
EE 308 Lab1 Spring 2004

ASSEMBLER, SIMULATOR, AND MONITOR

Introduction and Objectives

This laboratory introduces you to the following 68HC12 assembly language programming tools:

• The 68HC12 assembler CA6812. This runs on the PC.

• The 68HC12 simulator ZAP. This also runs on the PC.

• The D-Bug 12 monitor that runs on the 68HC12.

You may be using IDEA as the principal graphical user interface (GUI) for the Cosmic Compiler
program. An assembler takes assembly language code in a form that a human can reasonably read
with a little practice, translates it to machine code which a microprocessor can understand. and stores
them in a ' ' .s19 ' file which the 68HC12 monitor program can understand. In this lab we will use
the Cosmic Software CA6812 assembler, which is on the PCs in the Digital/Microcontrollers lab.
This is copyrighted software which is licensed for use on our lab computers only. There is a demo
version of this assembler (as well as the Cosmic C compiler and the ZAP simulator) are available
from Cosmic at http://www.cosmic-us.com/hc12_des.html. It should be adequate for most of the
labs in this course.

The Cosmic CA6812 assembler produces both of the following output files:

• an output file with a .h12 extension which the ZAP simulator uses.

• an output file with a .s19 extension which can be loaded into and run on the 68HC12.

The D-Bug 12 monitor, running in the 68HC12 EPROM, loads S19 records (with a .s19 extension)
into the 68HC12 and provides some tools for debugging loaded programs.

The ZAP simulator simulates the operation of the 68HC12 on a PC. This has two advantages: you
can try a program without having a 68HC12, and you can easily see information (such as register
contents, number of cycles to complete, etc.) which are difficult or impossible to observe on an
actual microcontroller. Again, the full ZAP simulator is a licensed program which cannot be
distributed, but the demo version will be adequate for most of the labs in this course. The
relationship between these various programs is illustrated in Figure 1.

Figure 1: The relationship between CA6812, ZAP, and D-Bug 12.

Lab01.s CA681
2

Lab01.h12

Lab01.s19

ZAP

D-Bug 12

EE 308 Lab1 Spring 2004

Pre-Lab

Read this entire lab, and answer all of the questions in the pre-lab section before coming to lab.

The D-Bug 12 monitor allows you to interact with the HC12 microcontroller. You can use it to load
programs, to find out what is in the HC12’s registers and memory, to change the contents the registers
and memory, and many other things. The D-Bug 12 commands of interest for this lab are:

 ASM, BF, BR, NOBR, G, HELP, LOAD,

 MD, MDW, MM, MMW, RM, RD, and T.

 Read the descriptions of these commands in Chapter 5 of the D-Bug 12 Reference Guide.

Questions to answer before lab:

• What is the difference between the MD and MDW commands?

• How would you change the value of the A accumulator to 0x56? (There are several ways to

do this; you only need to find one way.)

Assembly language is used to write programs for the HC12. An assembly language instruction will
be converted by the assembler into a single machine instruction for the HC12.

The assembly language commands of interest to us for this lab are:

 LDAA, STAA, TAB, ABA, and ASRA.

Read the descriptions of these commands in the 68HC12 CPU12 Core Users Guide. At this point
you will not understand everything the guide says about these instructions, but you should understand
enough to get you through this lab.

Figure 2 is a simple program for the HC12. We will use it to illustrate how to use the assembler, the
simulator and D-Bug 12. Note: We will always use the SWI instruction to end a program. This
instruction will transfer control the the HC12 from the program to the D-Bug 12 monitor.

EE 308 Lab1 Spring 2004

; 68HC12 demo program Bill Rison 1/15/03

; This is a program to divide and multiply a number by two,

; and store the results in memory

title "LAB 1 Demo Program"

evbram: equ $1000 ;0x1000 is start of user ram on 68HC12

prog: equ evbram ;Start program at beginning of RAM

data: equ evbram+$1000 ;Memory area for data

CODE: section .text ;The stuff which follows is program code

org prog ;set program counter to 0x1000

ldaa input ;Get input data into ACC A

asra ;Divide by 2

staa result ;Save the result

ldaa input ;Get input data into ACCA

tab ;Put the same number into ACCB

aba ;Add the number to itself (multiply by two)

staa result+1 ;Save the result

swi ;End program (return to D-Bug 12 monitor)

DATA: section .data ;The stuff which follows is data

org data

input: dc.b $07 ;first input data

result: ds.b 2 ;reserve two bytes for results

Figure 2: An assembly language program used to get started with the CA6812, ZAP, and D-Bug 12.

EE 308 Lab1 Spring 2004

Questions to answer before lab:

 What are the contents of the A register after each instruction of the program shown in Figure 2
executes?

We will use D-Bug 12 to explore the memory of the HC12 on your evaluation board. The memory
map for your 68HC12 is shown on page 24 of the MC9S12DP256B Device Users Guide. (Look at the
the figure labeled “Normal Single Chip”.) Much of the memory is used by the D-Bug 12 monitor. For
this class you can use RAM from 0x1000 to 0x2FFF, and EEPROM from 0x0400 to 0x0FFF.

Use a text editor to enter the program shown in Figure 2 before coming to lab and save it under the
name ' lab01.s '. (You can also use a web browswer to download the program.)

Also create the file lab01.lkf (a link file) which contains the following lines:

Link file for program lab01.s

+seg .text -b 0x1000 -n .text # program start address

+seg .data -b 0x2000 -n .data # data start address

lab01.o # application program

Now there are two possibile ways to developpe all needed files for the simulator and the
evaluation board. By the command window and a batch file, or by using IDEA (the Integrated
Development Environment).

1. BY COMMAND WINDOW:

Open a COMMAND window. (Go to START, then RUN, and enter the program name CMD.)
You can assemble the program using the ca6812 assembler with the commands:

•> c:\cx32\ca6812 -a -l -xx -pl lab01.s

•> c:\cx32\clnk -o lab01.h12 -m lab01.map lab01.lkf

•> c:\cx32\chex -o lab01.s19 lab01.h12

•(Note: You may need the path c:\cosmic\eval12\. instead of c:\cx32\, Or use a batch file to
execute these commands. The instructions are at the end of the lab.)

EE 308 Lab1 Spring 2004

2. BY USING IDEA (the Integrated Development Environment):

1. Start up the IDEA (Integrated Development Environment) program “idea12.exe” if it is the
evaluation version.

2. Choose Project...New and a side menu will pop-up to the left, we must set up names and
parameters for this lab project. It will look like this: <Project_Name>

<Project_Description>
<Project_ExecFile>
Files
(A folder' icon will appear here. This will be changed to the working directory)
Defines
Include Paths
Object Paths
Tools > Compiler Assembler Linker Builder Hex Converter......etc

3. Change the names of <Project_Name> to Lab01 by clicking once, then once again; you will
then have the prompt to change the name.
<Project_Description> to any short description “ my first lab”

 <Project_ExecFile> to lab01.s (this file will be executed by the assembler)

4. . Right click on “files” / Add Files and add in the lab01.s assembly file.

5. . Next choose File / Default File Type..... and select Assembler (.s) since we are doing assembly
language, otherwise we would leave it at C source (.c) . This then selects the type of file you can edit or
create eon the right hand side window text area, (Do File / New or File / Open for example)

6. Now you will set the “assembler options” by selecting Tools / Assembler / Options (right click).
This will open a window full off check-boxes. Choose General , and select three boxes as follows ¤
Absolute Assembler, ¤ Include Full debug information, ¤ Select MCS12 processors. Next choose
Listings and check ¤ Output a listing. Next choose Miscellaneous and check ¤Keep All Local
Symbols. The result of all these options can be seen in the lower field as follows “ca6812 -a -l -xx -pl
-ns”

7. Now you will set the “linker options” by selecting Tools / Linker / Options (right click). This will
open a window full off check-boxes and text area to filling the name of needed files . Check off the
boxes and fill in the file names as follows ¤ Output to File lab01.h12 ¤Command File lab01.lkf
¤ Create Map File lab01.map .

8. Now you will set the “builder options” by selecting Tools / Builder / Options (right click). Now
select ¤Convert to S-Records. Next click the options button and select ¤Convert to File, and type in
lab01.s19. (or goto step 9.) This will create the lab01.s19 file needed for the board.

9. Now you will set the “linker options” by selecting Tools / Hex Converter/ Options (right click).
Now select ¤Convert to File, and type in lab01.s19.

10. Choose the Project / Build.This will build the application executable (.h12), and generate S-
records (.s19) The project file with the .h12 extension is ready to download into ZAP.

11. If you need to review the assembler or linker options , expand the Tools icon and right click on
Assembler or Linker.

12. Click on the ZAP Debugger icon to open ZAP and automatically load the application.

EE 308 Lab1 Spring 2004

The “ca6812” command will have created a file called lab01.o which contains the machine codes in a
special form which other programs can read. It also created the file lab01.ls which shows what op
codes were generated by the assembler. The linker (actually the “clnk” command) will translate the
lab01.o file into a form which the ZAP simulator can understand (the lab01.h12 file). It also creates a
file lab01.map which shows where in memory the program will be loaded. The chex command will
create the lab01 .s19 file, which is the file you will use with the HC12 evaluation board.

Bring a disk with the program on it to the lab.

As you gain experience you will operate independently in the lab. However, for the first few labs you
should be pestering the lab assistants to distraction to make sure you get everything that you can from
the time in the lab. We are there to help. Your part is to take the pre-lab seriously and show up for the
lab session prepared.

The Lab

Create a directory for this course (say, D:\EE308). Inside this directory create a subdirectory for this
lab (say, D:\EE308\LAB01). Change to this subdirectory, type in the lab01.s program, and assemble it
with the commands shown above.

QUESTIONS :on the output of the assembler:

• Look at the lab01.ls file. Where will the machine code for the instruction 'staa result 'be stored in
the HC12?

• What machine code is generated for the 'staa result' mnemonic? Is this what you expected? (Look
up the STAA instruction in your HCS12 Core Users Guide to determine what code this instruction
should generate.)

• At what address will result be located in the HC12 memory?

Start the ZAP simulator.

Once you are in the simulator, go to the Setup menu, Path submenu, and Append the path where your
program is located. Load the lab01.h12 file using the File menu. Go to the Show menu and click on
Memory. Give a starting address of 0x2000 and a Data format. For Size select Byte. Adjust your
desktop so you can see the Registers, Disassembly, Command, and Memory windows. Set the
program counter to the start of your program by typing the following into the Command window:

Zap> eval $pc=0x1000

In the Disassembly window you should see the lab01 program.

EE 308 Lab1 Spring 2004

QUESTION :

• What value do the HC12 registers have in the Register Window?

Trace, or single step, through your program using the istep command in the command window, or
clicking on the Footstep icon, and observe what is going on in the Disassembly and Register
windows. (Note: Do not try to execute the SWI instruction on the simulator. It will do unexpected
things.)

When you are done single stepping, do the following:

• Set a breakpoint at the swi instruction. Do this by double-clicking on the address of the swi
instruction in the Disassembly window. The address should become hightlighted in red. You need to
set a breakpoint so the simulator will stop at this address – it does not have D-Bug 12 loaded to
recognize the swi instruction.

• Reset the program counter to 0x1000. You can reset the program counter by entering the command

Zap> eval $pc=0x1000

in the Command window, or by double-clicking on the pc in the Register window and typing in the
desired value.

• Run the entire program. You can run the program by entering the command

Zap> go

in the Command window, or by clicking on Green Light icon on the icon bar. Check that you have the
expected values in result and result + 1 after the program has finished. Change the input data at
address 0x2000 from $07 to $be, and rerun the program. Check the results.

QUESTIONS : on the simulator:

• How do the contents of the A register compare to what you predicted in the Pre-Lab after the
execution of each in instruction?

• Change the contents of the B register to 0xAC. Change the contents of the A register to 0xDC. Set
the stack pointer to 0x09D0. Hint: How did you change the program counter?

• How can you put 0x3421 in the X register? How can you verify the change took place? Do it to see
if your ideas are correct.

• What do the four columns in the Disassembly window represent?

• Reset the program counter to 0x1000 and rerun the program. Display memory to look at input and
result. Is result equal to input/2? If not, why?

EE 308 Lab1 Spring 2004

Exit from the simulator. Take out your HCS12 Evaluation Board (EVB), and make sure Jumpers
NO_AUTO, MODC and MEM_EN are off, and jumper JP1 is on. Connect your EVB to your
computer and power supply. Open a Hyperterminal to talk to the HC12. Your lab instructor will help
you connect to the HC12 if you have a problem.

To download your program to your EVB type LOAD at the D-Bug 12 prompt. Then select the
Transfers menu, Send Text File submenu, and select the file lab01.s19 to send. Wait for the

HC12 to respond with >.

Using your EVB do the same things that you did on the simulator, and answer all of the questions
from the simulator section that are applicable to the EVB.

QUESTIONS : In addition:

• What is the D-Bug 12 command to change the Program Counter?

• Use the BF command to load 0x55 into memory locations 0x2800 to 0x2FFF. Use the MD
command to verify that it worked.

Creating an Assembly Batch File

To save typing, you can create an assembly batch file. To do this, use a text editor to create

the following file, and call it (for example) asm.bat:

c:\cx32\ca6812 -a -l -xx -pl %1.s

c:\cx32\clnk -o %1.h12 -m %1.map %1.lkf

c:\cx32\chex -o %1.s19 %1.h12

Now to assemble the file lab01.s, give the command:

> asm lab01

