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Input and Output Ports

• How do you get data into a computer from the outside?

If TRI is active, the switch is closed
OUT will be the same as IN
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A Tri−State Buffer acts like a switch
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• How do you get data out of computer to the outside?
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0x0001

Any write to address $01 latches
data into flip−flops, so data
goes to external pins

When a port is configured as output
and you read from that port, the
data you read is the data which was

LDAA  $01
MOVB #$AA,$01

Accumulator A will have $AA after this

written to that port:

MOVB #$AA,$01

puts $AA on the external pins
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Figure 1-1  MC9S12DP256B Block Diagram
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Ports on the HC12

• How do you get data out of computer to the outside?

• A Port on the HC12 is device the HC12 uses to control some hardware.

• Many of the HC12 ports are used to communicate with hardware outside
of the HC12.

• The HC12 ports are accessed by the HC12 by reading and writing mem-
ory locations $0000 to $03FF.

• Some of the ports we will use in this course are PORTA, PORTB and
PTH

• PORTA is accessed by reading and writing address $0000.

• PORTB is accessed by reading and writing address $0001.

• PTH is accessed by reading and writing address $0260.

• You can connect signals from the outside by connecting wires to pins 39
to 46 (PORTA), 18 to 25 (PORTB), and to pins 32 to 35 and 49 to 52 (PTH).

– On the MiniDRAGON+ EVB, a seven-segment LED is connected to
PTH.

• When you power up or reset the HC12, PORTA, PORTB and PTH are input
ports.

• You can make any or all bits of PORTA, PORTB and PTH outputs by writing
a 1 to the corresponding bits of their Data Direction Registers.

– The Data Dirction Register for PORTA is located at memory addres
$0002. It is called DDRA. To make all bits of PORTA output, write a
$FF to DDRA. To make the lower four bits of PORTA output and the
upper four bits of PORTA input, write a $0F to DDRA.

– The Data Dirction Register for PORTB is located at memory addres
$0003. It is called DDRB. To make all bits of PORTB output, write a
$FF to DDRB.

– The Data Dirction Register for PTH is located at memory addres
$0262. It is called DDRH. To make all bits of PTH output, write a $FF

to DDRH.
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– You can use DBug-12 to easily manipulate the IO ports on the
68HCS12

∗ To make PTH an output, use MM to change the contents of address
$0262 (DDRH) to an $FF.

∗ You can now use MM to change contents of address $0260 (PTH),
which changes the logic levels on the PTH pins.

∗ If the data direction register makes the port an input, you can
use MD to display the values on the external pins.
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Port B works the same, except DDRB is at address 0x0003
and PORTB is at address 0x0001.

DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0

0 0 0 0 0 0 0 0RESET

$0002

Using Port A of the 68HC12

To make a bit of Port A an output port, write

the corresponding bit of DDRA.

On reset, DDRA is set to $00, so Port A is an
input port.

For example, to make bits 3−0 of Port A input, and
bits 7−4 output, write a 0xf0 to DDRA.
To send data to the output pins, write to
PORTA (address 0x0000).  When you read from PORTA
input pins will return the value of the signals on them
(0 => 0V, 1 => 5V); output pins will return the value
written to them.

RESET

PA6 PA5 PA4 DP3 PA2 PA1 PA0PA7 $0000

To make a bit of Port A an input port, write a 0 to 
a 1 to the corresponding bit of DDRA (address 0x0002).
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;A simple program to make PORTA output and PORTB input,

;then read the signals on PORTB and write these values

;out to PORTA

prog: equ $1000

PORTA: equ $00

PORTB: equ $01

DDRA: equ $02

DDRB: equ $03

org prog

movb #$ff,DDRA ; Make PORTA output

movb #$00,DDRB ; Make PORTB input

ldaa PORTB

staa PORTA

swi

• Because DDRA and DDRB are in consecutive address locations, you could
make PORTA and output and PORTB and input in one instruction:

movw #$ff00,DDRA ; FF -> DDRA, 00 -> DDRB
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GOOD PROGRAMMING STYLE

1. Make programs easy to read and understand.

• Use comments

• Do not use tricks

2. Make programs easy to modify

• Top-down design

• Structured programming – no spaghetti code

• Self contained subroutines

3. Keep programs short BUT do not sacrifice items 1 and 2 to do so

TIPS FOR WRITING PROGRAMS

1. Think about how data will be stored in memory.

• Draw a picture

2. Think about how to process data

• Draw a flowchart

3. Start with big picture. Break into smaller parts until reduced to indi-
vidual instructions

• Top-down design

4. Use names instead of numbers
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Another Example of an Assembly Language Program

• Add the odd numbers in an array of data.

• The numbers are 8-bit unsigned numbers.

• The address of the first number is $E000 and the address of the final
number is $E01F.

• Save the result in a variable called answer at address $2000.

Start by drawing a picture of the data structure in memory:

0xE000

0xE01F

 5
 1
 8
 6
11

 4

SUM ODD NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

Treat numbers as 8−bit unsigned numbers
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Start with the big picture

0xE000

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE01F

START

Process
Entries

Init

Save
Answer

Done

5
1
8
6

11

4
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Add details to blocks

Init

Done

0 −> Sum

Addr −>
Pointer

0xE000

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE01F

4
5
1
8
6

11

START

Process
Entries

Init

Done

Save
Answer
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Decide on how to use CPU registers for processing data

Init

Done

0 −> Sum

Addr −>
Pointer

0xE000

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE01F

4
5
1
8
6

11

Pointer:  X or Y −− use X

Sum:  16−bit register
      D or Y

      No way to add 8−bit number to D
      Can use ABY to add 8−bit number to Y

START

Process
Entries

Init

Done

Save
Answer
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Add more details: Expand another block

Init

Done

0 −> Sum

Addr −>
Pointer

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE000X −>

0xE01F

4
5

11

8
1

6

Process
Entries

Init

Get
Num

Even?

Inc
Pointer

Add Num
to Sum

More
to do?

No

No

Yes

Yes

even:

loop:

START

Process
Entries

Init

Done

Save
Answer
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More details: How to tell if number is odd, how to tell when done

START

Process
Entries

Init

Init

Done

0 −> Sum

Addr −>
Pointer

Done

Save
Answer

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE000X −>

0xE01F
How to test if even?
LSB = 0 − check LSB of memory

How to check if more to do?

BRCLR 0,X,$01,even

If X < 0xE020, more to do.

 4
 5
 1
 8
 6
11

CMPX  #$E020
BL0 or BLT   loop   ?

Process
Entries

Init

Get
Num

Even?

Inc
Pointer

Add Num
to Sum

More
to do?

No

No

Yes

Yes

loop:

even:

Address in unsigned, use unsigned compare
BLO loop

14



EE 308 Spring 2006

Convert blocks to assembly code

Init

Done

0 −> Sum

Addr −>
Pointer

LDY #0

LDAB  0,X

ABY

INX

START

Process
Entries

Init

Init

Done

0 −> Sum

Addr −>
Pointer

Done

Save
Answer

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

How to test if even?
LSB = 0 − check LSB of memory

How to check if more to do?
If X < 0xE020, more to do.

BLO    loop

BRCLR 0,X,$01,even

BRCLR 0,X,$01,even

Process
Entries

Init

Even?

Inc
Pointer

Add Num
to Sum

More
to do?

No

Num
Get

Yes

even:

loop:

Yes

No

BLO   loop   

X −>  4
 5
 1
 8
 6
11

LDX #ARRAY

CMPX   #ARRAY_END

0xE000   ARRAY

0xE01F   ARRAY_END
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Write program

;Program to sum odd numbers in a memory array

prog: equ $1000

data: equ $2000

array: equ $E000

len: equ $20

org prog

ldx #array ; initialize pointer

ldy #0 ; initialize sum to 0

loop: ldab 0,x ; get number

brclr 0,x,$01,skip ; skip if even

aby ; odd - add to sum

skip: inx ; point to next entry

cpx #(array+len) ; more to process?

blo loop ; if so, process

sty answer ; done -- save answer

swi

org data

answer: ds.w 1 ; reserve 16-bit word for answer

• Important: Comment program so it is easy to understand.
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The assembler output for the above program

• Note that the assembler output shows the op codes which the assembler generates for
the HC12.

• For example, the op code for brclr 0,x,$01,skip is 0f 00 01 02

1000 prog: equ $1000

2000 data: equ $2000

e000 array: equ $E000

0020 len: equ $20

1000 org prog

1000 ce e0 00 ldx #array ; initialize pointer

1003 cd 00 00 ldy #0 ; initialize sum to 0

1006 e6 00 loop: ldab 0,x ; get number

1008 0f 00 01 02 brclr 0,x,$01,skip ; skip if even

100c 19 ed aby ; odd - add to sum

100e 08 skip: inx ; point to next entry

100f 8e e0 20 cpx #(array+len) ; more to process?

1012 25 f2 blo loop ; if so, process

1014 7d 20 00 sty answer ; done -- save answer

1017 3f swi

2000 org data

2000 answer: ds.w 1 ; reserve 16-bit word for answer

And here is the .s19 file:

S012000046696C653A20746573742E61736D0ADA

S1131000CEE000CD0000E6000F00010219ED088ECD

S10B1010E02025F27D20003FE1

S9030000FC
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