULL FOR THE HC12/HCS12.

-d dump to the screen the interface information such as:
frame coding, register coding, e.g. all the processor spe-
cific coding for IEEE (note: some of these codings have
been chosen by COSMIC because no specifications exist
for them in the current published standard).

cv695 [options] file
+V4 do not offset locals
+bit patch bit variables into chars
-d display usage info
+dpage file uses data paging (HC12 only)
-mod? select compiler model
+old produce old format
-o* output file name
+page# define pagination (HC12 only)
-rb reverse bitfield (L to R)
-v be verbose
© 2004 COSMIC Software Programming Support 345

The cv695 Utility8

346
THIS INFORMATION IS ONLY RELEVANT FOR
WRITING A READER OF THE PRODUCED IEEE
FORMAT.

-mod? where ? is a character used to specify the compilation
model selected for the file to be converted.

THIS FLAG IS CURRENTLY ONLY MEANINGFULL
FOR THE MC68HC16.

This flag mimics the flag used with C. Acceptable values
are:

+old output old format for MRI.

-o* where * is a filename. * is used to specify the output file
for cv695. By default, if -o is not specified, cv695 send its
output to the file whose name is obtained from the input
file by replacing the filename extension with “.695”.

+page# output addresses in paged mode where # specifies the page
type:

By default linear physical addresses are output.

THIS FLAG IS CURRENTLY ONLY MEANING-
FULL FOR THE HC12/HCS12.

c for compact model

s for short model

t for tiny model

l for large model

0 for no paging.

1 for pages with PHYSICAL ADDRESSES

2 for pages with banked addresses
<page><offset_in_page>
© 2004 COSMIC SoftwareProgramming Support

The cv695 Utility
-rb reverse bitfield from left to right.

-v select verbose mode. cv695 will display information about
its activity.

Return Status
cv695 returns success if no problems are encountered. Otherwise it
returns failure.

Examples
Under MS/DOS, the command could be:

and will produce: C:\test\basic.695

and the following command:

will produce: file

Under UNIX, the command could be:

and will produce: test/basic.695

cv695 C:\test\basic.h12

cv695 -o file C:\test\basic.h12

cv695 /test/basic.h12
© 2004 COSMIC Software Programming Support 347

The cvdwarf Utility8

348
The cvdwarf Utility
cvdwarf is the utility used to convert a file produced by the linker into
an IELF/DWARF format file.

Command Line Options
cvdwarf accepts the following options, each of which is described in
detail below.

<file> specifies a file, which must be in executable format.

-bp# start address of the banking page.

-bs# set the window shift to #, which implies that the number of
bytes in a window is 2**#.

THESE FLAGS ARE CURRENTLY ONLY MEAN-
INGFULL FOR THE MC68HC11K4.

-loc location lists are used in place of location expressions
whenever the object whose location is being described can
change location during its lifetime. THIS POSSIBILITY
IS NOT SUPPORTED BY ALL DEBUGGERS.

-o* where * is a filename. * is used to specify the output file
for cvdwarf. By default, if -o is not specified, cvdwarf send
its output to the file whose name is obtained from the input
file by replacing the filename extension with “.elf”.

+page# output addresses in paged mode where # specifies the page
type:

cvdwarf [options] file
-bp## bank start address
-bs# bank shift
-loc complex location description
-o* output file name
+page# define pagination (HC12 only)
-rb reverse bitfield (L to R)
-v be verbose
© 2004 COSMIC SoftwareProgramming Support

The cvdwarf Utility
By default the banked mode is disable.

THIS FLAG IS CURRENTLY ONLY MEANING-
FULL FOR THE HC12/HCS12.

-rb reverse bitfield from left to right.

-v select verbose mode. cvdwarf will display information
about its activity.

Return Status
cvdwarf returns success if no problems are encountered. Otherwise it
returns failure.

Examples
Under MS/DOS, the command could be:

and will produce: C:\test\basic.elf

and the following command:

will produce: file

Under UNIX, the command could be:

and will produce: test/basic.elf

1 for banked code

2 for banked data

3 both (code and data)

cvdwarfC:\test\basic.h12

cvdwarf -o file C:\test\basic.h12

cvdwarf /test/basic.h12
© 2004 COSMIC Software Programming Support 349

APPENDIX

A

Compiler Error
Messages

This appendix lists the error messages that the compiler may generate in
response to errors in your program, or in response to problems in your
host system environment, such as inadequate space for temporary inter-
mediate files that the compiler creates.

The first pass of the compiler generally produces all user diagnostics.
This pass deals with # control lines and lexical analysis, and then with
everything else having to do with semantics. Only machine-dependent
extensions are diagnosed in the code generator pass. If a pass produces
diagnostics, later passes will not be run.

Any compiler message containing an exclamation mark ! or the word
‘PANIC’ indicates that the compiler has detected an inconsistent inter-
nal state. Such occurrences are uncommon and should be reported to
the maintainers.

• Parser (cp6812) Error Messages

• Code Generator (cg6812) Error Messages

• Assembler (ca6812) Error Messages

• Linker (clnk) Error Messages
© 2004 COSMIC Software Compiler Error Messages 351

Parser (cp6812) Error MessagesA

352
Parser (cp6812) Error Messages
<name> not a member - field name not recognized for this struct/
union

<name> not an argument - a declaration has been specified for an
argument not specified as a function parameter

<name> undefined - a function or a variable is never defined

FlexLM <message>- an error is detected by the license manager

_asm string too long - the string constant passed to _asm is larger than
255 characters

ambiguous space modifier - a space modifier attempts to redefine an
already specified modifier

array size unknown - the sizeof operator has been applied to an array
of unknown size

bad # argument in macro <name> - the argument of a # operator in a
#define macro is not a parameter

bad # directive: <name> - an unknown #directive has been specified

bad # syntax - # is not followed by an identifier

bad ## argument in macro <name> - an argument of a ## operator in
a #define macro is missing

bad #asm directive - a #asm directive is not entered at a valid declara-
tion or instruction boundary

bad #define syntax - a #define is not followed by an identifier

bad #elif expression - a #elif is not followed by a constant expression

bad #else - a #else occurs without a previous #if, #ifdef, #ifndef or #elif

bad #endasm directive - a #endasm directive is not closing a previous
#asm directive
© 2004 COSMIC SoftwareCompiler Error Messages

Parser (cp6812) Error Messages
bad #endif - a #endif occurs without a previous #if, #ifdef, #ifndef, #elif
or #else

bad #if expression - the expression part of a #if is not a constant
expression

bad #ifdef syntax - extra characters are found after the symbol name

bad #ifndef syntax - extra characters are found after the symbol name

bad #include syntax - extra characters are found after the file name

bad #pragma section directive - syntax for the #pragma section direc-
tive is incorrect

bad #pragma space directive - syntax for the #pragma space directive
is incorrect

bad #undef syntax - #undef is not followed by an identifier

bad _asm() argument type - the first argument passed to _asm is miss-
ing or is not a character string

bad alias expression - alias definition is not a valid expression

bad alias value - alias definition is not a constant expression

bad bit number - a bit number is not a constant between 0 and 7

bad character <character> - <character> is not part of a legal token

bad defined syntax - the defined operator must be followed by an iden-
tifier, or by an identifier enclosed in parenthesis

bad function declaration - function declaration has not been termi-
nated by a right parenthesis

bad integer constant - an invalid integer constant has been specified

bad invocation of macro <name> - a #define macro defined without
arguments has been invoked with arguments
© 2004 COSMIC Software Compiler Error Messages 353

Parser (cp6812) Error MessagesA

354
bad macro argument - a parameter in a #define macro is not an identi-
fier

bad macro argument syntax - parameters in a #define macro are not
separated by commas

bad proto argument type - function prototype argument is declared
without an explicit type

bad real constant - an invalid real constant has been specified

bad return type for inline function - inline function must be declared
with void return type

bad space modifier - a modifier beginning with a @ character is not
followed by an identifier

bad structure for return - the structure for return is not compatible
with that of the function

bad struct/union operand - a structure or an union has been used as
operand for an arithmetic operator

bad symbol defintion - the syntax of a symbol defined by the -d option
on the command line is not valid

bad void argument - the type void has not been used alone in a proto-
typed function declaration

can't create <name> - file <name> cannot be created for writing

can't open <name> - file <name> cannot be opened for reading

can't redefine macro <name> - macro <name> has been already
defined

can't undef macro <name> - a #undef has been attempted on a prede-
fined macro

compare out of range - a comparison is detected as beeing always true
or always false (+strict)
© 2004 COSMIC SoftwareCompiler Error Messages

Parser (cp6812) Error Messages
const assignment - a const object is specified as left operand of an
assignment operator

constant assignement in a test - an assignment operator has been used
in the test expression of an if, while, do, for statements or a conditional
expression (+strict)

duplicate case - two case labels have been defined with the same value
in the same switch statement

duplicate default - a default label has been specified more than once in
a switch statement

embedded usage of tag name <name> - a structure/union definition
contains a reference to itself.

enum size unknow - the range of an enumeration is not available to
choose the smallest integer type

exponent overflow in real - the exponent specified in a real constant is
too large for the target encoding

float value too large for integer cast - a float constant is too large to be
casted in an integer

hexadecimal constant too large - an hexadecimal constant is too large
to be represented on an integer

illegal storage class - storage class is not legal in this context

illegal type specification - type specification is not recognizable

illegal void operation - an object of type void is used as operand of an
arithmetic operator

illegal void usage - an object of type void is used as operand of an
assignment operator

implicit int type in argument declaration - an argument has been
declared without any type (+strict)
© 2004 COSMIC Software Compiler Error Messages 355

Parser (cp6812) Error MessagesA

356
implicit int type in global declaration - a global variable has been
declared without any type (+strict)

implicit int type in local declaration - a local variable has been
declared without any type (+strict)

implicit int type in struct/union declaration - a structure or union
field has been declared without any type (+strict)

incompatible argument type - the actual argument type does not
match the corresponding type in the prototype

incompatible compare type - operands of comparison operators must
be of scalar type

incompatible operand types - the operands of an arithmetic operator
are not compatible

incompatible pointer assignment - assigned pointers must have the
same type, or one of them must be a pointer to void

incompatible pointer operand - a scalar type is expected when opera-
tors += and -= are used on pointers

incompatible pointer operation - pointers are not allowed for that
kind of operation

incompatible pointer types - the pointers of the assignment operator
must be of equal or coercible type

incompatible return type - the return expression is not compatible
with the declared function return type

incompatible struct/union operation - a structure or an union has
been used as operand of an arithmetic operator

incompatible types in struct/union assignment - structures must be
compatible for assignment

incomplete #elif expression - a #elif is followed by an incomplete
expression
© 2004 COSMIC SoftwareCompiler Error Messages

Parser (cp6812) Error Messages
incomplete #if expression - a #if is followed by an incomplete expres-
sion

incomplete type - structure type is not followed by a tag or definition

integer constant too large - a decimal constant is too large to be repre-
sented on an integer

invalid case - a case label has been specified outside of a switch state-
ment

invalid default - a default label has been specified outside of a switch
statement

invalid ? test expression - the first expression of a ternary operator
(? :) is not a testable expression

invalid address operand - the “address of” operator has been applied
to a register variable or an rvalue expression

invalid address type - the “address of” operator has been applied to a
bitfield

invalid alias - an alias has been applied to an extern object

invalid arithmetic operand - the operands of an arithmetic operator
are not of the same or coercible types

invalid array dimension - an array has been declared with a dimension
which is not a constant expression

invalid binary number - the syntax for a binary constant is not valid

invalid bit assignment - the expression assigned to a bit variable must
be scalar

invalid bit initializer - the expression initiliazing a bit variable must be
scalar

invalid bitfield size - a bitfield has been declared with a size larger than
its type size
© 2004 COSMIC Software Compiler Error Messages 357

Parser (cp6812) Error MessagesA

358
invalid bitfield type - a type other than int, unsigned int, char,
unsigned char has been used in a bitfield.

invalid break - a break may be used only in while, for, do, or switch
statements

invalid case operand - a case label has to be followed by a constant
expression

invalid cast operand - the operand of a cast operator in not an expres-
sion

invalid cast type - a cast has been applied to an object that cannot be
coerced to a specific type

invalid conditional operand - the operands of a conditional operator
are not compatible

invalid constant expression - a constant expression is missing or is not
reduced to a constant value

invalid continue - a continue statement may be used only in while, for,
or do statements

invalid do test type - the expression of a do ... while() instruction is not
a testable expression

invalid expression - an incomplete or ill-formed expression has been
detected

invalid external initialization - an external object has been initialized

invalid floating point operation - an invalid operator has been applied
to floating point operands

invalid for test type - the second expression of a for(;;) instruction is
not a testable expression

invalid function member - a function has been declared within a struc-
ture or an union
© 2004 COSMIC SoftwareCompiler Error Messages

Parser (cp6812) Error Messages
invalid function type - the function call operator () has been applied to
an object which is not a function or a pointer to a function

invalid if test type - the expression of an if () instruction is not a testa-
ble expression

invalid indirection operand - the operand of unary * is not a pointer

invalid line number - the first parameter of a #line directive is not an
integer

invalid local initialization - the initialization of a local object is incom-
plete or ill-formed

invalid lvalue - the left operand of an assignment operator is not a vari-
able or a pointer reference

invalid narrow pointer cast - a cast operator is attempting to reduce
the size of a pointer

invalid operand type - the operand of a unary operator has an incom-
patible type

invalid pointer cast operand - a cast to a function pointer has been
applied to a pointer that is not a function pointer

invalid pointer initializer - initializer must be a pointer expression or
the constant expression 0

invalid pointer operand - an expression which is not of integer type
has been added to a pointer

invalid pointer operation - an illegal operator has been applied to a
pointer operand

invalid pointer types - two incompatible pointers have been sub-
stracted

invalid shift count type - the right expression of a shift operator is not
an integer
© 2004 COSMIC Software Compiler Error Messages 359

Parser (cp6812) Error MessagesA

360
invalid sizeof operand type - the sizeof operator has been applied to a
function

invalid storage class - storage class is not legal in this context

invalid struct/union operation - a structure or an union has been used
as operand of an arithmetic operator

invalid switch test type - the expression of a switch () instruction must
be of integer type

invalid typedef usage - a typedef identifier is used in an expression

invalid void pointer - a void pointer has been used as operand of an
addition or a substraction

invalid while test type - the expression of a while () instruction is not a
testable expression

missing ## argument in macro <name> - an argument of a ## opera-
tor in a #define macro is missing

missing ‘>’ in #include - a file name of a #include directive begins
with ‘<’ and does not end with ‘>’

missing) in defined expansion - a ‘(’ does not have a balancing ‘)’ in a
defined operator

missing ; in argument declaration - the declaration of a function argu-
ment does not end with ‘;’

missing ; in local declaration - the declaration of a local variable does
not end with ‘;’

missing ; in member declaration - the declaration of a structure or
union member does not end with ‘;’

missing ? test expression - the test expression is missing in a ternary
operator (? :)

missing _asm() argument - the _asm function needs at least one argu-
ment
© 2004 COSMIC SoftwareCompiler Error Messages

Parser (cp6812) Error Messages
missing argument - the number of arguments in the actual function call
is less than that of its prototype declaration

missing argument for macro <name> - a macro invocation has fewer
arguments than its corresponding declaration

missing argument name - the name of an argument is missing in a pro-
totyped function declaration

missing array subscript - an array element has been referenced with
an empty subscript

missing do test expression - a do ... while () instruction has been speci-
fied with an empty while expression

missing enumeration member - a member of an enumeration is not an
identifier

missing explicit return - a return statement is not ending a non-void
function (+strict)

missing exponent in real - a floating point constant has an empty expo-
nent after the ’e’ or ’E’ character

missing expression - an expression is needed, but none is present

missing file name in #include - a #include directive is used, but no file
name is present

missing goto label - an identifier is needed after a goto instruction

missing if test expression - an if () instruction has been used with an
empty test expression

missing initialization expression - a local variable has been declared
with an ending ‘=’ character not followed by an expression

missing initializer - a simple object has been declared with an ending
‘=’ character not followed by an expression

missing local name - a local variable has been declared without a name
© 2004 COSMIC Software Compiler Error Messages 361

Parser (cp6812) Error MessagesA

362
missing member declaration - a structure or union has been declared
without any member

missing member name - a structure or union member has been
declared without a name

missing name in declaration - a variable has been declared without a
name

missing prototype - a function has been used without a fully proto-
typed declaration (+strict)

missing prototype for inline function - an inline function has been
declared without a fully prototyped syntax

missing return expression - a simple return statement is used in a non-
void function (+strict)

missing switch test expression - an expression in a switch instruction
is needed, but is not present

missing while - a ‘while’ is expected and not found

missing while test expression - an expression in a while instruction is
needed, but none is present

missing : - a ‘:’ is expected and not found

missing ; - a ‘;’ is expected and not found

missing (- a ‘(’ is expected and not found

missing) - a ‘)’ is expected and not found

missing] - a ‘]’ is expected and not found

missing { - a ‘{’ is expected and not found

missing } - a ‘}’ is expected and not found
© 2004 COSMIC SoftwareCompiler Error Messages

Parser (cp6812) Error Messages
missing } in enum definition - an enumeration list does not end with a
‘}’ character

missing } in struct/union definition - a structure or union member list
does not end with a ‘}’ character

redeclared argument <name> - a function argument has conflicting
declarations

redeclared enum member <name> - an enum element is already
declared in the same scope

redeclared external <name> - an external object or function has con-
flicting declarations

redeclared local <name> - a local is already declared in the same
scope

redeclared proto argument <name> - an identifier is used more than
once in a prototype function declaration

redeclared typedef <name> - a typedef is already declared in the same
scope

redefined alias <name> - an alias has been applied to an already
declared object

redefined label <name> - a label is defined more than once in a func-
tion

redefined member <name> - an identifier is used more than once in
structure member declaration

redefined tag <name> - a tag is specified more than once in a given
scope

repeated type specification - the same type modifier occurs more than
once in a type specification

scalar type required - type must be integer, floating, or pointer
© 2004 COSMIC Software Compiler Error Messages 363

Parser (cp6812) Error MessagesA

364
size unknown - an attempt to compute the size of an unknown object
has occurred

space attribute conflict - a space modifier attempts to redefine an
already specified modifier

string too long - a string is used to initialize an array of characters
shorter than the string length

struct/union size unknown - an attempt to compute a structure or
union size has occurred on an undefined structure or union

syntax error - an unexpected identifier has been read

token overflow - an expression is too complex to be parsed

too many argument - the number of actual arguments in a function
declaration does not match that of the previous prototype declaration

too many arguments for macro <name> - a macro invocation has
more arguments than its corresponding macro declaration

too many initializers - initialization is completed for a given object
before initializer list is exhausted

too many spaces modifiers - too many different names for ‘@’ modifi-
ers are used

truncating assignment - the right operand of an assignment is larger
than the left operand (+strict)

unbalanced ’ - a character constant does not end with a simple quote

unbalanced “ - a string constant does not end with a double quote

<name> undefined - an undeclared identifier appears in an expression

undefined label <name> - a label is never defined

undefined struct/union - a structure or union is used and is never
defined
© 2004 COSMIC SoftwareCompiler Error Messages

Parser (cp6812) Error Messages
unexpected end of file - last declaration is incomplete

unexpected return expression - a return with an expression has been
used within a void function

unknown enum definition - an enumeration has been declared with no
member

unknown structure - an attempt to initialize an undefined structure has
been done

unknown union - an attempt to initialize an undefined union has been
done

value out of range - a constant is assigned to a variable too small to
represent its value (+strict)

zero divide - a divide by zero was detected

zero modulus - a modulus by zero was detected
© 2004 COSMIC Software Compiler Error Messages 365

Code Generator (cg6812) Error MessagesA

366
Code Generator (cg6812) Error Messages
bad builtin - the @builtin type modifier can be used only on functions

bad @interrupt usage - the @interrupt type modifier can only be used
on functions.

invalid @nostack indirect call - a function has been called through a
pointer with more than one char or int argument, or is returning a struc-
ture.

redefined space - the version of cp6812 you used to compile your pro-
gram is incompatible with cg6812.

unknown space - you have specified an invalid space modifier @xxx

unknown space modifier - you have specified an invalid space modi-
fier @xxx

PANIC ! bad input file - cannot read input file

PANIC ! bad output file - cannot create output file

PANIC ! can't write - cannot write output file

All other PANIC ! messages should never happen. If you get such a
message, please report it with the corresponding source program to
COSMIC.
© 2004 COSMIC SoftwareCompiler Error Messages

Assembler (ca6812) Error Messages
Assembler (ca6812) Error Messages
The following error messages may be generated by the assembler. Note
that the assembler's input is machine-generated code from the compiler.
Hence, it is usually impossible to fix things ‘on the fly’. The problem
must be corrected in the source, and the offending program(s) recom-
piled.

bad .source directive - a .source directive is not followed by a string
giving a file name and line numbers

bad addressing mode - an invalid addressing mode have been con-
structed

bad argument number- a parameter sequence \n uses a value negative
or greater than 9

bad character constant - a character constant is too long for an expres-
sion

bad comment delimiter- an unexpected field is not a comment

bad constant - a constant uses illegal characters

bad else - an else directive has been found without a previous if direc-
tive

bad endif - an endif directive has been found without a previous if or
else directive

bad file name - the include directive operand is not a character string

bad index register - an invalid register has been used in an indexed
addressing mode

bad register - an invalid register has been specified as operand of an
instruction

bad relocatable expression - an external label has been used in either a
constant expression, or with illegal operators
© 2004 COSMIC Software Compiler Error Messages 367

Assembler (ca6812) Error MessagesA

368
bad string constant - a character constant does not end with a single or
double quote

bad symbol name: <name> - an expected symbol is not an identifier

can't create <name> - the file <name> cannot be opened for writing

can't open <name> - the file <name> cannot be opened for reading

can't open source <name> - the file <name> cannot be included

cannot include from a macro - the directive include cannot be speci-
fied within a macro definition

cannot move back current pc - an org directive has a negative offset

illegal size - the size of a ds directive is negative or zero

missing label - a label must be specified for this directive

missing operand - operand is expected for this instruction

missing register - a register is expected for this instruction

missing string - a character string is expected for this directive

relocatable expression not allowed - a constant is needed

section name <name> too long - a section name has more than 15
characters

string constant too long - a string constant is longer than 255 charac-
ters

symbol <name> already defined - attempt to redefine an existing
symbol

symbol <name> not defined - a symbol has been used but not declared

syntax error - an unexpected identifier or operator has been found

too many arguments - a macro has been invoked with more than 9
arguments
© 2004 COSMIC SoftwareCompiler Error Messages

Assembler (ca6812) Error Messages
too many back tokens - an expression is too complex to be evaluated

unclosed if - an if directive is not ended by an else or endif directive

unknown instruction <name> - an instruction not recognized by the
processor has been specified

value too large - an operand is too large for the instruction type

zero divide - a divide by zero has been detected
© 2004 COSMIC Software Compiler Error Messages 369

Linker (clnk) Error MessagesA

370
Linker (clnk) Error Messages
-a not allowed with -b or -o - the after option cannot be specified if
any start address is specified.

+def symbol <symbol> multiply defined - the symbol defined by a
+def directive is already defined.

bad file format - an input file has not an object file format.

bad number in +def - the number provided in a +def directive does not
follow the standard C syntax.

bad number in +spc <segment> - the number provided in a +spc
directive does not follow the standard C syntax.

bad processor type - an object file has not the same configuration
information than the others.

bad reloc code - an object file contains unexpected relocation informa-
tion.

bad section name in +def - the name specified after the ‘@’ in a +def
directive is not the name of a segment.

bank crossing call - a jsr instruction has been used to enter a banked
function, either from a different bank or from a common area.

can't create map file <file> - map file cannot be created.

can't create <file> - output file cannot be created.

can't locate .text segment for initialization - initialized data segments
have been found but no host segment has been specified.

can't locate shared segment - shared datas have been found but no
host segment has been specified.

can't open file <file> - input file cannot be found.

file already linked - an input file has already been processed by the
linker.
© 2004 COSMIC SoftwareCompiler Error Messages

Linker (clnk) Error Messages
function <function> is recursive - a nostack function has been
detected as recursive and cannot be allocated.

function <function> is reentrant - a function has been detected as
reentrant. The function is both called in an interrupt function and in the
main code.

incomplete +def directive - the +def directive syntax is not correct.

incomplete +seg directive - the +seg directive syntax is not correct.

incomplete +spc directive - the +spc directive syntax is not correct.

init segment cannot be initialized - the host segment for initialization
cannot be itself initialized.

invalid @ argument - the syntax of an optional input file is not correct.

invalid -i option - the -i directive is followed by an unexpected charac-
ter.

missing command file - a link command file must be specified on the
command line.

missing output file - the -o option must be specified.

missing '=' in +def - the +def directive syntax is not correct.

missing '=' in +spc <segment> - the +spc directive syntax is not cor-
rect.

named segment <segment> not defined - a segment name does not
match already existing segments.

no default placement for segment <segment> - a segment is missing
-a or -b option.

prefixed symbol <name> in conflict - a symbol beginning by ‘f_’ (for
a banked function) also exists without the ‘f’ prefix.

read error - an input object file is corrupted
© 2004 COSMIC Software Compiler Error Messages 371

Linker (clnk) Error MessagesA

372
segment <segment> and <segment> overlap - a segment is overlap-
ping an other segment.

segment <segment> size overflow - the size of a segment is larger than
the maximum value allowed by the -m option.

shared segment not empty - the host segment for shared data is not
empty and cannot be used for allocation.

symbol <symbol> multiply defined - an object file attempts to rede-
fine a symbol.

symbol <symbol> not defined - a symbol has been referenced but
never defined.

unexpected bank location - an interrupt function or a function access-
ing the PPAGE register is located in a bank.

unknown directive - a directive name has not been recognized as a
linker directive.
© 2004 COSMIC SoftwareCompiler Error Messages

APPENDIX

B

Modifying Compiler
Operation

This chapter tells you how to modify compiler operation by making
changes to the standard configuration file. It also explains how to create
your own programmable options” which you can use to modify com-
piler operation from the cx6812.cxf.
© 2004 COSMIC Software Modifying Compiler Operation 373

The Configuration FileB

374
The Configuration File
The configuration file is designed to define the default options and
behaviour of the compiler passes. It will also allow the definition of
programmable options thus simplifying the compiler configuration. A
configuration file contains a list of options similar to the ones accepted
for the compiler driver utility cx6812.

These options are described in Chapter 4, “Using The Compiler”.
There are two differences: the option -f cannot be specified in a config-
uration file, and the extra -m option has been added to allow the defini-
tion of a programmable compiler option, as described in the next
paragraph.

The contents of the configuration file cx6812.cxf as provided by the
default installation appears below:

CONFIGURATION FILE FOR HC12/HCS12 COMPILER
Copyright (c) 1996 by COSMIC Software
#
-pu # unsigned char
-i c:\cx32\h6812 # include path
-ans # default assembler to HCS12
#
-m debug:x # debug: produce debug info
-m ceven:,cs # ceven: use two const sections
-m even:b # even:align data on even boundary
-m ceven:,cs # ceven: use two const sections
-m fast:,i # fast: inline machine calls
-m modf:hmodf.h # @far for all global functions
-m nobss:,bss # nobss: do not use bss
-m nocst:,ct # nocst: constant in text section
-m nofds:,df # nofds: do not use far data section
-m nofts:,tf # nofts: do not use far text section
-m “nowiden:nw -p” # nowiden: do not expand argument
-m pic:,cr1,,dPIC,picd,picds# pic: position independant code
-m picd:,cr7,,dPIC,pic,picds# picd:pos. indep. code and data
-m picds:,cr3,,dPIC,pic,picd# picds: pic and data separated
-m proto:p # proto: enable prototype checking
-m rev:rb # rev: reverse bit field order
-m strict:ck # strict: enforce type checking
-m split:,sf # functions in different sections
-m sprec:f # use float only
-m zpage:hzpage.h # zpage: @dir for all variables
© 2004 COSMIC SoftwareModifying Compiler Operation

Changing the Default Options
-m pgff:,t1,,na,std # pgff: enable old dx128 processors
-m std:,t0,,na,pgff # std: enable standard processor

The following command line:

in combination with the above configuration file directs the cx6812
compiler to execute the following commands:

cp6812 -o \2.cx1 -u -i\cosmic\h6812 hello.c
cg6812 -o \2.cx2 \2.cx1
co6812 -o \2.cx1 \2.cx2
ca6812 -o hello.o -i\cosmic\h6812 \2.cx1

Changing the Default Options
To change the combination of options that the compiler will use, edit
the configuration file and add your specific options using the -p (for the
parser), -g (for the code generator), -o (for the optimizer) and -a (for the
assembler) options. If you specify an invalid option or combination of
options, compilation will not proceed beyond the step where the error
occurred. You may define up to 60 such options.

Creating Your Own Options
To create a programmable option, edit the configuration file and define
the parametrable option with the -m* option. The string * has the fol-
lowing format:

name:popt,gopt,oopt,aopt,exclude...

The first field defines the option name and must be ended by a colon
character ‘:’. The four next fields describe the effect of this option on
the four passes of the compiler, respectively the parser, the generator,
the optimizer and the assembler. These fields are separated by a comma
character ‘,’. If no specific option is needed on a pass, the field has to be
specified empty. The remaining fields, if specified, describe a exclusive
relationship with other defined options. If two exclusive options are
specified on the command line, the compiler will stop with an error
message. You may define up to 20 programmable options. At least one

cx6812 hello.c
© 2004 COSMIC Software Modifying Compiler Operation 375

ExampleB

376
field has to be specified. Empty fields need to be specified only if a use-
ful field has to be entered after.

In the following example:

-m dl1:l,dl1,,,dl2# dl1: line option 1
-m dl2:l,dl2,,,dl1# dl1: line option 2

the two options dl1 and dl2 are defined. If the option +dl1 is specified
on the compiler command line, the specific option -l will be used for the
parser and the specific option -dl1 will be used for the code generator.
No specific option will be used for the optimizer and for the assembler.
The option dl1 is also declared to be exclusive with the option dl2,
meaning that dl1 and dl2 will not be allowed together on the compiler
command line. The option dl2 is defined in the same way.

Example
The following command line

in combination with the previous configuration file directs the cx6812
compiler to execute the following commands:

cp6812-o \2.cx1 -u -rb -i\cosmic\h6812 hello.c
cg6812 -o \2.cx2 -bss \2.cx1
co6812 -o \2.cx1 \2.cx2
ca6812-o hello.o -i\cosmic\h6812 \2.cx1

cx6812 +nobss +rev hello.c
© 2004 COSMIC SoftwareModifying Compiler Operation

APPENDIX

C

HC12/HCS12 Machine
Library

This appendix describes each of the functions in the Machine Library
(libm). These functions provide the interface between the HC12/
HCS12 microcontroller hardware and the functions required by the
code generator. They are described in reference form, and listed alpha-
betically.

Note that machine library functions return values as follows:

• integer in D register.

• longs and floats in a register pair (“float register” or “long regis-
ter” depending on context) whose low word is the D register and
whose high word is in the X register.

• pointer to long, float or double in X or Y register.

• far pointer in a register pair whose low word (offset) is the X reg-
ister and whose high word is the D register, the page number in A
register, B register beeing always zero.

In the functions description below, left and right refer to left and right
operands, or first and second operands, of library functions.
© 2004 COSMIC Software HC12/HCS12 Machine Library 377

C Library - c_bfget

c_bfget

C

378
Description
Get a long bitfield

Syntax

Function
c_bfget is extracting a long bitfield from the value loaded in the long
register using the mask specified in the program memory just after the
jsr instruction.

Returns
The resulting value is in long register.

See Also
c_bfput

; raw value in long register
jsr c_bfget
dc.l mask

; result in long register
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_bfput

c_bfput

Description

Store a long bitfield

Syntax

Function
c_bfput is storing a long bitfield at the address loaded in the Y register
by shifting and masking the long register from a mask specified in the
program memory just after the jsr instruction.

Returns
Nothing.

See Also
c_bfget

; value in long register
; pointer to bitfield in y register

jsr c_bfput
dc.l mask

; result in long register
© 2004 COSMIC Software HC12/HCS12 Machine Library 379

C Library - c_check

c_check

C

380
Description
Check stack growth

Syntax

Function
c_check is used to check that the stack pointer is not overwriting valid
data in memory. Users must write their own check functions, because
the memory map is application-dependent. The value in Y is the new
stack pointer value.

Returns
c_check returns only if the stack pointer is correct. Otherwise, the
behavior is user-dependent. c_check is called when the -ck flag is spec-
ified (raised) to the code generator (cg6812). This option produces
larger and slower code. It should only be used for test and debugging.
The libraries provided with the compiler include a version of c_check
that always returns. It may be used as a template for user-written ver-
sions of this function.

leay #<size>,s
jsr c_check
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_dadd

c_dadd

Description

Add double to double

Syntax

Function
c_dadd adds the double in left to the double in right. No check is made
for overflow.

Returns
The resulting value is in left. Flags have no meaningful value upon
return.

See Also
c_dsub

; pointer to left in x register
; pointer to right in y register

jsr c_dadd
; result in left
© 2004 COSMIC Software HC12/HCS12 Machine Library 381

C Library - c_dcmp

c_dcmp

C

382
Description
Compare double with double

Syntax

Function
c_dcmp compares the double in left with the double in right.

Returns
The N and Z flags are set to reflect the value of (left-right).

; pointer to left in x register
; pointer to right in y register

jsr c_dcmp
; result in flags
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_ddiv

c_ddiv

Description

Divide double by double

Syntax

Function
c_ddiv divides the double in left by the double in right.

Returns
The resulting value is in left. A zero divide leaves the operand
unchanged. Flags have no meaningful value upon return.

; pointer to left in x register
; pointer to right in y register

jsr c_ddiv
; result in left
© 2004 COSMIC Software HC12/HCS12 Machine Library 383

C Library - c_dmul

c_dmul

C

384
Description
Multiply double by double

Syntax

Function
c_dmul multiplies the double in left by the double in right.

Returns
The resulting value is in left. Flags have no meaningful value upon
return.

; pointer to left in x register
; pointer to right in y register

jsr c_dmul
; result in left
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_dneg

c_dneg

Description

Negate a double

Syntax

Function
c_dneg negates the double pointed at by the Y register.

Returns
The result stays in operand. The flags are not significant on return.

; pointer to operand in y register
jsr c_dneg

; result in operand
© 2004 COSMIC Software HC12/HCS12 Machine Library 385

C Library - c_dsmov

c_dsmov

C

386
Description
Move a structure in DPAGE space

Syntax

Function
c_dsmov moves a structure inside the DPAGE data space. Both source
and destination addresses are far pointer, pointer to source is on the
stack, and pointer to destination is in the register pair X:D. The struc-
ture size is in the Y register.

See Also
c_esmov

; source address on the stack
; destination address in X:D

ldy #<size>
jsr c_dsmov
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_dsub

c_dsub

Description

Subtract double from double

Syntax

Function
c_dsub subtracts the double in right from the double in left. No check is
made for overflow.

Returns
The resulting value is in left. Flags have no meaningful value upon
return.

See Also
c_dadd

; pointer to left in x register
; pointer to right in y register

jsr c_dsub
; result in left
© 2004 COSMIC Software HC12/HCS12 Machine Library 387

C Library - c_dtod

c_dtod

C

388
Description
Copy a double into a double

Syntax

Function
c_dtod copies the double in right to left.

Returns
The right value is in left. Flags have no meaningful value upon return.

; pointer to left in x register
; pointer to right in y register

jsr c_dtod
; result in left
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_dtof

c_dtof

Description

Convert double to float

Syntax

Function
c_dtof converts the double pointed at by Y to a float in the float register.
No check is made for overflow.

Returns
The resulting value is in the float register. Flags have no meaningful
value upon return.

; pointer to double in y register
jsr c_dtof

; result in float register
© 2004 COSMIC Software HC12/HCS12 Machine Library 389

C Library - c_dtoi

c_dtoi

C

390
Description
Convert double to integer

Syntax

Function
c_dtoi converts the double pointed at by Y to a two byte integer in D.
No check is made for overflow.

Returns
The resulting value is in D and flags are set accordingly.

; pointer to operand in y register
jsr c_dtoi

; result in d
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_dtol

c_dtol

Description

Convert double into long integer

Syntax

Function
c_dtol converts the double in memory pointed at by Y to a long in the
long register. No check is made for overflow.

Returns
The resulting value is in the long register.

; pointer to double in y register
jsr c_dtol

; result in long register
© 2004 COSMIC Software HC12/HCS12 Machine Library 391

C Library - c_dtos

c_dtos

C

392
Description
Copy a double onto the stack

Syntax

Function
c_dtos copies the double pointed to by Y onto the stack.

Returns
c_dtos returns nothing; the stack is updated.

; pointer to double in y register
jsr c_dtos
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_eewbfb

c_eewbfb

Description

Eeprom char bit field update

Syntax

Function
c_eewbfb updates a char bit field (8 bits sized) located in eeprom with a
new value. The new value is in B and is right justified. The byte address
in eeprom is in Y, and the mask, giving the bit field size and location, is
a byte located in memory just after the call. The function waits for the
time necessary to program the new value.

See Also
c_eewbfd, c_eewbfx, c_eewstx, c_eewsty

ldb #value
ldy #address
jsr c_eewbfb
dc.b <mask>
© 2004 COSMIC Software HC12/HCS12 Machine Library 393

C Library - c_eewbfd

c_eewbfd

C

394
Description
Eeprom short bit field update

Syntax

Function
c_eewbfd updates a short bit field (16 bits sized) located in eeprom
with a new value. The new value is in D and is right justified. The word
address in eeprom is in Y, and the mask, giving the bit field size and
location, is a word located in memory just after the call. The function
waits as required to program the new value.

See Also
c_eewbfb, c_eewbfx, c_eewstx, c_eewsty

ldd #value
ldy #address
jsr c_eewbfd
dc.w <mask>
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_eewbfx

c_eewbfx

Description

Eeprom long bit field update

Syntax

Function
c_eewbfx updates a long bit field (32 bits sized) located in eeprom with
a new value. The new value is in X:D and is right justified. The long
address in eeprom is in Y, and the mask, giving the bit field size and
location, is a word located in memory just after the call. The function
waits as required to program the new value.

See Also
c_eewbfb, c_eewbfd, c_eewstx, c_eewsty

; value in long register
ldy #address
jsr c_eewbfx
dc.w <mask>
© 2004 COSMIC Software HC12/HCS12 Machine Library 395

C Library - c_eewra

c_eewra

C

396
Description
Write a short int aligned in eeprom

Syntax

Function
c_eewra writes a short int in eeprom. The new value is in D, and its
address in eeprom is in Y, and is assumed to be even allowing the full
word to be programmed with one single cycle.

See Also
 c_eewrc, c_eewrd, c_eewrl, c_eewrw

ldd #value
ldy #address
jsr c_eewra
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_eewrc

c_eewrc

Description

Write a char int in eeprom

Syntax

Function
c_eewrc writes a byte in eeprom. The new byte value is in B and its
address in eeprom is in Y. The function tests if the erasure is necessary,
and it performs only in that case. Then if the new value is different from
the one in eeprom, the new byte is programmed. The function waits for
the time necessary to correctly program the byte. The delay function
included in this module assumes that the clock frequency is 8 Mhz. The
function does not test if the byte address is in the address range corre-
sponding to the existing eeprom.

See Also
c_eewra, c_eewrd, c_eewrl, c_eewrw

ldb #value
ldy #address
jsr c_eewrc
© 2004 COSMIC Software HC12/HCS12 Machine Library 397

C Library - c_eewrd

c_eewrd

C

398
Description
Write a double in eeprom

Syntax

Function
c_eewrd writes a double in eeprom. If the destination address is even,
all words are programmed by the c_eewra function. Otherwise, the first
and last bytes are programmed by the c_eewrc function, and the middle
words are programmed by the c_eewra function. The function waits as
required to program all the bytes.

See Also
c_eewra, c_eewrc, c_eewrl, c_eewrw

; pointer to destination in x register
; pointer to source in y register

jsr c_eewrd
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_eewrl

c_eewrl

Description

Write a long int in eeprom

Syntax

Function
c_eewrl writes a long int in eeprom. The new value is in the long regis-
ter, and its address in eeprom is in Y. If the destination is even, each
word is written by the c_eewra function. Otherwise, the first and last
bytes are programmed independently by the c_eewrc function, and the
middle word is programmed by the c_eewra function. The function
waits as required to program all the bytes.

See Also
c_eewra, c_eewrc, c_eewrd, c_eewrw

; value in long register
ldy #address
jsr c_eewrl
© 2004 COSMIC Software HC12/HCS12 Machine Library 399

C Library - c_eewrw

c_eewrw

C

400
Description
Write a short int in eeprom

Syntax

Function
c_eewrw writes a short int in eeprom. The new value is in D, and its
address in eeprom is in Y. If the destination address is even, the word is
programmed directly by a single programming cycle. Otherwise, each
byte is programmed independently by the c_eewrc function.

See Also
c_eewra, c_eewrc, c_eewrd, c_eewrl

ldd #value
ldy #address
jsr c_eewrw
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_eewstx

c_eewstx

Description

Move a structure in eeprom

Syntax

Function
c_eewstx moves a structure into an eeprom memory location.Pointer to
source is in Y, and pointer to destination is in X. The structure size is
given by a word located in the D register. Depending on the size and the
destination address alignment, as many words as possible are pro-
grammed by the c_eewra function. Remainning bytes are programmed
by the c_eewrc function.

See Also
c_eewbfb, c_eewbfd, c_eewbfx, c_eewra, c_eewrc, c_eewsty

ldy #source_address
ldx #destination_address
ldd #<size>
jsr c_eewstx
© 2004 COSMIC Software HC12/HCS12 Machine Library 401

C Library - c_eewsty

c_eewsty

C

402
Description
Move a structure in eeprom

Syntax

Function
c_eewsty moves a structure into an eeprom memory location.Pointer to
source is in X, and pointer to destination is in Y. The structure size is
given by a word located in the D register. Depending on the size and the
destination address alignment, as many words as possible are pro-
grammed by the c_eewra function. Remainning bytes are programmed
by the c_eewrc function.

See Also
c_eewbfb, c_eewbfd, c_eewbfx, c_eewra, c_eewrc, c_eewstx

ldx #source_address
ldy #destination_address
ldd #<size>
jsr c_eewsty
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_emuld

c_emuld

Description

Multiply signed int by unsigned int

Syntax

Function
c_emuld multiplies the signed int value in the D register by the
unsigned int value in the Y register. The 32 bits result is stored in the
register pair Y:D.

See Also
c_emuly

; signed int in d register
; unsigned int in y register

jsr c_emuld
; long result in y:d register pair
© 2004 COSMIC Software HC12/HCS12 Machine Library 403

C Library - c_emuly

c_emuly

C

404
Description
Multiply unsigned int by signed int

Syntax

Function
c_emuly multiplies the unsigned int value in the D register by the
signed int value in the Y register. The 32 bits result is stored in the reg-
ister pair Y:D.

See Also
c_emuld

; unsigned int in d register
; signed int in y register

jsr c_emuly
; long result in y:d register pair
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_esmov

c_esmov

Description

Move a structure in EPAGE space

Syntax

Function
c_esmov moves a structure inside the EPAGE data space. Both source
and destination addresses are far pointer, pointer to source is on the
stack, and pointer to destination is in the register pair X:D. The struc-
ture size is in the Y register.

See Also
c_dsmov

; source address on the stack
; destination address in x:d

ldy #<size>
jsr c_esmov
© 2004 COSMIC Software HC12/HCS12 Machine Library 405

C Library - c_fadd

c_fadd

C

406
Description
Add float to float

Syntax

Function
c_fadd adds the float in float register to the float indicated by the
pointer in Y. No check is made for overflow.

Returns
The resulting value is in the float register. Flags have no meaningful
value upon return.

See Also
c_fsub

; left in float register
; pointer to right in y register

jsr c_fadd
; result in float register
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_fcmp

c_fcmp

Description

Compare floats

Syntax

Function
c_fcmp compares the float in the float register with the float pointed at
by the Y register.

Returns
The N and Z flags are set to reflect the value (left-right).

; left in float register
; pointer to right in y register

jsr c_fcmp
; result in flags
© 2004 COSMIC Software HC12/HCS12 Machine Library 407

C Library - c_fdiv

c_fdiv

C

408
Description
Divide float by float

Syntax

Function
c_fdiv divides the float in the float register by the float pointed to by the
Y register.

Returns
The resulting value is in the float register. Flags have no meaningful
value upon return.

; left in float register
; pointer to right in y register

jsr c_fdiv
; result in float register
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_fgadd

c_fgadd

Description

Float addition

Syntax

Function
c_fgadd performs the float addition of the value pointed at by Y and the
value in the float register.

Returns
The result is stored at the location pointed at by the Y register.

; pointer to left in y register
; right in float register

jsr c_lgadd
; result in left
© 2004 COSMIC Software HC12/HCS12 Machine Library 409

C Library - c_fgdiv

c_fgdiv

C

410
Description
Float division

Syntax

Function
c_fgdiv performs the float division of the value pointed at by the Y reg-
ister by the value in float register.

Returns
The result is stored in the location pointed at by Y.

; pointer to left in y register
; right in float register

jsr c_fgdiv
; result in left
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_fgmul

c_fgmul

Description

Float multiplication

Syntax

Function
c_fgmul performs the float multiplication of the value pointed at by the
Y register by the value in float register.

Returns
The result is stored in the location pointed at by Y.

; pointer to left in y register
; right in float register

jsr c_fgmul
; result in left
© 2004 COSMIC Software HC12/HCS12 Machine Library 411

C Library - c_fgsub

c_fgsub

C

412
Description
Float subtraction

Syntax

Function
c_fgsub evaluates the (float) difference between the value pointed at by
the Y register and the value in float register

Returns
The result is stored in the location pointed at by Y.

; pointer to left in y register
; right operand in float register

jsr c_fgsub
; result in left
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_fmul

c_fmul

Description

Multiply float by float

Syntax

Function
c_fmul multiplies the float in the float register by the float pointed to by
the Y register.

Returns
The resulting value is in the float register. Flags have no meaningful
value upon return.

; left in float register
; pointer to right in y register

jsr c_fmul
; result in float register
© 2004 COSMIC Software HC12/HCS12 Machine Library 413

C Library - c_fsub

c_fsub

C

414
Description
Subtract float from float

Syntax

Function
c_fsub subtracts the float pointed to by the Y register from the float in
the float register. No check is made for overflow.

Returns
The resulting value is in the float register. Flags have no meaningful
value upon return.

See Also
c_fadd

; left in float register
; pointer to right in y register

jsr c_fsub
; result in float register
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_ftod

c_ftod

Description

Convert float into double

Syntax

Function
c_ftod converts the float in the float register to a double in the memory
pointed at by Y.

Returns
The resulting value is in memory at the location pointedt by the Y regis-
ter. Flags have no meaningful value upon return.

; pointer to double in y register
; float in float register

jsr c_ftod
; result in memory
© 2004 COSMIC Software HC12/HCS12 Machine Library 415

C Library - c_ftoi

c_ftoi

C

416
Description
Convert float to integer

Syntax

Function
c_ftoi converts the float in the float register to a two byte integer in D.
No check is made for overflow.

Returns
The resulting value is in d. Flags have no meaningful value upon return.

; float in float register
jsr c_ftoi

; result in d
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_ftol

c_ftol

Description

Convert float into long integer

Syntax

Function
c_ftol converts the float in the float register to a four byte integer in
long register. No check is made for overflow.

Returns
The resulting value is in the long register. Flags have no meaningful
value upon return.

; float in float register
jsr c_ftol

; result in long register
© 2004 COSMIC Software HC12/HCS12 Machine Library 417

C Library - c_itod

c_itod

C

418
Description
Convert integer into double

Syntax

Function
c_itod converts the two byte integer in D to a double stored in memory
at the address specified by the Y register.

Returns
The resulting value is in memory at the address specified by the Y reg-
ister. Flags have no meaningful value upon return.

; pointer to double in y register
ldd value
jsr c_itod

; result in memory
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_itof

c_itof

Description

Convert integer into float

Syntax

Function
c_itof converts the two byte integer in D to a float stored in the float
register.

Returns
The resulting value is in the float register. Flags have no meaningful
value upon return.

ldd value
jsr c_itof

; result in float register
© 2004 COSMIC Software HC12/HCS12 Machine Library 419

C Library - c_jltab

c_jltab

C

420
Description
Perform C switch statement on long

Syntax

Function
c_jltab is called to switch to the proper code sequence, depending on a
value and an address table. The top of the table is specified in the Y reg-
ister, and consists of a list of ranges followed by a list of pairs. A range
consists of a header, made of a count followed by a starting value, fol-
lowed by an address list. A header with a zero count indicates the final
list of pairs. The count is followed in this case by the number of follow-
ing pairs. A pair consists of an address followed by a value. The pair list
is ended by the default address. All values are four byte integers. All
addresses are two byte integers.

Returns
c_jltab jumps to the proper code. It never returns.

; <value> in long register
ldy #swtab
jsr c_jltab
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_jptab

c_jptab

Description

Perform C switch statement in PIC mode

Syntax

Function
c_jptab is called to switch to the proper code sequence, depending on a
value and an offset table. The top of the table is found on the stack after
the function is entered, and consists of a list of offsets allowing the
functions to compute the physical target address.

Returns
c_jptab jumps to the proper code. It never returns.

ldd value
jsr c_jptab,pcr
<offsets>
© 2004 COSMIC Software HC12/HCS12 Machine Library 421

C Library - c_jtab

c_jtab

C

422
Description
Perform C switch statement

Syntax

Function
c_jtab is called to switch to the proper code sequence, depending on a
value and an address table. The top of the table is specified in the Y reg-
ister, and consists of a list of ranges followed by a list of pairs. A range
consists of a header, made of a count followed by a starting value, fol-
lowed by an address list. A header with a zero count indicates the final
list of pairs. The count is followed in this case by the number of follow-
ing pairs. A pair consists of an address followed by a value. The pair list
is ended by the default address. All values and addresses are two byte
integers.

Returns
c_jtab jumps to the proper code. It never returns.

ldd value
ldy #swtab
jsr c_jtab
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_ladd

c_ladd

Description

Long integer addition

Syntax

Function
c_ladd adds the four byte integer, left and the four byte integer, right.

Returns
The result is in left. Flags are not significant on return.

See Also
c_lcmp, c_lsub

; left in long register
; pointer to right in y register

jsr c_ladd
; result in long register
© 2004 COSMIC Software HC12/HCS12 Machine Library 423

C Library - c_land

c_land

C

424
Description
Bitwise AND for long integers

Syntax

Function
c_land operates a bitwise AND between the operands. Each operand is
taken to be a four byte integer.

Returns
The result is in the long register. Flags are not significant on return.

See Also
c_lor, c_lxor

; left in long register
; pointer to right in y register

jsr c_land
; result in long register
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lcmp

c_lcmp

Description

Long integer compare

Syntax

Function
c_lcmp compares the four byte integer, left with the four byte integer
pointed at by Y.

Returns
Flags are set accordingly.

See Also
c_ladd, c_lsub, c_pcmp

; left in long register
; pointer to right in y register

jsr c_lcmp
; result in flags
© 2004 COSMIC Software HC12/HCS12 Machine Library 425

C Library - c_ldiv

c_ldiv

C

426
Description
Quotient of long integer division

Syntax

Function
c_ldiv divides the four byte integer in the long register by the four byte
integer pointed at by Y. Values are assumed to be signed. If division by
zero is attempted, results are as provided by the divide instruction.

Return
The quotient is in the long register; The flags are not significant on
return.

See Also
c_ludv, c_lmod, c_umd

; left in long register
; pointer to right in y register

jsr c_ldiv
; quotient in long register
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lgadd

c_lgadd

Description

Long addition

Syntax

Function
c_lgadd performs the long addition of the value pointed at by Y and the
value in the long register.

Returns
The result is stored at the location pointed at by the Y register.

; pointer to left in y register
; right in long register

jsr c_lgadd
; result in left
© 2004 COSMIC Software HC12/HCS12 Machine Library 427

C Library - c_lgand

c_lgand

C

428
Description
Long bitwise AND

Syntax

Function
c_lgand performs the long bitwise AND of the value pointed at by the
Y register and the value in the long register.

Returns
The results is stored at the location pointed at by the Y register, mean-
ing that the left operand is updated.

; pointer to left in y register
; right in long register

jsr c_lgand
; result in memory (left is updated)
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lgdiv

c_lgdiv

Description

Quotient of long division

Syntax

Function
c_lgdiv performs the long division of the value pointed at by the Y reg-
ister by the value in long register.

Returns
The result is stored in the location pointed at by Y.

; pointer to left in y register
; right in long register

jsr c_lgdiv
; result in left
© 2004 COSMIC Software HC12/HCS12 Machine Library 429

C Library - c_lglsh

c_lglsh

C

430
Description
Long shift left

Syntax

Function
c_lglsh performs the long left shift of the value pointed at by the Y reg-
ister, by the bit count in D. No check is done against silly counts.

Returns
The result is stored in the location pointed at by Y.

; pointer to long in y register
; shift count in d register

jsr c_lglsh
; result in memory
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lgmod

c_lgmod

Description

Remainder of long division

Syntax

Function
c_lgmod performs the long division of the value pointed at by the Y
register by the value in long register and stores the remainder.

Returns
The result is stored in the location pointed at by Y.

; pointer to left in y register
; right in long register

jsr c_lgmod
; result in left
© 2004 COSMIC Software HC12/HCS12 Machine Library 431

C Library - c_lgmul

c_lgmul

C

432
Description
Long multiplication

Syntax

Function
c_lgmul performs the long multiplication of the value pointed at by the
Y register by the value in long register.

Returns
The result is stored in the location pointed at by Y.

; pointer to left in y register
; right in long register

jsr c_lgmul
; result in left
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lgor

c_lgor

Description

Long bitwise OR

Syntax

Function
c_lgor performs the long bitwise OR of the value pointed at by Y and
the value in the long register.

; pointer to left in y register
; right operand in long register

jsr c_lgor
; result in left
© 2004 COSMIC Software HC12/HCS12 Machine Library 433

C Library - c_lgrsh

c_lgrsh

C

434
Description
Signed long shift right

Syntax

Function
c_lgrsh performs the signed long right shift of the value pointed at by
the Y register, by the bit count in the D register. No check is done
against silly counts. Because the value is signed, arithmetic shift
instructions are used.

Returns
The result is stored in the location pointed at by y.

; pointer to long in y register
; shift count in d register

jsr c_lgrsh
; result in memory
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lgudv

c_lgudv

Description

Quotient of unsigned long division

Syntax

Function
c_lgudv performs the unsigned long division of the value pointed at by
the Y register by the value in long register.

Returns
The result is stored in the location pointed at by Y.

; pointer to left in y register
; right in long register

jsr c_lgudv
; result in left
© 2004 COSMIC Software HC12/HCS12 Machine Library 435

C Library - c_lgumd

c_lgumd

C

436
Description
Remainder of unsigned long division

Syntax

Function
c_lgumd performs the unsigned long division of the value pointed at by
the Y register by the value in long register and stores the remainder.

Returns
The result is stored in the location pointed at by Y.

; pointer to left in y register
; right in long register

jsr c_lgumd
; result in left
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lgursh

c_lgursh

Description

Unsigned long shift right

Syntax

Function
c_lgursh performs the unsigned long right shift of the value pointed at
by the Y register, by the bit count in the D register. No check is done
against silly counts. Because the value is unsigned, logical shift instruc-
tions are used.

Returns
The result is stored in the location pointed at by Y.

; pointer to long in y register
; shift count in d register

jsr c_lgursh
; result in memory
© 2004 COSMIC Software HC12/HCS12 Machine Library 437

C Library - c_lgsub

c_lgsub

C

438
Description
Long subtraction

Syntax

Function
c_lgsub evaluates the (long) difference between the value pointed at by
the Y register and the value in long register

Returns
The result is stored in the location pointed at by Y.

; pointer to left in y register
; right operand in long register

jsr c_lgsub
; result in left
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lgxor

c_lgxor

Description

Long bitwise exclusive OR

Syntax

Function
c_lgxor performs the long bitwise EXOR (exclusive OR) of the value
pointed at by the Y register and the value in long register.

Returns
The result is stored in the location pointed at by Y.

; pointer to left in y register
; right operand in long register

jsr c_lgxor
; result in left
© 2004 COSMIC Software HC12/HCS12 Machine Library 439

C Library - c_llsh

c_llsh

C

440
Description
Long shift left

Syntax

Function
c_llsh performs the long left shift of the value in the long register, by
the bit count in Y. No check is done against silly counts.

Returns
The result is in the long register.

; operand in long register
; shift count in y register

jsr c_llsh
; result in long register
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lmod

c_lmod

Description

Remainder of long integer division

Syntax

Function
c_lmod divides the four byte integer in long register by the four byte
integer pointed at by the Y register. Values are assumed to be signed.
The dividend is returned in the case of a division by zero.

Returns
The remainder appears in the long register.

See Also
c_lumd, c_ldiv, c_udiv

; left in long register
; pointer to right in y register

jsr c_lmod
; remainder in long register
© 2004 COSMIC Software HC12/HCS12 Machine Library 441

C Library - c_lmul

c_lmul

C

442
Description
Multiply long integer by long integer

Syntax

Function
c_lmul multiplies the four byte integer in the long register by the four
byte integer pointed at by the Y register. No check is made for overflow.

Returns
The resulting value is in the long register.

; left in long register
; pointer to right in y register

jsr c_lmul
; result in long register
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lneg

c_lneg

Description

Negate a long integer

Syntax

Function
c_lneg negates the four byte integer in the long register.

Returns
The result stays in the long register. The flags are not significant on
return.

See Also
c_lcom

; value in long register
jsr c_lneg

; result in long register
© 2004 COSMIC Software HC12/HCS12 Machine Library 443

C Library - c_lor

c_lor

C

444
Description
Bitwise OR with long integers

Syntax

Function
c_lor operates a bitwise OR between the contents of the long register
and the long pointed at by the Y register. Each operand is taken to be a
four byte integer.

Returns
The result is in the long register. The flags are not significant on return.

See Also
c_land, c_lxor

; left in long register
; pointer to right in y register

jsr c_lor
; result in long register
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lrsh

c_lrsh

Description

Signed long shift right

Syntax

Function
c_lrsh performs the signed long right shift of the value in the long regis-
ter, by the bit count in the Y register. No check is done against silly
counts. Because the value is signed, arithmetic shift instructions are
used.

Returns
The result is in the long register.

; operand in long register
; shift count in y register

jsr c_lrsh
; result in long register
© 2004 COSMIC Software HC12/HCS12 Machine Library 445

C Library - c_lrzmp

c_lrzmp

C

446
Description
Long test against zero

Syntax

Function
c_lrzmp tests the value in the long register and updates the sign and zero
flags.

Returns
Nothing, but the (possibly changed) flags.

; value in long register
jsr c_lrzmp

; result in the flags
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lsub

c_lsub

Description

Long integer subtraction

Syntax

Function
c_lsub subtracts the four byte integer pointed at by the Y register from
the four byte integer in the long register.

Returns
The result is in the long register. Flags are not significant on return.

See Also
c_ladd, c_lcmp

; long in long register
; pointer to right in y register

jsr c_lsub
; result in long register
© 2004 COSMIC Software HC12/HCS12 Machine Library 447

C Library - c_ltod

c_ltod

C

448
Description
Convert long integer into double

Syntax

Function
c_ltod converts the four byte integer in the long register to a double
pointed at by the Y register.

Returns
The resulting value is in memory. Flags have no meaningful value upon
return.

; pointer to double in y register
; long in long register

jsr c_ltod
; result in memory
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_ltof

c_ltof

Description

Convert long integer into float

Syntax

Function
c_ltof converts the four byte integer in the long register to a float.

Returns
The resulting value is in the float register. Flags have no meaningful
value upon return.

; value in long register
jsr c_ltof

; result in float register
© 2004 COSMIC Software HC12/HCS12 Machine Library 449

C Library - c_ludv

c_ludv

C

450
Description
Quotient of unsigned long integer division

Syntax

Function
c_ludv divides the four byte integer in the long register by the four byte
integer pointed at by the Y register. Values are assumed to be unsigned.
The dividend is returned in the case of a division by zero.

Returns
The quotient is in the long register. The flags are not significant on
return.

See Also
c_ldiv, c_lmod, c_lumd

; left in long register
; pointer to right in y register

jsr c_lduv
; quotient in long register
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lumd

c_lumd

Description

Remainder of unsigned long integer division

Syntax

Function
c_lumd divides the four byte integer in the long register by the four byte
integer pointed at by the Y register. Values are assumed to be unsigned.
The dividend is returned in the case of a division by zero.

Returns
The remainder is in the long register. The flags are not significant on
return.

See Also
c_lmod, c_ldiv, c_ludv

; left in long register
; pointer to right in y register

jsr c_lumd
; remainder in long register
© 2004 COSMIC Software HC12/HCS12 Machine Library 451

C Library - c_lursh

c_lursh

C

452
Description
Unsigned long shift right

Syntax

Function
c_lursh performs the unsigned long right shift of the value in the long
register, by the bit count in the Y register. No check is done against silly
counts. Because the value is unsigned, logical shift instructions are
used.

Returns
The result is in the long register.

; operand in long register
; shift count in y register

jsr c_lursh
; result in long register
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_lxor

c_lxor

Description

Bitwise exclusive OR with long integers

Syntax

Function
c_lxor operates a bitwise exclusive OR between the contents of the long
register and the long pointed at by the Y register. Each operand is taken
to be a four byte integer.

Returns
The result is in the long register. The flags are not significant on return.

See Also
c_land, c_lor

; left in long register
; pointer to right in y register

jsr c_lxor
; result in long result
© 2004 COSMIC Software HC12/HCS12 Machine Library 453

C Library - c_lzmp

c_lzmp

C

454
Description
Compare a long integer to zero

Syntax

Function
c_lzmp compares the four byte integer in the long register with zero.

Returns
Nothing. The Z flags is updated.

; value in long register
jsr c_lzmp

; result in the flags
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_pcmp

c_pcmp

Description

Far pointer compare

Syntax

Function
c_pcmp compares the three byte pointer, left with the three byte pointer
pointed at by Y.

Returns
Flags are set accordingly.

See Also
c_lcmp

; left in far pointer register
; pointer to right in y register

jsr c_pcmd
; result in flags
© 2004 COSMIC Software HC12/HCS12 Machine Library 455

C Library - c_uitod

c_uitod

C

456
Description
Convert unsigned integer into double

Syntax

Function
c_uitod converts the two byte unsigned integer in D to a double stored
in memory, and pointed at by the Y register.

Returns
The resulting value is in memory at the address specified by the Y reg-
ister. Flags have no meaningful value upon return.

; pointer to double in y register
ldd value
jsr c_uitod

; result in memory
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_uitof

c_uitof

Description

Convert unsigned integer into float

Syntax

Function
c_uitof converts the two byte unsigned integer in D to a float stored in
the float register.

Returns
The resulting value is in the float register. Flags have no meaningful
value upon return.

ldd value
jsr c_uitof

; result in float register
© 2004 COSMIC Software HC12/HCS12 Machine Library 457

C Library - c_ultod

c_ultod

C

458
Description
Convert unsigned long integer into double

Syntax

Function
c_ultod converts the four byte unsigned integer in the long register to a
double pointed at by the Y register.

Returns
The resulting value is in memory. Flags have no meaningful value upon
return.

; pointer to double in y register
; long in long register

jsr c_ultod
; result in memory
© 2004 COSMIC SoftwareHC12/HCS12 Machine Library

C Library - c_ultof

c_ultof

Description

Convert unsigned long integer into float

Syntax

Function
c_ultof converts the four byte unsigned integer in the long register to a
float.

Returns
The resulting value is in the float register. Flags have no meaningful
value upon return.

; value in long register
jsr c_ultof

; result in float register
© 2004 COSMIC Software HC12/HCS12 Machine Library 459

APPENDIX

D

Compiler Passes
The information contained in this appendix is of interest to those users
who want to modify the default operation of the cross compiler by
changing the configuration file that the cx6812 compiler uses to control
the compilation process.

This appendix describes each of the passes of the compiler:

cp6812 the parser

cg6812 the code generator

co6812 the assembly language optimizer
© 2004 COSMIC Software Compiler Passes 461

The cp6812 ParserD

462
The cp6812 Parser
cp6812 is the parser used by the C compiler to expand #defines,
#includes, and other directives signalled by a #, parse the resulting text,
and outputs a sequential file of flow graphs and parse trees suitable for
input to the code generator cg6812.

Command Line Options
cp6812 accepts the following options, each of which is described in
detail below:

cp6812 [options] file
-ad expand defines in assembly
-b even align all data
-bc even align constants
-c99 c99 type behaviour
-ck extra type checkings
-cp no constant propagation
-d*> define symbol=value
-e run preprocessor only
+e* error file name
-f single precision floats
-h*> include header
-i*> include path
-l output line information
-m# model configuration
-nb no bitfield packing
-nc no const replacement
-ne no enum optimization
-np allow pointer narrowing
-nw do not widen arguments
-o* output file name
-p need prototypes
-rb reverse bitfield order
-s do not reorder locals
-sa strict ANSI conformance
-u plain char is unsigned
-xd debug info for data
-xp no path in debug info
-xx extended debug info
-x output debug info
© 2004 COSMIC SoftwareCompiler Passes

The cp6812 Parser
-ad enable #define expansion inside inline assembly code
between #asm and #endasm directives. By default, #define
symbols are expanded only in the C code.

-b enforces storage boundaries to begin on an even bound.

-bc enforces const variable storage boundaries to begin on an
even bound.

-c99 authorize the repetition of the const and volatile modifiers
in the declaration either directly or indirectly in the type-
def.

-ck direct the compiler to enforce stronger type checking.

-cp disable the constant propagation optimization. By default,
when a variable is assigned with a constant, any subse-
quent access to that variable is replaced by the constant
itself until the variable is modified or a flow break is
encountered (function call, loop, label ...).

-d*^ specify * as the name of a user-defined preprocessor sym-
bol (#define). The form of the definition is
-dsymbol[=value]; the symbol is set to 1 if value is omit-
ted. You can specify up to 60 such definitions.

-e run preprocessor only. cp6812 only outputs lines of text.

+e* log errors in the text file * instead of displaying the mes-
sages on the terminal screen.

-f treat all floating point numbers as float and not double,
even if they are declared as double. All calculations will be
made on 32 bits instead of 64 bits. Space reservations will
be made on a 32 bit basis, as well as argument passing.

-h*> include files before to start the compiler process. You can
specify up to 60 files.
© 2004 COSMIC Software Compiler Passes 463

The cp6812 ParserD

464
-i*> specify include path. You can specify up to 60 different
paths. Each path is a directory name, not terminated by
any directory separator character.

-l output line number information for listing or debug.

-m# the value # is used to configure the parser behaviour. It is a
two bytes value, the upper byte specifies the default space
for variables, and the lower byte specifies the default space
for functions. A space byte is the or’ed value between a
size specifier and several optional other specifiers. The
allowed size specifiers are:

Allowed optionals specifiers are:

Note that all the combinations are not significant for all the
target processors.

-nb do not pack bitfields. By default, trailing unused bits in the
last bitfield of a structure are removed if this saves at least
one byte.

-nc do not replace an access to an initialized const object by its
value. By default, the usage of a const object whose value
is known is replaced by its constant value.

-ne do not optimize size of enum variables. By default, the
compiler selects the smallest integer type by checking the
range of the declared enum members. This mechanism
does not allow uncomplete enum declaration. When the
-ne option is selected, all enum variables are allocated as
int variables, thus allowing uncomplete declarations, as the

0x10 @tiny

0x20 @near

0x30 @far

0x02 @pack

0x04 @nostack
© 2004 COSMIC SoftwareCompiler Passes

The cp6812 Parser
knowledge of all the members is no more necessary to
choose the proper integer type.

-np allow pointer narrowing. By default, the compiler refuses
to cast the pointer into any smaller object. This option
should be used carefully as such conversions are truncating
addresses.

-nw do not widen arguments. The standard behaviour of the
compiler is to widen integer arguments smaller than int to
int size and to widen float arguments to double. If this flag
is set, these promotions are not done. The code thus
obtained should be more compact if char and floats are
heavily used.

-o* write the output to the file *. Default is STDOUT for out-
put if -e is specified. Otherwise, an output file name is
required.

-p enforce prototype declaration for functions. An error mes-
sage is issued if a function is used and no prototype decla-
ration is found for it. By default, the compiler accepts both
syntaxes without any error.

-rb reverse the bitfield fill order. By default, bitfields are filled
from less significant bit (LSB) to most significant bit
(MSB). If this option is specified, filling works from most
significant bit to less significant bit.

-s do not reorder local variables. By default, the compiler
sorts the local variables of a function in order to allocate
the most used variables as close as possible to the frame
pointer. This allows to use the shortest addressing modes
for the most used variables.

-sa enforce a strict ANSI checking by rejecting any syntax or
semantic extension. This option also disables the enum
size optimization (-ne).
© 2004 COSMIC Software Compiler Passes 465

The cp6812 ParserD

466
-u take a plain char to be of type unsigned char, not signed
char. This also affects in the same way strings constants.

-x generate debugging information for use by the cross
debugger or some other debugger or in-circuit emulator.
The default is to generate no debugging information.

-xd add debug information in the object file only for data
objects, hiding any function.

-xp do not prefix filenames in the debug information with any
absolute path name. Debuggers will have to be informed
about the actual files location.

-xx add debug information in the object file for any label
defining code or data.

Return Status
cp6812 returns success if it produces no error diagnostics.

Example
cp6812 is usually invoked before cg6812 the code generator, as in:

cp6812 -o \2.cx1 -u -i \cosmic\h6812 file.c
cg6812 -o \2.cx2 \2.cx1
© 2004 COSMIC SoftwareCompiler Passes

The cg6812 Code Generator
The cg6812 Code Generator
cg6812 is the code generating pass of the C compiler. It accepts a
sequential file of flow graphs and parse trees from cp6812 and outputs a
sequential file of assembly language statements.

As much as possible, the compiler generates freestanding code, but, for
those operations which cannot be done compactly, it generates inline
calls to a set of machine-dependent runtime library routines.

Command Line Options
cg6812 accepts the following options, each of which is described in
detail below:

-a optimize _asm code. By default, the assembly code
inserted by a _asm call is left unchanged by the optimizer.

-bss inhibit generating code into the bss section.

cg6812 [options] file

-a optimize _asm code
-bss do not use bss
-bv volatile bitfields access
-ck check stack frame
-cr# position independent code
-cs split constants section
-ct constants in code
-df far data not splitted
-dl# output line information
+e* error file name
-f full source display
-i inline machine calls
-l output listing
-na do not xdef alias name
-no do not use optimizer
-o* output file name
-p emit padding code
-r* registers base address
-sf split function sections
-t# processor type
-tf far function not separated
-v verbose
© 2004 COSMIC Software Compiler Passes 467

The cg6812 Code GeneratorD

468
-bv allow volatile bitfields accesses to be implemented by a
bclr/bset instruction pair. By default, the compiler imple-
ments a construct which writes only once into the resulting
byte to avoid unexpected transitory states on an output
peripheral port. The default code is safer but produces a
larger code than with the -bv option.

-ck enable stack overflow checking.

-cr# produce Position Independant Code using the pc relative
addressing modes both for function calls and constant data
access. # must be either:

1: if +pic option specified
7: if +picd option specified
3: if +picds option specified

-cs split the const section into two sections. One for single
byte constants and another for the rest so that can be allo-
cated separately to avoid odd accesses.

-ct output constant in the .text section. By default, the com-
piler outputs literals and constants in the .const section.

-df do not use the .fdata section for @far variables, using
instead the same allocation mechanism as plain data.

-dl# produce line number information. # must be either ‘1’ or
‘2’. Line number information can be produced in two
ways: 1) function name and line number is obtained by
specifying -dl1; 2) file name and line number is obtained
by specifying -dl2. All information is coded in symbols
that are in the debug symbol table.

+e* log errors in the text file * instead of displaying the mes-
sages on the terminal screen.

-f merge all C source lines of functions producing code into
the C and Assembly listing. By default, only C lines actu-
ally producing assembly code are shown in the listing.
© 2004 COSMIC SoftwareCompiler Passes

The cg6812 Code Generator
-i produce faster code by inlining machine library calls for
long integers handling. The code produced will be larger
than without this option.

-l merge C source listing with assembly language code; list-
ing output defaults to <file>.ls.

-na do not produce an xdef directive for the equate names cre-
ated for each C object declared with an absolute address.

-no do not produce special directives for the post-optimizer.

-o* write the output to the file * and write error messages to
STDOUT. The default is STDOUT for output and
STDERR for error messages.

-r* define the I/O registers base address to allow the code gen-
erator to access the PPAGE, DPAGE and EPAGE regis-
ters directly, if no specific header file has been included.
The compiler locates those registers in page 0 by default
and uses the -t option value to select the proper addresses.
The -r operand can be an absolute value or a symbol name
which must be defined somewhere in the application.

-sf produce each function in a different section, thus allowing
the linker to suppress a function if it is not used by the
application. By default, all the functions are packed in a
single section.

-t# specify the processor family where # may take values 0 for
the 68HC12A4, 1 for the early DG128 family, and 2 for
the Star12 family. This option allows the compiler to use
the proper default addresses for the PPAGE, DPAGE and
EPAGE registers if no specific header file was included.
These addresses are updated according to the -r option.

-tf generate functions in .text section. By default, they are
generated in the .ftext section.
© 2004 COSMIC Software Compiler Passes 469

The cg6812 Code GeneratorD

470
-v When this option is set, each function name is send to
STDERR when cg6812 starts processing it.

Return Status
cg6812 returns success if it produces no diagnostics.

Example
cg6812 usually follows cp6812 as follows:

cp6812 -o \2.cx1 -u -i\cosmic\h6812 file.c
cg6812 -o \2.cx2 \2.cx1
© 2004 COSMIC SoftwareCompiler Passes

The co6812 Assembly Language Optimizer
The co6812 Assembly Language Optimizer
co6812 is the code optimizing pass of the C compiler. It reads source
files of HC12/HCS12 assembly language source code, as generated by
the cg6812 code generator, and writes assembly language statements.
co6812 is a peephole optimizer; it works by checking lines function by
function for specific patterns. If the patterns are present, co6812
replaces the lines where the patterns occur with an optimized line or set
of lines. It repeatedly checks replaced patterns for further optimizations
until no more are possible. It deals with redundant load/store opera-
tions, constants, stack handling, and other operations.

Command Line Options
co6812 accepts the following options, each of which is described in
detail below:

-c leave removed instructions as comments in the output file.

-d* specify a list of codes allowing specific optimizations
functions to be selectively disabled.

-o* write the output to the file * and write error messages to
STDOUT. The default is STDOUT for output and
STDERR for error messages.

-v write a log of modifications to STDERR. This displays the
number of removed instructions followed by the number of
modified instructions.

If <file> is present, it is used as the input file instead of the default
STDIN.

co6812 [options] <file>
-c keep original lines as comments
-d* disable specific optimizations
-o* output file name
-v print efficiency statistics
© 2004 COSMIC Software Compiler Passes 471

The co6812 Assembly Language OptimizerD

472
Disabling Optimization
When using the optimizer with the -c option, lines which are changed or
removed are kept in the assembly source as comment, followed by a
code composed with a letter and a digit, identifying the internal func-
tion which performs the optimization. If an optimization appears to do
something wrong, it is possible to disable selectively that function by
specifying its code with the -d option. Several functions can be disabled
by specifying a list of codes without any whitespaces. The code letter
can be enter both lower or uppercase.

Return Status
co6812 returns success if it produces no diagnostics.

Example
co6812 is usually invoked after cg6812 as follows:

cp6812 -o \2.cx1 -u -i\cosmic\h6812 file.c
cg6812 -o \2.cx2 \2.cx1
co6812 -o file.s \2.cx2
© 2004 COSMIC SoftwareCompiler Passes

Index
Symbols
#asm

directive 463
#asm directive 47
#define

replacement in assembly 48
#endasm

directive 463
#endasm directive 47
#pragma

asm directive 47
endasm directive 47

+grp directive 295
+seg option 292
.bsct

+zpage option 39
data defined in 78
default section 41
generate in 25
initialized data 38
label defined in 209
section 20

.bss
default section 41
section 20

.const
constant aligned 76
default section 41
output section 468
section 20
segment 302
splitting section 76

.const.w
section 20

.data
default section 41
section 20

.eeprom
default section 20, 41
section 40

.fdata
default section 41
section 20, 76, 468

.ftext
default section 20, 41
section 76, 469

.text
default section 41
section 20, 469

.ubsct
default section 41
generate data 25
section 20
uninitialized data 38

@dir
space modifier 59
type qualifier 25

@eeprom
type qualifier 13, 40
variable allocation 40

@far
function 59
modifier 20
qualifier 12
Index 1

type qualifier 12
variables 468

@interrupt
functions 51
modifier 51
qualifier 51

@svpage modifier 56
__ckdesc__l 310
__idesc__ 308, 309
__memory symbol 22, 33, 63
__sbss symbol 21, 33
__stack symbol 22, 33
_asm

argument string size 48
assembly sequence 49
code optimization 467
function() 86
return type 50
sequence 49

_asm()
inserting assembler function 81

_BASE
preprocessor symbol 84
symbol 46

_checksum
function 99

_checksum16 function 101
_checksum16x function 102
_checksumx function 100
_fctcpy function 112
_main

entry point 32
_sbreak function 63

Numerics
32 bits, float 463
68HC12A4

family 469
processor 55

8-bit precision,operation 11

A
abort function 87
abs function 88
absolute

address 324
address in listing 337
double value 111
find value 88
hex file generator 9
listing file 337
listing utility 10
long value 131
path name 466
referencing address 44
section 272
section relocation 300
section,org 263
symbol 294
symbol in library 340
symbol table 291
symbol tables 317
symbol,flagged 317

accumulate 130
acos function 89
address

banked 346
banked data 345
default format 335, 337
extension,page 214
linear physical 346
logical end 294
logical start segment 300
logical start set 294
paged format 335, 337
physical 294, 346, 349
physical end 292
physical start 292
physical start segment 300
set logical 294

align
assembler directive 222
object 76
2 Index

align constant
+ceven option 20, 42

aligned constant
.constw section 59

allocate new 161
alphabetic character 120
alphabetic string 120
alphanumeric characters 119
application

embedded 286
non-banked 335
system bootstrap 286

Arccosine 89
Arcsine 90
Arctangent 91
Arctangent of y/x 92
argument

widen 465
argument widening 194
asin function 90
assembler

branch shortening 220
C style directives 221
code inline 48
conditional branch range 220
conditional directive 217
create listing file 205
endm directive 214
environment symbol 219
expression 212
label 210
listing process 337
macro

instruction 214
macro directive 214
operators 213
sections 218
switch directive 218

assembly language
code optimizer 471

atan function 91
atan2 function 92

atof function 93
atoi function 94
atol function 95
automatic

bank filling 306, 332
data initialization 32
filling, activated 306

B
bank

+modf option 53
+seg directive 54
@far type modifier 53
automatic filling 54
automatic segment creation 294
call instruction 55
default mode 349
jsr instruction 55
link application 53
logical start address 53, 306
multiple 306
number 53
optimize filling 9, 332
overflow 306
page operator 214
physical start address 53, 306
single definition 306
size setting 292, 332
size specification 306
switched system 300
window base register 53
window maximum size 53
window mechanism 12
window size 54, 306

bank switching
definition 53
support 12

banked
build segment 306

base directive 223
bias

segment parameter 300
Index 3

setting 301
bitfield

filling 465
filling order 77
reverse order 465

bitfields
volatile 468

boolean function
@bool type modifier 44
optimizing 44

boundary
align 222
even align 76
even start 463
round up 294

bsct directive 224
bss section 33
buffer

compare for lexical order 141
convert to double 93, 187
convert to integer 94
convert to long 95, 188
convert to unsigned long 189
copy from one to another 142, 144
copy string 177
copy to eeprom 106
fill character 145
output formatted argument 170
put to output 156

C
C identifier 119
C interface

extra character for far function 59
to assembly language 59
underscore character prefix 59

C library
builtin functions 83
floating point functions 82
function descriptions 85
fuzzy functions 82
integer functions 81

macro functions 82
package 81

C source
lines merging 468

calling environment 136
calloc function 96
carry function 97
cbank utility 332
ceil function 98
char

signed 466
unsigned 466

character 155
fill throughout eeprom buffer 108
find first character in string 175
first occurrence in buffer 140
get 117
get string 118
underscore,start 65

checksum
-ck option 311
crc 311
functions 310
-ik option 311

clabs utility 337
clib utillity 340
clist directive 225, 240, 242, 243, 244,

245, 246, 247, 248, 249, 250
clst utility 328
cobj utility 343
code generator

compiler pass 467
error log file 468

code optimizer
compiler pass 471

code/data, no output 292
coercion 139, 146
comment

character 21
common log 135
compare for lexical order 176, 181
compilation model,selected 346
4 Index

compiler
+pic option 57, 58
+picd option 57
+picds option 57
@far function 76
ANSI checking 465
assembler 9
assembler option specification 73
bitfield reverse option 77
C preprocessor and language parser 8
code generator 8
code generator option specification
74
code optimization 11
code optimizer 8
combination of options 375
command line options 72
configuration file 374
configuration file specification 74
default behavior 72
default configuration file 74
default file name 79
default operations 461
default option 72
default options 374
driver 4
error message 72
exclusive options 375
flags 6
force single precision 78
generate error 351
generate error file 80
generate listing 80
invoking 72
listing file 75
name 72
optimizer option specification 75
options 72
parser option specification 75
pc relative addressing mode 57
Position Independant Code 57
position independant code 77

predefined option 75
produce debug information 76
programmable option 374, 375
specific options 4
specify option 73
temporary file path 75
type checking 78, 463
user-defined preprocessor symbol 74
verbose 75
verbose mode 19

compute 110, 149, 168, 190
concatenate 174, 180
const

data 36
qualifier 36

constant
in .text section 468
prefix character 211
storage boundaries enforcing 463
string character 212
suffix character 212

constant bank
@far type modifier 56
const keyword 56
in .text section 56
PPAGE register 56

convert
decimal digit string to a number 122
ELF/DWARF format 348
hex format 334
IEEE695 format 345
to lowercase 192
to uppercase 193

cos function 103
cosh function 104
cosine 103
cprd utility 326
cross-reference

information 204
output 19
table in listing 208

cv695 utility 345
Index 5

cvdwarf utility 348

D
data

automatic initialization 33
bank support 12
const type 37
external,PPAGE register 56
in eeprom space 40
in zero page 38
initalized 38
mapped in code section,+picd 57, 77
mapped in usual section,+picds 58,
77
storage boundaries enforcing 463
volatile type 36

data ban
CSD chip select 57

data bank
+nofds option 56
.fdata section 56
@epage type modifier 56
@far type modifier 55
far pointer calculation 57
mechanism 55
page boundary 57
page number 57
range extension 55

data object
automatic 326
scope 324
type 324

data page
page size 57

data representation

short int,16 bit pointers 68
@far pointer 68
char 68
float and double 68
long integer 68

dc directive 226

dcb directive 227
debug information

add line 206
adding 466
label 206
no prefix 206

debug symbol
build table 312
in object file 207
table 324

debugging
data 324
support tools 323

debugging information
data object 324
extract 326
generate 324, 466
line number 324
print file 326
print function 326

decimal digit 122
default

bitfield order 465
branch optimization 204
output file 206

default placement
.bsct segment 302
.bss segment 302
.data segment 302
.text segment 302

definition 312
DEFs 312
descriptor

host to 293
DG128

family 469
div function 105
divide 105, 133
dlist directive 228
double

library 303
multiply 132
6 Index

partition 116
return 60

DP256 Eeprom Library 304
DPAGE

address 469
area 55
-ds12 option 57
move structure in 386
register 55
register access 46, 469
register location 77
segment 57

ds directive 229

E
eepcpy function 106
eepera function 107
eeprom

location 13, 40
eepset function 108
ELF/DWARF

format converter 10
else directive 230, 231, 234, 240, 242,

249
end directive 232
endc directive 242, 249
endif directive 230, 233, 240
endm

directive 255
endm directive 235, 258, 270
endr 266, 267

directive 236
enum

size optimization 464
EPAGE

address 469
area 56
-ds10 option 57
move structure in 405
register 55
register access 46, 469
segment 57

equ directive 237, 274
erase 107
error

assembler log file 205
file name 74, 80
file path specification 74
log file 291
message 10
message list 351
multiply defined symbol 210, 316
parser log file 74
undefined symbol 206, 313

even directive 238
executable image 334
exit function 109
exp function 110
exponential 110
expression

evaluation 214
high 214
low 214
page 214

extract 147

F
fabs function 111
fail directive 239
far code

+nofts option 59
far data

+nofds option 59
faster code

production 469
file

preprocessed only 75
file length restriction 324
fill

bank 332
byte 205, 222, 229, 238, 263

find
character in string 183
first occurrence of string 186
Index 7

last occurrence in string 184
length of a string 179

float
+sprec option 303
argument size 465
calculation 463
floating point library functions 82
header file 83
multiplication 411
remainder 114
single precision library 303

floor function 113
fmod function 114
format

description 150, 162
ELF/DWARF 348
IEEE Floating Point Standard 68
IEEE695 345
linker input/output 286
output specification 150
read input 162, 173
specifiers 150
write output to buffer 200, 201

formatted arguments 150
fraction and integer from double 147
free function 115
frexp function 116
full eeprom space 107
function

@inline modifier 43
enforce prototype declaration 77,
465
prototype declaration 77, 465
recursive 319
returning int 84
separate section 78
suppress 469
suppress unused 78

function arguments 326
fuzzy

compute average 202
evaluate ouput 159

evaluate output 160
grade of membership 143
instructions 58
library functions 58
logic software 58
memhc12 function 143
revhc12 function 159
revwhc12 function 160
wavhc12 function 202

fuzzy library 304

G
generate

.bsct section 59

.bss section 59

.const section 59

.const.w section 59

.data section 59

.fdata section 59

.ftext section 59

.text section 59

.ubsct section 59
error message 239
hex record 293
inline assembly code 86
listing file 206
object file 206
output files 17
pseudo-random number 157

getchar function 117
gets function 118
group

option 288

H
HC12/HCS12

addressing mode 209
mnemonics 208

HC12DG128
family support 77

HC12DP256
eeprom feature 40
8 Index

HCS12
family 205
header files 46, 83
support 78

header
files 83
input/output file 83

heap
allocate space on 138
allocation 63
area 65
free space 115
location 65
name 63
pointer 63
reallocate space on 158
size 63
space allocation 96
stack 63
start 63
top 63

-help option 6
hexadecimal digit 130
hyperbolic

cosine 104
sine 169
tangent 191

I
IEEE695

format converter 10
if

directive 217, 230, 234, 240
ifc directive 241
ifdef directive 242
ifeq directive 243
ifge directive 244
ifgt directive 245
ifle directive 246
iflt directive 247
ifnc directive 248
ifndef directive 249

ifne directive 250
include

assembler directive 219, 251
assembly file 205
define path 205
file 297
file before 463
module 303
object file 296
path specification 464
specify path 464

initialization
automatic 308
define option 293
descriptor 308
descriptor address 309
descriptor format 308
first segment 308
initialized segments 308
marker 293
startup routine 309

inline
#pragma directive 47
assembly code 48, 86
assembly instruction 47
block inside a function 47
block outside a function 47
builtin function 83
function 43
header function 84
machine library calls 76, 469
produce faster code 76
with _asm function 48, 49
with pragma sequences 47

inline function
carry 43
overflow 43

integer 105
library 304

interface information dump 345
interrupt

@near modifier 51
Index 9

function in map 319
handler 51
handler address 52
hardware 51
marked section 292
reset 32
return sequence 51
save and restore page register 56
vector 52
volatile data 36

isalnum function 119
isalpha function 120
iscntrl function 121
isdigit function 122
isgraph function 123
islower function 124
isprint function 125
ispunct function 126
isqrt function 127
isspace function 128
isupper function 129
isxdigit function 130

L
labs function 131
ldexp function 132
ldiv function 133
leading whitespace 128
librariy

building and maintaining 340
library

build and maintain 10
create 340
delete file 340
double precision 303
extract file 341
file 303
floating point 81
fuzzy 81
fuzzy functions 58
included file 83
integer 81, 304

list file 341
load all files 340
load modules 289
machine 81
path specification 291
replace file 341
scanned 289
single precision 303
Standard ANSI 303
version 303

line number
information 468

link
command file 290
relocatable file 20
user command file 21

linker
character prefix,comment 289
build freestanding program 286
clnk 9
command file 288
command file example 320
command item 288
comment 289
global command line options 291
output file 287
physical memory 287

list directive 252
listing

absolute information 207
file location 28
file path specification 74, 337
interspersed C and assembly file 18
stream 207

lit directive 253
local

assembler directive 254
labels 50

local variable
reorder 465

locate source file 328
log function 134
10 Index

log10 function 135
logarithm 134
long integer 133
longjmp function 136
look for in two buffers 141

M
macro

argument 215
directive 255
expansion 48
internal label 210
named syntax 216
named syntax, example 256
numbered syntax 215
numbered syntax, example 256
parameter 215
special parameter \# 215
special parameter * 216, 255
special parameter \0 216, 256

main
function 319
routine 33

malloc function 138
map

file description 319
modules section 319
produce information 291
segment section 319
stack usage section 319
symbols section 319

max function 139
maximum 139
maximum available space 306
memchr function 140
memcmp function 141
memcpy function 142
memmove function 144
memory 161

location 44
mapped I/O 44

memset function 145

messg directive 257
mexit directive 256, 258
min function 146
minimum 146
mlist directive 259
modf function 147
Motorola

assembler syntax 208
old syntax 205
old syntax support 220
S-Records format 335
standard behaviour 220
standard S-record generating 23

moveable
code section 309
code segment 112
function used 309
segment 112

N
natural 134
natural logarithm 134
new

segment control 288
start region 297

nolist directive 260
nopage directive 261
numeric constants 211

O
object

file location 28
file path specification 74
image 285
module 286
module inspector 10
relocatable 343
relocatable file output 207
relocatable file size 343
reorganization 332
size 343

offset
Index 11

assembler directive 262
segment parameter 300
setting 301
start absolute section 262

optimization
disable selectively 472
keep line 472
specific code 471

optimizer
disable 75

option
global 290

org directive 263
output

default format 335
file name 290
listing line number 464

output only 125
output to stdout 150
overflow inline function 148
override

data bias 334
text bias 334

P
page

assembler directive 264
boundary 12
value 214, 335

paged
architecture 300

paginating output 329
parser

behaviour 464
compiler pass 462
error log file 463

path
define include 75

pc relative addressing mode 209, 468
pcr register 210
plen directive 265
pointer

narrow 465
Position Independant Code 468
pow function 149
PPAGE

address 469
definition 99, 100, 101, 102
register access 46, 469

prefix
filename 466

preprocessor
#define 462
#include 462
run only 463

printable characters 125
printf function 150
private name region

use 313
processor

address 306
select type 205

pseudo-random number 172
putchar function 155
puts function 156

Q
quotient 105, 133

R
rand function 157
random number generation 172
range specification 329
realloc function 158
redirect output 329
REFs 312
region

name 288
private 297
public 297
use of private name 313

register
input/output 46

relative address 324
12 Index

remainder 105, 133
repeat directive 266
repeatl directive 267
restore 136
restore directive 269
rexit directive 266, 267, 270
ROM 44
runtime startup

modifying 32

S
save

calling environment 166
save directive 271
sbreak function 161
scanf function 162
section

curly braces,initiliazed data 41
definition 285
map to absolute 204
name 42, 218
parenthesis,code 41
pragma definition 41
pragma directive 42
predefinition 218
single 469
square brackets, uninitialized data 41
user defined 41

section directive 272
sections

default 41
predefined 41
relocation 300

seed 172
segment

bsct start address 295
bss start address 295
build new 303
control options 290, 292
data start address 295
definition 285
fill 292

follow current 292
maximum size 293
name 293
overlap checking 294, 301
overlapping 303
overlapping control 294
round up address 294
section overlap 295
shared data 293
space name 301
start,new 292
text start address 295
zero size 289

segment marked 27
segmented architecture 300
separated address space 301
set directive 274
set new level 139, 146
setjmp 136
setjmp function 166
sin function 168
sine 168
single precision option 304
sinh function 169
skip 128
software interrupt 51
source files listing 328
source listings 328
space

for function 464
for variable 464

space allocate 96
space name

definition 294
spc directive 275
sprintf function 170
sqrt function 171
square root

real compute 171
unsigned int compute 127
unsigned long int compute 137

srand function 172
Index 13

sscanf function 173
stack

amount of memory 319
check overflow 468
free space 115
need 319

stack pointer 33
standard ANSI libraries 303
Star12

family 56, 469
startup file

crts.h12 32
crtsi.h12 32
PIC code support 58

static data 326
stop execution of program 109
strcat function 174
strchr function 175
strcmp function 176
strcpy function 177
strcspn function 178
string 141, 174
strings 176, 180, 181
strlen function 179
strncat function 180
strncmp function 181
strncpy function 182
strpbrk function 183
strrchr function 184
strspn function 185
strstr function 186
strtod function 187
strtol function 188
strtoul function 189
suffix

assembly file 72
C file 72
input 338
output 338

suppress pagination 329
switch directive 276
symbol

alias 314
define 288
define alias 298
define new 298
definition 298
export 317
logical end value,equal 298
logical start value,equal 298
physical end value,equal 299
physical start value,equal 299
size value,equal 299
sort alphabetically 291
sort by address 291
user-defined 463

symbol table
add 298
information 343
new 312

T
tabs directive 277
tan function 190
tangent 190
tanh function 191
task entries 319
test 120
test for 119, 122, 128, 129, 130, 139,

146
title directive 278
tolower function 192
toupper function 193
translate executable images 334
type 139, 146
type cast 96
type casting 139, 146
type definition 194
type name 194

U
unreachable code

eliminate 11
unsigned long division 435, 436
14 Index

uppercase character 129

V
va_arg macro 194
va_end function 196
va_start macro 198
variable

reorder local 465
variable length argument list 196, 198
variables in data bank 12
volatile

data 36
memory mapped control registers 36
qualifier 36
using keyword 36

vprintf function 200
vsprintf function 201

W
whitespace character 128
widen to int 194
window

set shift 291, 348
size 294

window shift 300
windowed area, matching 306
write to output stream 155

X
x to the y power 149
xdef directive 279, 280
xref directive 279, 280
xref.b directive, external 219

Z
zero page 25

#pragma directive 38
@dir modifier 20
@dir type qualifier 38
section 38

zero page section 224

zpage
section 38
Index 15

	Preface
	Organization of this Manual

	Introduction
	Introduction
	Document Conventions
	Typewriter font
	Italics
	[Brackets]
	Conventions
	Command Line
	Flags

	Compiler Architecture
	Predefined Symbol
	Linking
	Programming Support Utilities
	Listings
	Optimizations
	Support for Bank Switching
	Support for ROMable Code
	Support for eeprom

	Tutorial Introduction
	Acia.c, Example file
	Default Compiler Operation

	Compiling and Linking
	Step 1: Compiling
	Step 2: Assembler
	Step 3: Linking
	Step 4: Generating S-Records file

	Linking Your Application
	Generating Automatic Data Initialization
	Specifying Command Line Options

	Programming Environments
	Introduction
	Modifying the Runtime Startup
	Description of Runtime Startup Code

	Initializing data in RAM
	The const and volatile Type Qualifiers
	Performing Input/Output in C
	Placing Data Objects in The Bss Section
	Placing Data Objects in The Zero Page Section
	Placing Data Objects in the EEPROM Space
	Redefining Sections
	Inlining Functions
	Optimizing boolean functions
	Referencing Absolute Addresses
	Accessing Internal Registers
	Inserting Inline Assembly Instructions
	Inlining with pragmas
	Inlining with _asm
	Inlining Labels

	Writing Interrupt Handlers
	Placing Addresses in Interrupt Vectors
	Calling a Bank Switched Function
	Accessing Banked Data
	Using Position Independent Code
	Fuzzy Logic Support
	Interfacing C to Assembly Language
	Register Usage
	Stack Model
	Stack Representation

	Heap Management Control with the C Compiler
	Modifying The Heap Location

	Data Representation

	Using The Compiler
	Invoking the Compiler
	Compiler Command Line Options

	File Naming Conventions
	Generating Listings
	Generating an Error File
	Return Status
	Examples
	C Library Support
	How C Library Functions are Packaged
	Inserting Assembler Code Directly
	Linking Libraries with Your Program
	Integer Library Functions
	Common Input/Output Functions
	Functions Implemented as Macros
	Functions Implemented as Builtins
	Including Header Files

	Descriptions of C Library Functions
	Generate inline assembly code
	Abort program execution
	Find absolute value
	Arccosine
	Arcsine
	Arctangent
	Arctangent of y/x
	Convert buffer to double
	Convert buffer to integer
	Convert buffer to long
	Allocate and clear space on the heap
	Test or get the carry bit
	Round to next higher integer
	Verify the recorded checksum
	Verify the recorded checksum
	Verify the recorded checksum
	Verify the recorded checksum
	Cosine
	Hyperbolic cosine
	Divide with quotient and remainder
	Copy a buffer to an eeprom buffer
	Erase the full eeprom space
	Propagate fill character throughout eeprom buffer
	Exit program execution
	Exponential
	Find double absolute value
	Copy a moveable code segment in RAM
	Round to next lower integer
	Find double modulus
	Free space on the heap
	Extract fraction from exponent part
	Get character from input stream
	Get a text line from input stream
	Test for alphabetic or numeric character
	Test for alphabetic character
	Test for control character
	Test for digit
	Test for graphic character
	Test for lower-case character
	Test for printing character
	Test for punctuation character
	Integer square root
	Test for whitespace character
	Test for upper-case character
	Test for hexadecimal digit
	Find long absolute value
	Scale double exponent
	Long divide with quotient and remainder
	Natural logarithm
	Common logarithm
	Restore calling environment
	Long integer square root
	Allocate space on the heap
	Test for maximum
	Scan buffer for character
	Compare two buffers for lexical order
	Copy one buffer to another
	Fuzzify an input
	Copy one buffer to another
	Propagate fill character throughout buffer
	Test for minimum
	Extract fraction and integer from double
	Test or get the carry bit
	Raise x to the y power
	Output formatted arguments to stdout
	Put a character to output stream
	Put a text line to output stream
	Generate pseudo-random number
	Reallocate space on the heap
	Evaluate fuzzy outputs
	Evaluate fuzzy outputs
	Allocate new memory
	Read formatted input
	Save calling environment
	Sin
	Hyperbolic sine
	Output arguments formatted to buffer
	Real square root
	Seed pseudo-random number generator
	Read formatted input from a string
	Concatenate strings
	Scan string for first occurrence of character
	Compare two strings for lexical order
	Copy one string to another
	Find the end of a span of characters in a set
	Find length of a string
	Concatenate strings of length n
	Compare two n length strings for lexical order
	Copy n length string
	Find occurrence in string of character in set
	Scan string for last occurrence of character
	Find the end of a span of characters not in set
	Scan string for first occurrence of string
	Convert buffer to double
	Convert buffer to long
	Convert buffer to unsigned long
	Tangent
	Hyperbolic tangent
	Convert character to lower-case if necessary
	Convert character to upper-case if necessary
	Get pointer to next argument in list
	Stop accessing values in an argument list
	Start accessing values in an argument list
	Output arguments formatted to stdout
	Output arguments formatted to buffer
	Evaluate weighted average

	Using The Assembler
	Invoking ca6812
	Object File
	Listings
	Assembly Language Syntax
	Instructions
	Labels
	Temporary Labels
	Constants
	Expressions
	Macro Instructions
	Conditional Directives
	Sections
	Includes

	Branch Optimization
	Old Syntax
	C Style Directives
	Assembler Directives
	Align the next instruction on a given boundary
	Define the default base for numerical constants
	Switch to the predefined .bsct section.
	Turn listing of conditionally excluded code on or off.
	Allocate constant(s)
	Allocate constant block
	Turn listing of debug directives on or off.
	Allocate variable(s)
	Conditional assembly
	Conditional assembly
	Stop the assembly
	End conditional assembly
	End conditional assembly
	End macro definition
	End repeat section
	Give a permanent value to a symbol
	Assemble next byte at the next even address relative to the start of a section.
	Generate error message.
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Include text from another text file
	Turn on listing during assembly.
	Give a text equivalent to a symbol
	Create a new local block
	Define a macro
	Send a message out to STDOUT
	Terminate a macro definition
	Turn on or off listing of macro expansion.
	Turn off listing.
	Disable pagination in the listing file
	Creates absolute symbols
	Sets the location counter to an offset from the beginning of a section.
	Start a new page in the listing file
	Specify the number of lines per pages in the listing file
	Repeat a list of lines a number of times
	Repeat a list of lines a number of times
	Restore saved section
	Terminate a repeat definition
	Save section
	Define a new section
	Give a resetable value to a symbol
	Insert a number of blank lines before the next statement in the listing file.
	Place code into a section.
	Specify the number of spaces for a tab character in the listing file
	Define default header
	Declare a variable to be visible
	Declare symbol as being defined elsewhere
	Declare a special external symbol
	Declare a special external symbol

	Using The Linker
	Introduction
	Overview
	Linker Command File Processing
	Inserting comments in Linker commands

	Linker Options
	Global Command Line Options
	Segment Control Options
	Segment Grouping
	Linking Files on the Command line
	Example
	Include Option
	Example
	Private Region Options
	Symbol Definition Option
	Reserve Space Option

	Section Relocation
	Address Arithmetic
	Overlapping Control

	Setting Bias and Offset
	Setting the Bias
	Setting the Offset
	Using Default Placement

	Linking Objects
	Linking Library Objects
	Library Order

	Bank Switching
	Automatic Data Initialization
	Descriptor Format

	Moveable Code
	Checksum Computation
	DEFs and REFs
	Special Topics
	Private Name Regions
	Renaming Symbols
	Absolute Symbol Tables

	Description of The Map File
	Return Value
	Linker Command Line Examples

	Debugging Support
	Generating Debugging Information
	Generating Line Number Information
	Generating Data Object Information

	The cprd Utility
	Command Line Options
	Examples

	The clst utility
	Command Line Options

	Programming Support
	The cbank Utility
	Command Line Options
	Return Status
	Examples

	The chex Utility
	Command Line Options
	Return Status
	Examples

	The clabs Utility
	Command Line Options
	Return Status
	Examples

	The clib Utility
	Command Line Options
	Return Status
	Examples

	The cobj Utility
	Command Line Options
	Return Status
	Examples

	The cv695 Utility
	Command Line Options
	Return Status
	Examples

	The cvdwarf Utility
	Command Line Options
	Return Status
	Examples

	Compiler Error Messages
	Parser (cp6812) Error Messages
	Code Generator (cg6812) Error Messages
	Assembler (ca6812) Error Messages
	Linker (clnk) Error Messages

	Modifying Compiler Operation
	The Configuration File
	Changing the Default Options
	Creating Your Own Options

	Example

	HC12/HCS12 Machine Library
	Get a long bitfield
	Store a long bitfield
	Check stack growth
	Add double to double
	Compare double with double
	Divide double by double
	Multiply double by double
	Negate a double
	Move a structure in DPAGE space
	Subtract double from double
	Copy a double into a double
	Convert double to float
	Convert double to integer
	Convert double into long integer
	Copy a double onto the stack
	Eeprom char bit field update
	Eeprom short bit field update
	Eeprom long bit field update
	Write a short int aligned in eeprom
	Write a char int in eeprom
	Write a double in eeprom
	Write a long int in eeprom
	Write a short int in eeprom
	Move a structure in eeprom
	Move a structure in eeprom
	Multiply signed int by unsigned int
	Multiply unsigned int by signed int
	Move a structure in EPAGE space
	Add float to float
	Compare floats
	Divide float by float
	Float addition
	Float division
	Float multiplication
	Float subtraction
	Multiply float by float
	Subtract float from float
	Convert float into double
	Convert float to integer
	Convert float into long integer
	Convert integer into double
	Convert integer into float
	Perform C switch statement on long
	Perform C switch statement in PIC mode
	Perform C switch statement
	Long integer addition
	Bitwise AND for long integers
	Long integer compare
	Quotient of long integer division
	Long addition
	Long bitwise AND
	Quotient of long division
	Long shift left
	Remainder of long division
	Long multiplication
	Long bitwise OR
	Signed long shift right
	Quotient of unsigned long division
	Remainder of unsigned long division
	Unsigned long shift right
	Long subtraction
	Long bitwise exclusive OR
	Long shift left
	Remainder of long integer division
	Multiply long integer by long integer
	Negate a long integer
	Bitwise OR with long integers
	Signed long shift right
	Long test against zero
	Long integer subtraction
	Convert long integer into double
	Convert long integer into float
	Quotient of unsigned long integer division
	Remainder of unsigned long integer division
	Unsigned long shift right
	Bitwise exclusive OR with long integers
	Compare a long integer to zero
	Far pointer compare
	Convert unsigned integer into double
	Convert unsigned integer into float
	Convert unsigned long integer into double
	Convert unsigned long integer into float

	Compiler Passes
	The cp6812 Parser
	Command Line Options
	Return Status
	Example

	The cg6812 Code Generator
	Command Line Options
	Return Status
	Example

	The co6812 Assembly Language Optimizer
	Command Line Options
	Disabling Optimization
	Return Status
	Example

