EE 308 – Homework 4

Due Feb. 10, 2006

- Find the values of the N, Z, C, and V bits of the CCR register after execution of each of the following instructions, given that (A) = \$C5 and the condition flags are N=0, C=1, Z=0, and V=0. (Assume these are the values before each instruction starts e.g., do not use the flag state resulting from the instruction in part (a) as the initial state for part (b).)
 - (a) ADDA #\$7C
 - (b) ADCA #\$2F
 - (c) LSRA
 - (d) CMPA **#\$60**
 - (e) SUBA #\$D7
 - (f) ASRA
- 2. Suppose you started with the following register contents:

P-1007 Y-7892 X-FF00 A-44 B-70 SP-3B7F

Wht address is in the stack pointer and registers, and exactly what is in the stack after the following instructions sequence is executed:

PSHA PSHB PSHY PULX

- 3. Write a subroutine to copy data one byte at a time from memory location \$2000 to memory location \$3000 until a byte with \$FF is detected.
- 4. Below are some data in the HC12 memory:

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
2000	D6	05	35	CF	E0	00	\mathbf{FE}	08	20	A6	00	47	6A	05	08	53
2010	26	F7	34	C6	C8	CD	9C	40	03	26	FD	53	26	F7	3D	3F
2020	07	C2	3A	68	F3	09	C2	67	9A	0F	AA	55	08	40	CD	CF

Indicate the values in the registers after the HC12 executes the following instructions. Also write down the number of cycles needed to execute each instruction. Show what will be in the registers (in hex) after each of the instructions. If the instruction does not change a register, you may leave that entry blank. Note that the first instruction is located at address 0x1000.

	Ι)									
Instruction	Α	В	Х	Y	SP	N	Z	V	С	Addressing	Effective
										Mode	Address
	AA	BB	2010	2020	0A00	1	0	1	0		
lds #\$2018											
cpd \$2009											
puly											
aslb											
staa \$2013											
adda 4,+x											

5. Below is the listing from the **as12** assembler after assembling a simple program. Because of a bad printer, a few of the entries are blank. There is sufficient information in the listing to determine what the missing information is. Fill in the blanks with the correct values.

as12, an absolute assembler for Motorola MCU's, version 1.2e

1000 2000 0260 3c00	prog equ data equ DDRH equ PTH equ STACK equ	\$2000 \$0262 \$0260
1000	org pr	og
18 0d 30 02 60 1010 07 07	<pre>l1: ldx l2: movb de cpx #t bls here</pre>	ff,DDRH #table 1,x+,PTH lay
1019 36 101a 34 101b 86 64 101d ce 0c 80 1020 04 35 fd 1023 1026 30 1027 32 1028 3d	delay: psh ldaa #1 l3: ldx l4: dbne dbne a, pulx pula rts	00 x,14
	table_end: dc.b \$7f	ta b \$3f,\$5b,\$66,\$7d
Total cycles: 49, Total		

Total errors: 0, Total warnings: 0

- 6. Write a program fragment which will make Bits 7, 5, 2, and 0 of Port B output, and the other bits of Port B input.
- 7. Write a program fragment which will make Port H an output port, and display the letter 'E' on the seven-segment LED display connected to Port H.