EE 308

Spring 2006

Input and Output Ports

e How do you get data into a computer from the outside?

SIMPLIFIED INPUT PORT

nHEpB3QHN®n

PAarOdcO BoHRMH

D,
Dg
D
H 5
C
1
2 Dy
D
a
t D
a 3
L
i D
a 2
e
S
Dj
Do
Read fram |

00000

AAAAN A

Any read fram address $0000
gets signals fram outside
IDAA $00

Puts data fram outside
into accumuilator A.

Data fram outside looks
like a memory location

ot ? m

TRT

A Tri—-State Buffer acts like a switch

If TRT is actiwve, the switch is closed
OUT will be the same as IN

EE 308 Spring 2006

e How do you get data out of computer to the outside?

SIMPLIFIED OUTPUT PORT
D77D Qo
[Any write to address $01 latches
data into flip-flops, so data
D6 D Q——— goes to external pins
B S
i MOVB #$AA, $01
o 05 b o a
g-; | a puts $AA on the external pins
1
2 Dy D O s
D T When a port is configured as output
? D ° and you read fram that port, the
a 3 Do o data you read is the data which was
u written to that port:
L t
i I s
n D2 b e i MVB #$84, $01
e d IDAA $01
s e
D3 D 9 Accumilator A will have $RA after this
Do D O —
Write to

0x0001

EE 308

Spring 2006

MC9S12DP256B Device User Guide — V02.13

Figure 1-1 MC9S12DP256B Block Diagram

VRH | VRH |<—VRH
| 256K Byte Flash EEPROM | ATDO VRL | ATD1 VRL |le—VRL
VDDA | VDDA |<—VDDA
I 12K Byte RAM I VSSA VSSA |=«—VSSA
ANO |«—PADOO ANO || J«—PADO8
| 4K Byte EEPROM | AN1 |<«—PADO1 AN1 [|<€—PADO09
AN2 <—PAD02 AN2 |« |<—paD10
VDDR—»] AN3] [=<—PADO3 AN3 | = [«—PADI1
VSSR—>| AN4 < [«—PADO4 AN4 |« < |<—PAD12
VREGEN—»| Voltage Regulator AN5 |<—PADO5 AN5 [« [«—PAD13
VDD1,2 <€ ANG l«—PADOG ANG |«-{ |«—PAD14
VSS1,2 = AN7 <«—PADO7 AN7 |« |=—PADI15
Single-wire Background PIXO <> [<>PKO, XADDR14,
BKGD=>1"""pebug Module CPU12 PPAGE PIX1 || [<=PK1 ' XADDRIS5'
PIX2 [X [<>PK2, XADDR16
- « \ \
XFC Clock and PIX3 [« & | E [«=PK3 + XADDR17:
VDDPLL < 8la . ,
vssPLL={ PLL Reset Periodic Interrupt PIX4 <> [<>PK4, XADDR1S,
Generation PIX5 |e>| l«»PK5 . XADDR19:
EXTAL—» Module COP Watchdog ECS |er] <> pK7 ' ECS X
XTAL =] Clock Monitor p—rror—o-r-—--:-:ikokioroon . ——1 T
RESET > Breakpoints 10CO [=>| <> PTO
JE— 10C1 fe>] le> PT1
E’FE?.—» : %Q 10C2 > - le> pT2
PE2<>] le>| RV System Enhanced Capture 10C3 || v »': le> PT3
PE3 w Integration Timer 10C4 [« 2 [a [« PT4
<> LU | v |« LSTRB [a]
=13 Module 10C5 [=> <> PT5
PE4->{n <> ECLK
a (SIM) 10C6 [<> le> PT6
PES5-=>] <> MODA 1007 | i
PE6->] <> MODB
PE7->] <> NOACC/XCLKS sclo RXD |- [<>PS0
TesT—] TXD > le»pPs1
sci RXD | [>ps2
1RPEO49Y FOeNEEY vob-@|ofers
- MISO | > o fe=Ps4 g
Multiplexed Address/Data Bus | MOS! | |0 <= PSS §
TEaedy paaaaaae |70 x| e &
SS [<>Ps7 a
DDRA DDRB 1y)
BDLC RXB =] @
PTA PTB (J1850) TXB }—» o > [<>PMO =
TEIRRARY PRI ENORY [omoRONIS £ [| [hw e
fegzodge HERISIDS S e [= M2 g
FEsfssss GEEEEEEER CAN1 RXCAN <— = nig 4 E"’P'VB E]
93995900 ~owyoyos DCAN > & g e g
TEEEEEEE EEEZESEE [caveoom| 5| = [| [¢
o0na0000Qa 00AQ0AA00Adad TXCAN [—>| & »] l<>PM6 =
LI I RXCAN |<— 3 lenl lespM7 S
O S N = TLLCANS ean | B 3
mapered 33993222 ze23222! Pl | =
+ Wide Bus ' CAN4 s
. §8888888 88888888 TXCAN &
VTt e Tt : KWJ0 | <= PJO 2
‘Multiplexed < S S S S S K& ¢ KWJL fer &2 [= JeemPa1 S
‘NarrowBusgE T g g g 552 C SDA Kkwie [« § o [<>ris @
B - SCL KWJ7 | [<pPJ7
Internal Logic 2.5V 1/0 Driver 5V
VDD1.2 VDDX PWMO |<—3 KWPO f«>{ [>PPO
s - —
VSS12 VaSX PWM1 KWP1 [[>PP1
-1 L PWM2 [<ef—>{ KWP2 [<> le»pp>
- = pwhm PWM3 [<p—>| KWP3 [« ¢ |0 [<>PP3
A/D Converter 5V & PWM4 |}—| KWP4 [« g o |<= PP4
PLL 2.5V Voltage Regulator Reference Syvved Bl I v B | s PP5
VDDPLL <— VDDA —>» PWM6 KWP6 [« [<>PP6
VSSPLL PWM7 KWP7 [« |<>pPP7
-1 VSSA /.
- = MISO KWHO [[<>PHO
MOSI KWH1 [[ePH1
Voltage Regulator 5V & 1/0
\?DDR g_> SPiL SCK [« KWH2 <> - l>PH?2
VSSR SS || KWH3 || v E l>PH3
_-L- MISO |3 KWH4 |« 8 o |e=PH4
Sply MOSI [KWHS [le»PH5
SCK KWHS6 [[>PH6
SS KWH?7] [<>PH7

@ MOTOROLA

EE 308 Spring 2006

Ports on the HC12

e How do you get data out of computer to the outside?

e A Port on the HC12 is device the HC12 uses to control some hardware.

e Many of the HC12 ports are used to communicate with hardware outside
of the HC12.

e The HC12 ports are accessed by the HC12 by reading and writing mem-
ory locations $0000 to $03FF.

e Some of the ports we will use in this course are PORTA, PORTB and
PTH

e PORTA is accessed by reading and writing address $0000.
e PORTB is accessed by reading and writing address $0001.
e PTH is accessed by reading and writing address $0260.

e You can connect signals from the outside by connecting wires to pins 39
to 46 (PORTA), 18 to 25 (PORTB), and to pins 32 to 35 and 49 to 52 (PTH).

— On the MiniDRAGON+ EVB, a seven-segment LED is connected to
PTH.

e When you power up or reset the HC12, PORTA, PORTB and PTH are input
ports.

e You can make any or all bits of PORTA, PORTB and PTH outputs by writing
a 1 to the corresponding bits of their Data Direction Registers.

— The Data Dirction Register for PORTA is located at memory addres
$0002. It is called DDRA. To make all bits of PORTA output, write a
$FF to DDRA. To make the lower four bits of PORTA output and the
upper four bits of PORTA input, write a $OF to DDRA.

— The Data Dirction Register for PORTB is located at memory addres
$0003. It is called DDRB. To make all bits of PORTB output, write a
$FF to DDRB.

— The Data Dirction Register for PTH is located at memory addres
$0262. It is called DDRH. To make all bits of PTH output, write a $FF
to DDRH.

EE 308 Spring 2006

— You can use DBug-12 to easily manipulate the IO ports on the
68HCS12

* To make PTH an output, use MM to change the contents of address
$0262 (DDRH) to an $FF.

*x You can now use MM to change contents of address $0260 (PTH),
which changes the logic levels on the PTH pins.

x If the data direction register makes the port an input, you can
use MD to display the values on the external pins.

EE 308

Spring 2006

Using Port A of the 68HC12

'IbnakeabltofPortAano.ltEtgut rt,
a 1 to the corresponding bi DDRA(addressOxOOOZ).
To make a bit of Port A an input port, write a 0 to

the corresponding bit of DDRA.

On reset, DDRA is set to $00, so Port A is an
J.nputport

DDA7 | DDA6 | DDAS | DDA4 | DDA3 | DDA2 | DDAL | DDAO $0002
0 0 0 0 0 0 0 0

Fore:ar?le to make bits 3-0 of Port A input, and
bits 7-4 output, write a O0xf0 to DDRA.
To send data to the output pins, write to

PORTA (address 0x0000) . When you read fram PORTA
input pins will return the value of the signals on them
(0= 0V, 1 = 5); ocutput pins will return the value
written to them.

PA7 |PA6 (PA5 (PA4 (DP3 |PA2 | PAl | PAD $0000

Port B works the same DDRB is at address 0x0003
and PCRIB is at addressOxOOl

EE 308 Spring 2006

;A simple program to make PORTA output and PORTB input,
;then read the signals on PORTB and write these values
;out to PORTA

prog: equ $1000
PORTA: equ $00
PORTB: equ $01
DDRA: equ $02
DDRB: equ $03
org prog

movb #$ff ,DDRA ; Make PORTA output
movb #$00,DDRB ; Make PORTB input

ldaa PORTB

staa PORTA
swi

e Because DDRA and DDRB are in consecutive address locations, you could
make PORTA and output and PORTB and input in one instruction:

movw #$££00,DDRA ; FF -> DDRA, 00 —-> DDRB

EE 308 Spring 2006

GOOD PROGRAMMING STYLE

1. Make programs easy to read and understand.

e Use comments

e Do not use tricks
2. Make programs easy to modify

e Top-down design
e Structured programming — no spaghetti code

e Self contained subroutines

3. Keep programs short BUT do not sacrifice items 1 and 2 to do so

TIPS FOR WRITING PROGRAMS

1. Think about how data will be stored in memory.
e Draw a picture

2. Think about how to process data
e Draw a flowchart

3. Start with big picture. Break into smaller parts until reduced to indi-
vidual instructions

e Top-down design

4. Use names instead of numbers

EE 308 Spring 2006

Another Example of an Assembly Language Program

e Add the odd numbers in an array of data.
e The numbers are 8-bit unsigned numbers.

e The address of the first number is $E000 and the address of the final
number is $EO01F.

e Save the result in a variable called answer at address $2000.

Start by drawing a picture of the data structure in memory:

SUM DD NUMBERS IN ARRAY FROM OxEOOO TO OxEOLE
Treat nurbers as 8-bit unsigned mmbers

0xE000

RV | U

OxEOQ1F

EE 308 Spring 2006

Start with the big picture

SM CDD 8—-BIT NUMEBERS IN ARRAY FRCM OxEOOO TO OxEQ1f

0xE000

Hlovoo|kr| Ul

OxEOIF

10

EE 308 Spring 2006

Add details to blocks

SUM CDD 8—-BIT NUMBERS IN ARRAY FRCM OxEOO0 TO OxEOLlf

0xE000

||
T
- .
-/
Hiovoo Rk ioln

R 1
Y Y
e | [o |

OxEO1F

11

EE 308 Spring 2006

Decide on how to use CPU registers for processing data

SUM CDD 8—BIT NUMEBERS IN ARRAY FRCOM UxEQ000 TO OxEOLL

EINE | oww
Co a
NI “

Y Y

m;j:r e

Pointer: X or Y —— use X

Sum: 16-bit register
DorY

No way to add 8-bit nmurber to D
Can use ABY to add 8-bit mmber to Y

12

EE 308 Spring 2006

Add more details: Expand another block

SM DD 8—-BIT NUMEERS IN ARRAY FRCM OxEO00 TO OxEOLL

Process _ 4
F >[5 oamo
% % loop: 1
ot 8
. Addr —> 6
Init Pointer N“J 1
Process
Entries 0 => Sam Y
Save No
Add Num
+ to Sum
oy e
Inc
POT OxEO1F
Yes More
to do?
No

13

EE 308 Spring 2006

More details: How to tell if number is odd, how to tell when done

SM ODD 8—-BIT NOMBERS IN ARRAY FROM OxEOOO TO OxEQLE

. Process X —> 4 OxE000
s :
1
loop: 8
. Addr —> Get 6
Init Pointer Num 11
Process
Entries 0 —> Sum Yes
Save No
Add Num
to Sum
B ke
Inc
Pointer OxEO1F
How to test if even?
ISB = 0 — check LSB of memory
ERCIR 0,X, $01, even Yes ~ More
to do?
How to check if more to do? No

If X < 0xE020, more to do.

QPX #SE020

BIO or BLIT locp °?

Address in unsigned, use unsigned campare
BIO loop

14

EE 308 Spring 2006

Convert blocks to assembly code

SM CDD 8—BIT NUMEERS IN ARRAY FROM OxEOOO TO OxEOLL

e N
START Init Process
- -~ Entries
+ % loop:
Init Addr —> |y warRay Get
+ Pml;"-er Num IDAB 0,X
Process
Entries 0 —> Sun| IDY #0
Yes
+ % BRCIR 0,X,$01, even
Save
owe | "
How to test if even? INX

ISB = 0 — check LSB of memory

ERCIR 0,X,$01, even

QPX #ARRAY END

BIO loop
How to check if more to do?
If X < 0xE020, more to do.

BIO loop

0xEOO0 ARRAY

OO0 R U

11

OxEOIF ARRAY END

15

EE 308

Spring 2006

Write program

;Program to sum odd numbers in a memory array

prog: equ
data: equ

array: equ
len: equ

org

ldx
ldy
ldab
brclr
aby
skip: inx
cpx
blo
sty
swi

loop:

org

answer: ds.w

$1000
$2000

$E000
$20

prog

#array

#0

0,x
0,x,$01,skip

#(array+len)
loop
answer

data

initialize pointer
initialize sum to O

; get number

skip if even

; odd - add to sum
; point to next entry
; more to process?

if so, process

; done —-- save answer

; reserve 16-bit word for answer

e Important: Comment program so it is easy to understand.

16

EE 308

Spring 2006

The assembler output for the above program

e Note that the assembler output shows the op codes which the assembler generates for

the HC12.

e For example, the op code for brclr 0,x%,$01,skip is 0f 00 01 02

1000
2000
e000
0020
1000
1000
1003
1006
1008
100c
100e
100f
1012
1014
1017

2000
2000

And here is the .s19 file:

ce
cd
eb
of
19
08
8e
25
7d
3f

e0
00
00
00
ed

el
2
20

00
00

01 02

20

00

prog:
data:
array:
len:

loop:

skip:

answer:

equ
equ
equ
equ
org
1dx
ldy
1dab
brclr
aby
inx
cpx
blo
sty
swi

org
ds.w

$1000
$2000
$E000
$20
prog
#array
#0

0,x

#(array+len)
loop
answer

data

S5012000046696C653A20746573742E61736D0ADA
S1131000CEEO0OCDOO0OOE6000F00010219EDOSSECD

S10B1010E02025F27D20003FE1

S9030000FC

17

; initialize pointer
; initialize sum to O
; get number
0,x,$01,skip ;
; odd - add to sum

; point to next entry
; more to process?

; if so, process

; done -- save answer

skip if even

; reserve 16-bit word for answer

