EE 308

Exam 1

February 15, 2002

Name: ____

You may use any of the Motorola data books, and the overheads posted on the Internet. No calculators allowed. Show all work. Partial credit will be given. No credit will be given if an answer appears with no supporting work.

- 1. This problem deals with hex and binary arithmetic
 - (a) Fill in the blanks in this table. The hex and binary numbers are 8-bits.

		Unsigned	Signed
Hex	Binary	Decimal	Decimal
A7	10100111	167	-89
AF	10101111	175	-81
51	01010001	81	81

(b) The following operations are done in accumulator A of an HC12. Indicate the answer in accumulator A, and the state of the flags after the operations.

	94 <u>+ 6C</u>	7F <u>+ 1A</u>	C7 + D3	75 <u>- C9</u>	4C <u>- E6</u>
Acc. A	00	99	9A	AC	66
C	1	0	1	1	1
V	0	1	0	1	0
N	0	1	1	1	0
Z	1	0	0	0	0

EE 308

Exam 1

February 15, 2002

Name:

You may use any of the Motorola data books, and the overheads posted on the Internet. Show all work. Partial credit will be given. No credit will be given if an answer appears with no supporting work.

2. Consider the following program fragment:

```
CODE
        section .text
                $0800
        org
                       ; 1 cycle
        ldaa
                #$23
        adda
                $091A ; 3 cycles
loop:
        deca
                       ; 1 cycle
        cmpa
                $02
                       ; 3 cycles
                       ; 3/1 cycles
        bne
                loop
        swi
```

(a) Hand-assemble the code fragment. That is, show what hex numbers will be in what memory locations after this program has been assembled. (Note: There are more lines in the table below than you need.)

Address	Byte
0800	86
0801	23
0802	BB
0803	09
0804	1A
0805	43
0806	91
0807	02
0808	26
0809	FB
080A	3F

(b) How many bytes of memory does the code fragment occupy?

11 Bytes (10 Bytes okay if you didn't include the SWI)

(c) How many processor clock cycles will it take to execute the five instructions of the code fragment?

1 + 3 + 1 + 3 + 3/1 = 11/9 Either 11 or 9 is acceptable

(d) How many microseconds will it take the fragment to execute on an HC12 with an 8 MHz processor clock?

11 cycles x 0.125 us/cycle = 1.375 us
or
9 cycles x 0.125 us/cycle = 1.125 us

3. Below are some data in the HC12 memory:

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0900	D6	05	35	CF	E0	00	FE	08	20	A6	00	47	6A	05	08	53
0910	26	F7	34	C6	C8	CD	9C	40	03	26	FD	53	26	F7	3D	3F
0920	07	C2	3A	68	F3	09	C2	67	9A	0F	AA	55	08	40	CD	CF

Using the above memory values, consider the instructions below.

- Indicate the starting address for each instruction. (Note that the first instruction is at address \$0800.)
- Indicate the values in the registers (in hex) after the HC12 executes each of the instructions. (If the instruction does not change a register, you may leave that entry blank.)
- Show the state of the N, Z, V and C condition code bits after each instruction has been executed.
- Indicate the addressing mode used by each instruction.
- Indicate the effective address of each instruction.
- Write down the number of cycles needed to execute each instruction.

		D		D									Addressing	Effective	Number
Address	Instruction	A B		Х	Y	SP	Ν	Ζ	V	С	Mode	Address	of Cycles		
		AA	37	0910	0900	0920	1	0	1	1					
\$0800	ldy #\$091A				091A		0	0	0	1	IMM	0801	2		
\$0803	ldy \$091A				FD53		1	0	0	1	EXT	091A	3		
\$0806	adda 5,X	77					0	0	1	1	IDX	0915	3		
\$0808	puly				07C2	0922	0	0	1	1	INH	0920	3		
\$0809	cmpb #\$5A						1	0	0	1	IMM	080A	1		
\$080B	ldaa 2,-X	08		090E			0	0	0	1	IDX	090E	3		
\$080D	negb		C9				1	0	0	1	INH	none	1		

- 4. An HC12 has been hooked up such that the 8-bit signed number stored at address \$0072 represents the temperature in this room in degrees Fahrenheit. Also, a switch which controls the heater for this room is connected to Bit 0 of PORTA, and a switch which controls the air conditioner for this room is connected to Bit 4 of PORTA. (Writing a 0 to Bit 0 turns the heater off; writing a 1 to Bit 0 turns the heater on. Writing a 0 to Bit 4 turns the air conditioner off; writing a 1 to Bit 4 turns the air conditioner on.) Write a program for the HC12 which will do the following:
 - Set up Bits 0 and 4 of PORTA as output bits. The other bits of PORTA should be set up as inputs.
 - If the temperature in the room is below 68 degrees, make sure the air conditioner is off and the heater is on.
 - If the temperature in the room is between 68 degrees and 75 degrees, make sure both the heater and air conditioner are off.
 - If the temperature in the room is above 75 degrees, make sure the air conditioner is on and the heater is off.
 - Repeat this set of instructions forever.

temp: PORTA: DDRA:	equ equ equ	\$0072 \$0000 \$0002	; Addres; ; addres; ; addres;	s of temperature register s of PORTA s of DDRA
low_temp: hi_temp:	equ equ	68 75	; below ; ; above ;	this, turn on heat this, turn on air
heat_mask: air_mask:	equ equ	00000001b 00010000b	; Bit 0 : ; Bit 4 :	for heater for air conditioner
prog:	equ	\$0800		
clr : loop:	org DDRA bset ldaa cmpa blt cmpa bgt	<pre>prog ; DDRA,#heat_ DDRA,#air_m temp #low_temp heat_on #hi_temp air_on</pre>	PORTA in mask ; ask ; ; ;	nput make heat bit output make air bit output read temp below 68, turn heat on above 75, turn air on
both_off:	bclr bclr bra	PORTA,#heat PORTA,#air_ loop	_mask ; mask ;	between 68 and 75, turn heat and air off
heat_on:	bset bclr bra	PORTA,#heat PORTA,#air_ loop	_mask ; mask ;	turn heat on turn air off
air_on:	bclr bset bra	PORTA, #heat PORTA, #air_ loop	_mask ; mask ;	turn heat off turn air on