
EE 308 Spring 2006

Addition and Subtraction of Hexadecimal Numbers.
Setting the C (Carry), V (Overflow), N (Negative) and Z (Zero) bits

How the C, V, N and Z bits of the CCR are changed

Condition Code Register Bits N, Z, V, C

N bit is set if result of operation in negative (MSB = 1)

Z bit is set if result of operation is zero (All bits = 0)

V bit is set if operation produced an overflow

C bit is set if operation produced a carry (borrow on subtraction)

Note: Not all instructions change these bits of the CCR

1

EE 308 Spring 2006

Addition of Hexadecimal Numbers

ADDITION:

C bit set when result does not fit in word

V bit set when P + P = N
 N + N = P

 7A
+52

 CC

+52
 2A

 7C

+8A
 AC

 36

+72
 AC

 1E

N bit set when MSB of result is 1

Z bit set when result is 0

C: 0 C: 1

V: 0

C: 0

V: 1

C: 1

V: 1 V: 0

N: 1 N: 0 N: 1

Z: 0 Z: 0 Z: 0

N: 0

Z: 0

2

EE 308 Spring 2006

Subtraction of Hexadecimal Numbers

SUBTRACTION:

C bit set on borrow (when the magnitude of the subtrahend

V bit set when N − P = P
 P − N = N

 is greater than the minuend)

 7A
−5C

 1E

−5C
 8A

 2E

 5C
−8A

 D2

 2C
−72

 BA

C: 0

V: 0

C: 1

V: 0

C: 0

V: 1V: 1

C: 1

N: 0 N: 0 N: 1 N: 1

Z: 0Z: 0Z: 0Z: 0

N bit set when MSB is 1

Z bit set when result is 0

3

EE 308 Spring 2006

Simple Programs for the HCS12

A simple HCS12 program fragment

 asra

 org $1000
 ldaa $2000

 staa $2001

A simple HCS12 program with assembler directives

swi

 asra
 ldaa input

 staa result

 org prog

 org data

result: ds.b 1
input: dc.b $07

prog: equ $1000
data: equ $2000

4

EE 308 Spring 2006

HCS12 Programming Model — The registers inside the HCS12 CPU the programmer needs to know about

015

015

015

015

0 B

D

X

Y

SP

PC

CCR

0

015

A 7 7

NIHXS Z V C

5

EE 308 Spring 2006

How the HCS12 executes a simple program

B6

13

7A

Control unit reads B6
Control decodes B6

Control units tells ALU to latch value

Control units tells memory to fetch
Control unit reads address LSB 13

Control unit reads 7A
Control decodes 7A

Control units fetches value of ACCA from ALU
Control units tells memory to store value

EXECUTION OF SIMPLE HC12 PROGRAM

6C

Control unit reads address LSB 14

14

NEGA

40

Control unit reads 40
Control unit decodes 40
Control unit tells ALU to negate ACCA

5A

PC = 0x1000

PC = 0x1001
PC = 0x1002

PC = 0x1003

PC = 0x1004

PC = 0x1005
PC = 0x1006

PC = 0x1007

LDAA $2013

STAA $2014

20

20

0x2013
0x2014

 contents of address 0x2013

0x1000
0x1001
0x1002
0x1003
0x1004
0x1005
0x1006

 at address 0x2014

Control unit reads address MSB 20

Control unit reads address MSB 20

A

Things you need to know to write HCS12 assembly language programs

HC12 Assembly Language Programming

Programming Model

HC12 Instructions

Addressing Modes

Assembler Directives

6

EE 308 Spring 2006

Addressing Modes for the HCS12

• Almost all HCS12 instructions operate on memory

• The address of the data an instruction operates on is called the effective address of that
instruction.

• Each instruction has information which tells the HCS12 the address of the data in
memory it operates on.

• The addressing mode of the instruction tells the HCS12 how to figure out the effective
address for the instruction.

• Each HCS12 instructions consists of a one or two byte op code which tells the HCS12
what to do and what addressing mode to use, followed, when necessary by one or more
bytes which tell the HCS12 how to deterime the effective address.

– All two-byte op codes begin with an $18.

• For example, the LDAA instruction has 4 different op codes, one for each of the 4 different
addressing modes

7

EE 308 Spring 2006

Core User Guide — S12CPU15UG V1.2

407

Operation (M) ⇒ A
or
imm ⇒ A

Loads A with either the value in M or an immediate value.

CCR
Effects

Code and
CPU
Cycles

LDAA Load A LDAA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LDAA #opr8i
LDAA opr8a
LDAA opr16a
LDAA oprx0_xysppc
LDAA oprx9,xysppc
LDAA oprx16,xysppc
LDAA [D,xysppc]
LDAA [oprx16,xysppc

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

86 ii
96 dd
B6 hh ll
A6 xb
A6 xb ff
A6 xb ee ff
A6 xb
A6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

8

EE 308 Spring 2006

The HCS12 has 6 addressing modes

Memory address used by instruction
Effective Address:

ADDRESSING MODE:
How the HC12 calculates the effective address

HC12 ADDRESSING MODES:

INH Inherent

IMM Immediate

DIR Direct

EXT Extended

Most of the HC12’s instructions access data in memory
There are several ways for the HC12 to determine which address to access

Relative (used only with branch instructions)REL

IDX Indexed (won’t study indirect indexed mode)

9

EE 308 Spring 2006

The Inherent (INH) addressing mode

Inherent (INH) Addressing Mode

Instructions which work only with registers inside ALU

ABA ; Add B to A (A) + (B) −> A
18 06

CLRA ; Clear A 0 −> A
87

ASRA ; Arithmetic Shift Right A
47

TSTA ; Test A (A) − 0x00 Set CCR
97

47

97

18

87

17

35

02

4A

C7

A

X

B

06

There is no effective address

The HC12 does not access memory

0x1000 0x2000

10

EE 308 Spring 2006

The Extended (EXT) addressing mode

Extended (EXT) Addressing Mode

Instructions which give the 16−bit address to be accessed

Effective address is specified by the two bytes following op code

FE

01

7B

03

B6

00

17

35

02

4A

C7

A

X

B

LDAA $2000 ; ($2000) −> A
B6 20 00 Effective Address: $2000

Effective Address: $2001
LDX $2001 ; ($2001:$2002) −> X
FE 20 01

7B 20 03
STAB $2003 ; (B) −> $2003

Effective Address: $2003

0x20000x1000

20

20

20

11

EE 308 Spring 2006

The Direct (DIR) addressing mode

Direct (DIR) Addressing Mode
Instructions which give 8 LSB of address (8 MSB all 0)

LDAA $20 ; ($0020) −> A
96 20

STX $21 ; (X) −> $0021:$0022
5E 21

21

20

5E

0x0020 17

35

02

4A

C7

A

X

B96

Effective Address: $0020

Effective Address: $0021

0x1000

8 LSB of effective address is specified by byte following op code

12

EE 308 Spring 2006

The Immediate (IMM) addressing mode

Immediate (IMM) Addressing Mode

8B 0A

Value to be used is part of instruction

LDAA #$17 ; $17 −> A

ADDA #10 ; (A) + $0A −> A

86 17

Effective address is the address following the op code

0A

B6

17

8B

17

35

02

4A

C7

A

X

B

Effective Address: PC + 1

Effective Address: PC + 1

0x1000 0x2000

13

EE 308 Spring 2006

The Indexed (IDX, IDX1, IDX2) addressing mode

X EFF
ADDR

Y ADDR
EFF

Indexed (IDX) Addressing Mode
Effective address is obtained from X or Y register (or SP or PC)

AB 45
ADDA 5,Y ; Use (Y) + 5 as address to get value to add to r

A6 00
LDAA 0,X ; Use (X) as address to get value to put in A

Simple Forms

More Complicated Forms

Effective address: contents of X

Effective address: contents of Y + 5

62 23 Effective address: contents of X + 4

 ; then increment the number at address (X)
 ; Add 4 to X
INC 4,+X ; Pre−increment Indexed

INC 2,X− ; Post−decrement Indexed

 ; then subtract 2 from X
62 3E Effective address: contents of X

 ; Increment the number at address (X),

14

EE 308 Spring 2006

Different types of indexed addressing modes
(Note: We will not discuss indirect indexed mode)

Postincrement

Preincrement

Postdecrement

Predecrement

(X)+nLDAA n,X

LDAA −n,X (X)−n

0 to FFFF

0 to FFFF

Example
Value in X
After Done

(X)

(X)

Registers
To Use

X, Y, SP, PC

X, Y, SP, PC

Offset

LDAA n,X+ (X) (X)+n X, Y, SP

LDAA n,+X (X)+n (X)+n X, Y, SP

LDAA n,X−

1 to 8

1 to 8

1 to 8

1 to 8

X, Y, SP

X, Y, SP(X)−nLDAA n,−X (X)−n

Constant Offset

Constant Offset

ACC Offset LDAA A,X (X)+(A) (X) X, Y, SP, PC

(Does not include indirect modes)
INDEXED ADDRESSING MODES

LDAA B,X
LDAA D,X

(X)+(B)
(X)+(D)

0 to FF
0 to FF
0 to FFFF

(X)−n(X)

Address
Effective

The data books list three different types of indexed modes:

• Table 4.2 of the Core Users Guide shows details

• IDX: One byte used to specify address

– Called the postbyte

– Tells which register to use

– Tells whether to use autoincrement or autodecrement

– Tells offset to use

• IDX1: Two bytes used to specify address

– First byte called the postbyte

– Second byte called the extension

– Postbyte tells which register to use, and sign of offset

– Extension tells size of offset

• IDX2: Three bytes used to specify address

– First byte called the postbyte

– Next two bytes called the extension

– Postbyte tells which register to use

– Extension tells size of offset

15

EE 308 Spring 2006

Core User Guide — S12CPU15UG V1.2

68

All indexed addressing modes use a 16-bit CPU register and additional information to create an indexed
address. In most cases the indexed address is the effective address of the instruction, that is, the address of
the memory location that the instruction acts on. In indexed-indirect addressing, the indexed address is the
location of a value that points to the effective address.

Table 4-2 Summary of Indexed Operations

5-bit constant offset indexed addressing (IDX)
7 6 5 4 3 2 1 0

Postbyte: rr1

NOTES:
1. rr selects X (00), Y (01), SP (10), or PC (11).

0 5-bit signed offset

Effective address = 5-bit signed offset + (X, Y, SP, or PC)

Accumulator offset addressing (IDX)
7 6 5 4 3 2 1 0

Postbyte: 1 1 1 rr1 1 aa2

2. aa selects A (00), B (01), or D (10).

Effective address = (X, Y, SP, or PC) + (A, B, or D)

Autodecrement/autoincrement) indexed addressing (IDX)
7 6 5 4 3 2 1 0

Postbyte: rr1,3

3. In autoincrement/decrement indexed addressing, PC is not a valid selection.

1 p4

4. p selects pre- (0) or post- (1) increment/decrement.

4-bit inc/dec value5

5. Increment values range from 0000 (+1) to 0111 (+8). Decrement values range from 1111 (–1) to 1000 (–8).

Effective address = (X, Y, or SP) ± 1 to 8

9-bit constant offset indexed addressing (IDX1)
7 6 5 4 3 2 1 0

Postbyte: 1 1 1 rr1 0 0 s6

6. s is the sign bit of the offset extension byte.

Effective address = s:(offset extension byte) + (X, Y, SP, or PC)

16-bit constant offset indexed addressing (IDX2)
7 6 5 4 3 2 1 0

Postbyte: 1 1 1 rr1 0 1 0

Effective address = (two offset extension bytes) + (X, Y, SP, or PC)

16-bit constant offset indexed-indirect addressing ([IDX2])
7 6 5 4 3 2 1 0

Postbyte: 1 1 1 rr1 0 1 1

(two offset extension bytes) + (X, Y, SP, or PC) is address of pointer to effective address

Accumulator D offset indexed-indirect addressing ([D,IDX])
7 6 5 4 3 2 1 0

Postbyte: 1 1 1 rr1 1 1 1

(X, Y, SP, or PC) + (D) is address of pointer to effective address

16

EE 308 Spring 2006

The Relative (REL) addressing mode

PC + 2 + FFC7 −> PC20 C7

20 35

PC + 2 − 0039 −> PC

PC + 2 + 0035 −> PCBRA

BRA

18 27 02 1A If Z == 1 then PC + 4 + 021A −> PC

If Z == 0 then PC + 4 −> PC

LBEQ

When writing assembly language program, you don’t have to calculate offset

20

0E

PC

$1020 BRA $1030 ; Branch to instruction at address $1030

You indicate what address you want to go to, and the assembler calculates the offset

0x1020

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch and long branch instructions.

Branch instruction: One byte following op code specifies how far to branch
Treat the offset as a signed number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

Long branch instruction: Two bytes following op code specifies how far to branch

Treat the offset as an usigned number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

17

EE 308 Spring 2006

Summary of HCS12 addressing modes

Extended 0x0935EXT LDAA $2035 B6 20 35

INH Inherent

IMM Immediate

DIR Direct

Name

Indexed

ABA

LDAA $35 0x0035

PC + 1

None

LDAA #$35

Example Op Code
Effective
Address

LDAA 3,X X + 3

ADDRESSING MODES

IDX
IDX1
IDX2

IDX Indexed

IDX Indexed

IDX Indexed

IDX Indexed

Postincrement

Preincrement

LDAA 3,X+ X (X+3 −> X)

LDAA 3,+X X+3 (X+3 −> X)

Postdecrement

Predecrement

LDAA 3,X−

LDAA 3,−X

X (X−3 −> X)

LDAA 30,X
LDAA 300,X A6 E2 01 2C

A6 03
A6 E0 13

96 35

86 35

18 06

A6 32

A6 22

A6 3D

A6 2D

REL Relative BRA $1050 20 23
LBRA $1F00 18 20 0E CF

PC + 2 + Offset
PC + 4 + Offset

X−3 (X−3 −> X)

A few instructions have two effective addresses:

• MOVB $2000,$3000 Move byte from address $2000 to $3000

• MOVW 0,X,0,Y Move word from address pointed to by X to address pointed to by Y

18

