
EE 308 Spring 2005

MC9S12 Address Space

• MC9S12 has 16 address lines

• MC9S12 can address 216 distinct locations

• For MC9S12, each location holds one byte (eight bits)

• MC9S12 can address 216 bytes

• 216 = 65536

• 216 = 26 × 210 = 64× 1024 = 64 KB

• (1K = 210 = 1024)

• MC9S12 can address 64 KB

1

EE 308 Spring 2005

MC9S12 Address Space

• Lowest address: 00000000000000002 = 000016 = 010

• Highest address: 11111111111111112 = FFFF16 = 6553510

0x0000

0xFFFF 65535

 0

2 − 1
16

2

EE 308 Spring 2005

MEMORY TYPES

RAM: Random Access Memory (can read and write)

ROM: Read Only Memory (programmed at factory)

PROM: Programmable Read Only Memory

(Program once at site)

EPROM: Erasable Programmable Read Only Memory

(Program at site, can erase using UV light and reprogram)

EEPROM: Electrically Erasable Programmable Read Only Memory

(Program and erase using voltage rather than UV light)

MC9S12 has: 12 KB RAM

3 KB EEPROM

256 KB Flash EEPROM (Can access 48 KB at a time)

3

EE 308 Spring 2005

MC9S12 Address Space

0x0000

0xFFFF

Registers
0x03FF

1 K Bytes

RAM
D−Bug 12

User RAM

1 K Bytes

11 K Bytes

0x0FFF

0x0400
EEPROM
User

3 K Bytes

0x1000

0x3FFF

0x3C00
0x3BFF

0x4000

0x7FFF
0x8000

EEPROM
Flash
Banked

16k Bytes

32k Bytes
D−Bug 12
Flash
EEPROM

4

EE 308 Spring 2005

MC9S12 ALU

• Arithmetic Logic Unit (ALU) is where instructions are executed.

• Examples of instructions are arithmetic (add, subtract), logical

(bitwise AND, bitwise OR), and comparison.

• MC9S12 has two 8-bit registers for executing instructions. These

registers are called A and B.

• For example, the MC9S12 can add the 8-bit number stored in B

to the eight-bit number stored in A using the instruction ABA

(add B to A):

COMBINATIONAL

BLOCK

A B

CLOCK

(ADD B TO A)

CONTROL

(0x1806 = ABA)

When the control unit sees the sixteen-bit number 0x1806, it tells

the ALU to add B to A, and store the result into A.

5

EE 308 Spring 2005

MC9S12 Programming Model

• A Programming Model details the registers in the ALU and con-

trol unit which a programmer needs to know about to program

a microprocessor.

• Registers A and B are part of the programming model. Some

instructions treat A and B as a sixteen-bit register called D for

such things as adding two sixteen-bit numbers. Note that D is

the same as A and B.

0 B0A 7 7

D015

• The MC9S12 can work with 8-bit numbers (bytes) and 16-bit

numbers (words).

• The size of word the MC9S12 uses depends on the instruction.

For example, the instruction LDAA (Load Accumulator A) puts

a byte into A, and LDD (Load Double Accumulator) puts a word

into D.

6

EE 308 Spring 2005

MC9S12 Programming Model

• The MC9S12 has a sixteen-bit register which tells the control

unit which instruction to execute. This is called the Program

Counter (PC). The number in PC is the address of the next

instruction the MC9S12 will execute.

• The MC9S12 has an eight-bit register which tells the MC9S12

about the state of the ALU. This register is called the Condition

Code Register (CCR). For example, one bit (C) tells the MC9S12

whether the last instruction executed generated a carry. Another

bit (Z) tells the MC9S12 whether the result of the last instruction

was zero. The N bit tells whether the last instruction executed

generated a negative result.

• There are three other 16-bit registers – X, Y, SP – which we will

discuss later.

015

015

015

015

0 B

D

X

Y

SP

PC

CCR

0

015

A 7 7

NIHXS Z V C

7

EE 308 Spring 2005

Some MC9S12 Instructions Needed for Lab 1

LDAA address Put the byte contained in memory at address into A

STAA address Put the byte contained in A into memory at address

CLRA Clear A (0 -> A)

INCA Add 1 to A ((A) + 1 -> A)

ABA Add B to A, store the result in A

ASRA Shift A right by one bit (keep the MSB the same)

This divides a signed byte by 2

LSRA Shift A right by one bit (put 0 into MSB)

This divides an unsigned byte by 2

NEGA Negate A (-(A) -> A)

TAB Transfer A to B ((A) -> B)

SWI Software Interrupt (Used to end all our MC9S12 programs)

8

EE 308 Spring 2005

A Simple MC9S12 Program

• All programs and data must be placed in memory between ad-

dress 0x1000 and 0x3BFF. For our short programs we will put

the first instruction at 0x1000, and the first data byte at 0x2000

• Consider the following program:

ldaa $2000 ; Put contents of memory at 0x2000 into A

inca ; Add one to A

staa $2001 ; Store the result into memory at 0x2001

swi ; End program

• If the first instruction is at address 0x1000, the following bytes

in memory will tell the MC9S12 to execute the above program:
Address Value Instruction

0x1000 B6 ldaa $2000

0x1001 20

0x1002 00

0x1003 42 inca

0x1004 7A staa $2001

0x1005 20

0x1006 01

0x1007 3F swi

• If the contents of address 0x2000 were 0xA2, the program would

put an 0xA3 into address 0x2001.

9

EE 308 Spring 2005

A Simple Assembly Language Program.

• It is difficult for humans to remember the numbers (op codes) for

computer instructions. It is also hard for us to keep track of the

addresses of numerous data values. Instead we use words called

mnemonics to represent instructions, and labels to represent ad-

dresses, and let a computer programmer called an assembler to

convert our program to binary numbers (machine code).

• Here is an assembly language program to implement the previous
program:

prog equ $1000 ; Start program at 0x1000

data equ $2000 ; Data value at 0x2000

org prog

ldaa input

inca

staa result

swi

org data

input: dc.b $A2

result: ds.b 1

• We would put this code into a file and give it a name, such as

test.s

• Note that equ, org, dc.b and ds.b are not instructions for the

MC9S12 but are directives to the assembler which make it pos-

sible for us to write assembly language programs. The are called

assembler directives or psuedo-ops. For example the psuedo-op

org tells the assembler that the starting address (origin) of our

program should be 0x1000.

10

EE 308 Spring 2005

Assembling an Assembly Language Program

• A computer program called an assembler can convert an assembly

language program into machine code.

• The assembler we use in class is a freee compiler from Motorola.

• The easiest way to assemble it is to use the freeware IDE As-

mIDE, as discussed in Lab 1 and in Huang.

• The assembler will produce a file called test.lst, which shows

the machine code generated.

as12, an absolute assembler for Motorola MCU’s, version 1.2e

1000 prog equ $1000 ; Start program at 0x1000

2000 data equ $2000 ; Data value at 0x2000

1000 org prog

1000 b6 20 00 ldaa input

1003 42 inca

1004 7a 20 01 staa result

1007 3f swi

2000 org data

2000 a2 input: dc.b $A2

2001 result: ds.b 1

Executed: Thu Jan 19 21:19:06 2006

Total cycles: 23, Total bytes: 9

Total errors: 0, Total warnings: 0

11

EE 308 Spring 2005

• This will produce a file called test.s19 which we can load into

the MC9S12.

S012000046696C653A20746573742E61736D0ADA

S10B1000B62000427A20013FF2

S1042000A239

S9030000FC

– The first line of the S19 file starts with a S0: the S0 indicates

that it is the first line.

– The last line of the S19 file starts with a S9: the S9 indicates

that it is the last line.

– The other lines begin with a S1: the S1 indcates these lines

are data to be loaded into the MC9S12 memory.

– On the second line, the S1 if followed by a 0B. This tells the

loader that there this line has 11 (0x0B) bytes of data follow.

– The count 0B is followed by 1000. This tells the loader that

the data should be put into memory starting with address

0x1000.

– The next 16 hex numbers B62000427A20013F are the 8 bytes

to be loaded into memory. You should be able to find these

bytes in the test.lst file.

– The last two hex numbers, 0xF2, is a one byte checksum,

which the loader can use to make sure the data was loaded

correctly.

12

