
EE 308 Spring 2005

EE 308

Exam 2

March 30, 2005

Name:

You may use any of the Motorola data books and the notes from the web. Show all work. Partial
credit will be given. No credit will be given if an answer appears with no supporting work.

For all the problems in this exam, assume you are using an HCS12DP256 with a 4 MHz crystal
and a 24 MHz bus clock.

Also, assume that iodp256.h has been included, so you can refer any register in the HCS12
by name rather than by its address in any C code you write.

1. The following questions concern writing C code.

(a) Write some C code which will set bits 2 and 3, and clear bits 0 and 7 of the byte at
address 0x2400, and leave the other bits unchanged.

*(char *) 0x2400 = ((* (char *) 0x2400) | 0x0c) & ~0x81;

or

#define ADDR (*(char *) 0x2400)
Addr = (ADDR | 0x0c) & ~0x81;

(b) Write some C code which will write the 16 bit number 0x55aa to the word at address
0x2402.

*(int *) 0x2402 = 0x55aa;

(c) Write some C code which will wait until bit 2 of the TFLG1 register becomes one.

while ((TFLG1 & 0x04) == 0) ;

or

while (!(TFLG1 & 0x04)) ;

1



EE 308 Spring 2005

2. Below are the contents of the memory of an HCS12:

0 1 2 3 4 5 6 7 8 9 A B C D E F
10D0 10 23 3B 7C 10 04 86 80 B7 10 25 3B FC 10 18 F3
10E0 12 50 FD 10 18 86 40 B7 10 23 3B FC 10 12 DD 02
10F0 86 02 B7 10 23 3B 7C 10 03 86 40 B7 10 25 3B 86
FFC0 CC 05 9F CD 99 03 84 9C 01 9B CC 90 66 FC 93 30
FFD0 7E E3 4B 7E E5 38 21 54 05 83 10 34 2A 38 3C 03
FFE0 41 38 66 F2 7C 13 37 1C 25 F2 1C 38 5F 1B 42 1A
FFF0 1A 26 21 13 6A AA 20 1F 4B 38 33 38 45 38 10 20

(a) What is the address of the first instruction the HCS12 will execute when coming out of
reset?
The reset vector is at address 0xFFFE. This 16-bit location has an 0x1020. This is the
address of the first instruction the HCS12 will execute when coming out of reset.

(b) What is the address of the first instruction of the Timer Channel 2 interrupt service
routine?
The interrupt vector for Timer Channel 2 is at 0xFFEA. This 16-bit location has an
0x1c38. This is the address of the first instruction of the TImer Channel 2 interrupt
service routine.

2



EE 308 Spring 2005

3. Below are the contents of the memory of an HCS12:

0 1 2 3 4 5 6 7 8 9 A B C D E F
10D0 10 23 3B 7C 10 04 86 80 B7 10 25 3B FC 10 18 F3
10E0 12 50 FD 10 18 86 40 B7 10 23 3B FC 10 12 DD 02
10F0 86 02 B7 10 23 3B 7C 10 03 86 40 B7 10 25 3B 86

FFC0 CC 05 9F CD 99 03 84 9C 01 9B CC 90 66 FC 93 30
FFD0 7E E3 4B 7E E5 38 21 54 05 83 10 34 2A 38 3C 03
FFE0 41 38 66 F2 7C 13 37 1C 25 F2 1C 38 5F 1B 42 1A
FFF0 1A 26 21 13 6A AA 20 1F 4B 38 33 38 45 38 10 20

The HCS12 registers have the following values when an unmasked Real Time Interrupt occurs:

Reg - -
S X H I N Z V C

CCR 1 1 1 0 1 0 0 1
A:B A3 92
X A51C
Y 2020
SP 3BE5
PC 1024

(a) Explain in detail what happens when the HCS12 responds to the interrupt.
The HCS12 completes the current instruction. It then stacks the information it needs
to save: the return address, the Y, X, B, A and Condition Code registers. It sets the
I bit of the CCR (and the X bit, if it is the XIRQ interrupt), then loads the Program
Counter with the address from the interrupt’s vector.

(b) Show what will be in the HCS12 registers when it starts executing the first instruction
of the interrupt service routine.
Reg - -

S X H I N Z V C
CCR 1 1 1 1 1 0 0 1
A:B A3 92
X A51C
Y 2020
SP 3BDC
PC 1A26

The interrupt was a Real Time Interrupt, whose vector is at 0xFFF0, which contains
an 0x1A26. Thus, the PC will be loaded with an 0x1A26. The I bit of the CCR will be
set. The stack pointer will be decremented by 9, from 0x3BE5 to 0x3BDC.

3



EE 308 Spring 2005

(c) Also, show what has happened to the stack – fill in values for memory locations which
have changed below.

0 1 2 3 4 5 6 7 8 9 A B C D E F
3BD0 E5 92 A3 A5
3BE0 1C 20 20 10 24
3BF0

• The SP is decremented by 2 to 0x3BE3; the return address (0x1024, the PC when
the interrupt is received) is pushed.

• The SP is decremented by 2 to 0x3BE1; the Y register is pushed.
• The SP is decremented by 2 to 0x3BDF; the X register is pushed.
• The SP is decremented by 2 to 0x3BDD; the registers B and A are pushed.
• The SP is decremented by 1 to 0x3BDC; the Condition Code Register value (before

the interrupt; i.e., with the I bit equal to 0) is pushed.

(d) List at least five things needed in your program when you use interrupts.

• Load the Stack Pointer.
• Have an interrupt service routine (ISR).
• The ISR must clear the source of the interrupt before exiting.
• The ISR must exit with an RTI (Return beginfrom Interrupt) instruction.
• Do whatever setup is necessary to initialize the interrupt hardware (for example,

start the timer and set the prescaler if using the Timer Overflow Interrupt).
• Make sure the Interrupt Vector is loaded with the address of the first instruction of

the ISR.
• Enable the specific interrupt (for example, for the Timer Overflow Interrupt, set the

TOI bit of the TSCR2 register).
• Enable interrupts in general by clearing the I bit of the CCR (with the CLI instruc-

tion).

4



EE 308 Spring 2005

(e) The assembly language Real Time Interrupt interrupt service routine is the following:

rti_isr:
inc PORTA
rti

How much time (in bus cycles and in seconds) does it take for the HCS12 to respond to
the Real Time Interrupt – i.e., from the time the HCS12 receives a Real Time Interrupt,
how long does it take for the HCS12 to get into, execute, and exit from the interrupt
service routine? Explain.

• It takes 9 cycles to start executing the ISR. (See Figure 6.1 on Page 132 of the
HCS12 V1.5 Core User Guide to see what the HCS12 does on each cycle, or the
description of the SWI intruction).

• The inc PORTA instruction takes 4 cycles (the instruction uses the extended ad-
dressing mode)

• The rti instruction takes 8 cycles (or 11, if another interrupt is pending).

The total number of cycles is 9 + 4 + 8 = 21 (or 9 + 4 + 11 = 24 if another interrupt is
pending). Each cycle takes 1/24× 10−6 seconds (with a 24 MHz bus clock), so the total
time is 21/24× 10−6 = 0.875 µs, ( 1 µs if another interrupt is pending).

(f) What is wrong the the above interrupt service routine?
The routine does not clear the source of the interrupt. It should write a 1 to the RTIF
(real time interrupt flag) of the CTFLG register. The ISR should be:

rti_isr:
inc PORTA
RTIF = 0x80;
rti

5



EE 308 Spring 2005

4. The following questions pertain the the HCS12 timer subsystem.

(a) How do you enable the HCS12 timer subsystem? Write some C code to do this.
Write a 1 to the TEN bit of the TSCR1 register:

TSCR1 = TSCR1 | 0x80;

(b) What is the basic frequency of the timer subsystem clock – i.e., the frequency before
changing the prescaler?
For our HCS12, the basic frequency is 24 MHz.

(c) How do you change the frequency of the timer subsystem clock? Write some C code to
set the frequency to 3 MHz.
You need to divide the 24 MHz basic frequency by 8. You do this by setting the prescaler
(PR2:0 of TSCR2) to 011:

TSCR2 = (TSCR2 | 0x03) & ~0x04;

(d) Write some C code to clear C4F, the flag for timer channel 4. Be sure your code does
not clear any other timer flag which may be set.
Write a 1 to the C4F bit of the TFLG1 register, and 0’s to all other bits:

TFLG1 = 0x10;

(e) Write some C to set up timer channel 4 to function as an input capture. Set it up to
capture a falling edge. Be sure that you do not change the functionality of any other
timer channel.
Write a 0 to Bit 4 of TIOS register to make Channel 4 an input capture. Set EDG4B:EDG4A
of TCTL3 to 01:

TIOS = TIOS & ~0x10;
TCTL3 = (TCTL3 | 0x01) & ~0x02;

(f) Write some C to set up timer channel 5 to function as an output compare. Set it up to
set Channel 5 output high on a successful compare. Be sure that you do not change the
functionality of any other timer channel.
Write a 1 to Bit 5 of TIOS register to make Channel 5 an output compare. Set OM5:OL5
of TCTL1 to 11:

TIOS = TIOS | 0x20;
TCTL1 = TCTL1 | 0x0c;

6



EE 308 Spring 2005

5. The HCS12 is being used to control the intensity of a light. The light needs a PWM frequency
of 2.5 kHz. Write some code which will enable PWM Channel 2 with a 2.5 kHz frequency
and a duty cycle of 25%.

Want 2.5 kHz frequency. The basic frequency is 24 MHz. 24 MHz/2.5 kHz = 9,600, so need
to divide the 24 MHz clock by 9,600 to get 2.5 kHz.

Channel 2 uses PCKB and PWMSCLB.

• Using clock mode 0, want 9,600 = 2PCKB× PWMPER2. One way to do this is to set PCKB
to 6 (so 2PCKB = 64) and PWPMER2 to 150.

• Using clock mode 1, want 9,600 = 2PCKB + 1× PWPMER2 × PWMSCLB. One way to do this
is to set PCKB to 0 (so 2PCKB + 1 = 2), PWMPER2 to 200, and PWMSCLB to 24.

I will use clock mode 1.

Do the following:

• Choose 8-bit mode (PWMCTL = 0x00)

• Choose high polarity (PWMPOL = 0xFF)

• Choose left-aligned (PWMCAE = 0x00)

• Set PCLK2 = 1 in PWMCLK

• Set PCKB = 0 in PWMPRCLK

• Set PWMSCLB = 24

• Set PWMPER2 = 200

• Enable PWM Channel 2 (set bit 2 of PWME)

• For 50% duty cycle, set PWMDTY2 = 50% × PWMPER2 = 50% × 200 = 100

PWMCTL = 0x00; /* 8-bit mode */
PWMPOL = 0xFF; /* high polarity */
PWMCAE = 0x00; /* left-aligned */
PWMCLK = PWMCLK | 0x04; /* Clock mode 1 for Ch 2 */
PWMPRCLK = PWMPRCLK & ~0x70; /* PCKB = 0 */
PWMSCLB = 24;
PWMPER2 = 200;
PWME = PWME | 0x04; /* Enable PWM Ch 2 */
PWMDTY2 = 100;

7


