
EE 308 Spring 2006

Input and Output Ports

• How do you get data into a computer from the outside?

If TRI is active, the switch is closed
OUT will be the same as IN

OUT IN

OUT IN

D

D

DD

D

D

D

0

3

4

5

6

1

2

0x0000

7

Read from

S
i
g
n
a
l
s

F
r
o
m

O
u
t
s
i
d
e

LDAA  $00

Puts data from outside
into accumulator A.

Data from outside looks
like a memory location

gets signals from outside
Any read from address $0000

A Tri−State Buffer acts like a switch

OUT IN

TRI

If TRI is not active, the switch is open
OUT will not be driven by IN
Some other device can drive OUT

D

D

H
C
1
2

D
a
t
a

L
i
n
e
s

SIMPLIFIED INPUT PORT

1



EE 308 Spring 2006

• How do you get data out of computer to the outside?

D

D

DD

D

D

D

D

D 0

3

4

5

6

7

1

2

Write to

S
i
g
n
a
l
s

T
o

O
u
t
s
i
d
e

0x0001

Any write to address $01 latches
data into flip−flops, so data
goes to external pins

When a port is configured as output
and you read from that port, the
data you read is the data which was

LDAA  $01
MOVB #$AA,$01

Accumulator A will have $AA after this

written to that port:

MOVB #$AA,$01

puts $AA on the external pins
H
C
1
2

D
a
t
a

L
i
n
e
s

D  Q

D  Q

D Q

D  Q

D  Q

D  Q

D  Q

D  Q

SIMPLIFIED OUTPUT PORT

2



EE 308 Spring 2006

MC9S12DP256B Device User Guide —  V02.13

21

Figure 1-1  MC9S12DP256B Block Diagram

256K Byte Flash EEPROM

12K Byte RAM

Enhanced Capture

RESET

EXTAL
XTAL

VDD1,2
VSS1,2

SCI0

4K Byte EEPROM

BKGD

R/W

MODB

XIRQ

NOACC/XCLKS

System
Integration

Module
(SIM)

VDDR

CPU12

Periodic Interrupt
COP Watchdog
Clock Monitor

Single-wire Background

Breakpoints

PLLVSSPLL

XFC
VDDPLL

Multiplexed Address/Data Bus

VDDA
VSSA

VRH
VRLATD0

Multiplexed
Wide Bus

Multiplexed

VDDX
VSSX

Internal Logic 2.5V

Narrow Bus

PPAGE

VDDPLL
VSSPLL

PLL 2.5V

IRQ

LSTRB
ECLK
MODA

PA
4

PA
3

PA
2

PA
1

PA
0

PA
7

PA
6

PA
5

TEST

A
D

D
R

12
A

D
D

R
11

A
D

D
R

10
A

D
D

R
9

A
D

D
R

8

A
D

D
R

15
A

D
D

R
14

A
D

D
R

13
D

AT
A

12
D

AT
A

11
D

AT
A

10
D

AT
A

9
D

AT
A

8

D
AT

A
15

D
AT

A
14

D
AT

A
13

P
B

4
P

B
3

P
B

2
P

B
1

P
B

0

P
B

7
P

B
6

P
B

5
A

D
D

R
4

A
D

D
R

3
A

D
D

R
2

A
D

D
R

1
A

D
D

R
0

A
D

D
R

7
A

D
D

R
6

A
D

D
R

5
D

AT
A

4
D

AT
A

3
D

AT
A

2
D

AT
A

1
D

AT
A

0

D
AT

A
7

D
AT

A
6

D
AT

A
5

D
AT

A
4

D
AT

A
3

D
AT

A
2

D
AT

A
1

D
AT

A
0

D
AT

A
7

D
AT

A
6

D
AT

A
5

PE3
PE4
PE5
PE6
PE7

PE0
PE1
PE2

AN2

AN6

AN0

AN7

AN1

AN3
AN4
AN5

PAD03
PAD04
PAD05
PAD06
PAD07

PAD00
PAD01
PAD02

IOC2

IOC6

IOC0

IOC7

IOC1

IOC3
IOC4
IOC5

PT3
PT4
PT5
PT6
PT7

PT0
PT1
PT2

VRH
VRL

VDDA
VSSA

VRH
VRLATD1

AN2

AN6

AN0

AN7

AN1

AN3
AN4
AN5

PAD11
PAD12
PAD13
PAD14
PAD15

PAD08
PAD09
PAD10

VDDA
VSSA

RXD
TXD

MISO
MOSI

PS3
PS4
PS5

PS0
PS1
PS2SCI1

RXD
TXD

PP3
PP4
PP5
PP6
PP7

PP0
PP1
PP2

PIX2

PIX0
PIX1

PIX3

ECS

PK3

PK7

PK0
PK1

XADDR17

ECS

XADDR14
XADDR15
XADDR16

SCK
SS

PS6
PS7

SPI0

IIC
SDA
SCL

PJ6
PJ7

CAN0
RXCAN
TXCAN

PM1
PM0

CAN1
RXCAN
TXCAN

PM2
PM3

CAN2
RXCAN
TXCAN

PM4
PM5

CAN3
RXCAN
TXCAN

PM6
PM7

KWH2

KWH6

KWH0

KWH7

KWH1

KWH3
KWH4
KWH5

PH3
PH4
PH5
PH6
PH7

PH0
PH1
PH2

KWJ0
KWJ1

PJ0
PJ1

I/O Driver 5V

VDDA
VSSA

A/D Converter 5V &

DDRA DDRB

PTA PTB

D
D

R
E

P
T

E

A
D

1

A
D

0

P
T

K

D
D

R
K

P
T

T

D
D

R
T

P
T

P

D
D

R
P

P
T

S

D
D

R
S

P
T

M

D
D

R
M

P
T

H

D
D

R
H

P
T

J

D
D

R
J

PK2

BDLC RXB
TXB

Clock and
Reset
Generation
Module

Voltage Regulator
VSSR

Debug Module

VDD1,2
VSS1,2

VREGEN

VDDR
VSSR

Voltage Regulator 5V & I/O

CAN4
RXCAN
TXCAN

MISO
MOSI
SCK

SS

SPI2

MISO
MOSI
SCK

SS

SPI1

PIX4
PIX5

PK4
PK5

XADDR18
XADDR19

Voltage Regulator Reference

KWP2

KWP6

KWP0

KWP7

KWP1

KWP3
KWP4
KWP5

KWJ6
KWJ7

Timer

(J1850)

Si
gn

al
s 

sh
ow

n 
in

Bo
ld

 a
re

 n
ot

 a
va

ila
bl

e 
on

 th
e 

80
 P

in
 P

ac
ka

ge

M
od

ul
e 

to
 P

or
t R

ou
tin

g

PWM2

PWM6

PWM0

PWM7

PWM1

PWM3
PWM4
PWM5

PWM

3



EE 308 Spring 2006

Ports on the HC12

• How do you get data out of computer to the outside?

• A Port on the HC12 is device the HC12 uses to control some hardware.

• Many of the HC12 ports are used to communicate with hardware outside
of the HC12.

• The HC12 ports are accessed by the HC12 by reading and writing mem-
ory locations $0000 to $03FF.

• Some of the ports we will use in this course are PORTA, PORTB and
PTH

• PORTA is accessed by reading and writing address $0000.

• PORTB is accessed by reading and writing address $0001.

• PTH is accessed by reading and writing address $0260.

• You can connect signals from the outside by connecting wires to pins 39
to 46 (PORTA), 18 to 25 (PORTB), and to pins 32 to 35 and 49 to 52 (PTH).

– On the MiniDRAGON+ EVB, a seven-segment LED is connected to
PTH.

• When you power up or reset the HC12, PORTA, PORTB and PTH are input
ports.

• You can make any or all bits of PORTA, PORTB and PTH outputs by writing
a 1 to the corresponding bits of their Data Direction Registers.

– The Data Dirction Register for PORTA is located at memory addres
$0002. It is called DDRA. To make all bits of PORTA output, write a
$FF to DDRA. To make the lower four bits of PORTA output and the
upper four bits of PORTA input, write a $0F to DDRA.

– The Data Dirction Register for PORTB is located at memory addres
$0003. It is called DDRB. To make all bits of PORTB output, write a
$FF to DDRB.

– The Data Dirction Register for PTH is located at memory addres
$0262. It is called DDRH. To make all bits of PTH output, write a $FF

to DDRH.

4



EE 308 Spring 2006

– You can use DBug-12 to easily manipulate the IO ports on the
68HCS12

∗ To make PTH an output, use MM to change the contents of address
$0262 (DDRH) to an $FF.

∗ You can now use MM to change contents of address $0260 (PTH),
which changes the logic levels on the PTH pins.

∗ If the data direction register makes the port an input, you can
use MD to display the values on the external pins.

5



EE 308 Spring 2006

Port B works the same, except DDRB is at address 0x0003
and PORTB is at address 0x0001.

DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0

0 0 0 0 0 0 0 0RESET

$0002

Using Port A of the 68HC12

To make a bit of Port A an output port, write

the corresponding bit of DDRA.

On reset, DDRA is set to $00, so Port A is an
input port.

For example, to make bits 3−0 of Port A input, and
bits 7−4 output, write a 0xf0 to DDRA.
To send data to the output pins, write to
PORTA (address 0x0000).  When you read from PORTA
input pins will return the value of the signals on them
(0 => 0V, 1 => 5V); output pins will return the value
written to them.

RESET

PA6 PA5 PA4 DP3 PA2 PA1 PA0PA7 $0000

To make a bit of Port A an input port, write a 0 to 
a 1 to the corresponding bit of DDRA (address 0x0002).

6



EE 308 Spring 2006

;A simple program to make PORTA output and PORTB input,

;then read the signals on PORTB and write these values

;out to PORTA

prog: equ $1000

PORTA: equ $00

PORTB: equ $01

DDRA: equ $02

DDRB: equ $03

org prog

movb #$ff,DDRA ; Make PORTA output

movb #$00,DDRB ; Make PORTB input

ldaa PORTB

staa PORTA

swi

• Because DDRA and DDRB are in consecutive address locations, you could
make PORTA and output and PORTB and input in one instruction:

movw #$ff00,DDRA ; FF -> DDRA, 00 -> DDRB

7



EE 308 Spring 2006

GOOD PROGRAMMING STYLE

1. Make programs easy to read and understand.

• Use comments

• Do not use tricks

2. Make programs easy to modify

• Top-down design

• Structured programming – no spaghetti code

• Self contained subroutines

3. Keep programs short BUT do not sacrifice items 1 and 2 to do so

TIPS FOR WRITING PROGRAMS

1. Think about how data will be stored in memory.

• Draw a picture

2. Think about how to process data

• Draw a flowchart

3. Start with big picture. Break into smaller parts until reduced to indi-
vidual instructions

• Top-down design

4. Use names instead of numbers

8



EE 308 Spring 2006

Another Example of an Assembly Language Program

• Add the odd numbers in an array of data.

• The numbers are 8-bit unsigned numbers.

• The address of the first number is $E000 and the address of the final
number is $E01F.

• Save the result in a variable called answer at address $2000.

Start by drawing a picture of the data structure in memory:

0xE000

0xE01F

 5
 1
 8
 6
11

 4

SUM ODD NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

Treat numbers as 8−bit unsigned numbers

9



EE 308 Spring 2006

Start with the big picture

0xE000

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE01F

START

Process
Entries

Init

Save
Answer

Done

5
1
8
6

11

4

10



EE 308 Spring 2006

Add details to blocks

Init

Done

0 −> Sum

Addr −>
Pointer

0xE000

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE01F

4
5
1
8
6

11

START

Process
Entries

Init

Done

Save
Answer

11



EE 308 Spring 2006

Decide on how to use CPU registers for processing data

Init

Done

0 −> Sum

Addr −>
Pointer

0xE000

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE01F

4
5
1
8
6

11

Pointer:  X or Y −− use X

Sum:  16−bit register
      D or Y

      No way to add 8−bit number to D
      Can use ABY to add 8−bit number to Y

START

Process
Entries

Init

Done

Save
Answer

12



EE 308 Spring 2006

Add more details: Expand another block

Init

Done

0 −> Sum

Addr −>
Pointer

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE000X −>

0xE01F

4
5

11

8
1

6

Process
Entries

Init

Get
Num

Even?

Inc
Pointer

Add Num
to Sum

More
to do?

No

No

Yes

Yes

even:

loop:

START

Process
Entries

Init

Done

Save
Answer

13



EE 308 Spring 2006

More details: How to tell if number is odd, how to tell when done

START

Process
Entries

Init

Init

Done

0 −> Sum

Addr −>
Pointer

Done

Save
Answer

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE000X −>

0xE01F
How to test if even?
LSB = 0 − check LSB of memory

How to check if more to do?

BRCLR 0,X,$01,even

If X < 0xE020, more to do.

 4
 5
 1
 8
 6
11

CMPX  #$E020
BL0 or BLT   loop   ?

Process
Entries

Init

Get
Num

Even?

Inc
Pointer

Add Num
to Sum

More
to do?

No

No

Yes

Yes

loop:

even:

Address in unsigned, use unsigned compare
BLO loop

14



EE 308 Spring 2006

Convert blocks to assembly code

Init

Done

0 −> Sum

Addr −>
Pointer

LDY #0

LDAB  0,X

ABY

INX

START

Process
Entries

Init

Init

Done

0 −> Sum

Addr −>
Pointer

Done

Save
Answer

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

How to test if even?
LSB = 0 − check LSB of memory

How to check if more to do?
If X < 0xE020, more to do.

BLO    loop

BRCLR 0,X,$01,even

BRCLR 0,X,$01,even

Process
Entries

Init

Even?

Inc
Pointer

Add Num
to Sum

More
to do?

No

Num
Get

Yes

even:

loop:

Yes

No

BLO   loop   

X −>  4
 5
 1
 8
 6
11

LDX #ARRAY

CMPX   #ARRAY_END

0xE000   ARRAY

0xE01F   ARRAY_END

15



EE 308 Spring 2006

Write program

;Program to sum odd numbers in a memory array

prog: equ $1000

data: equ $2000

array: equ $E000

len: equ $20

org prog

ldx #array ; initialize pointer

ldy #0 ; initialize sum to 0

loop: ldab 0,x ; get number

brclr 0,x,$01,skip ; skip if even

aby ; odd - add to sum

skip: inx ; point to next entry

cpx #(array+len) ; more to process?

blo loop ; if so, process

sty answer ; done -- save answer

swi

org data

answer: ds.w 1 ; reserve 16-bit word for answer

• Important: Comment program so it is easy to understand.

16



EE 308 Spring 2006

The assembler output for the above program

• Note that the assembler output shows the op codes which the assembler generates for
the HC12.

• For example, the op code for brclr 0,x,$01,skip is 0f 00 01 02

1000 prog: equ $1000

2000 data: equ $2000

e000 array: equ $E000

0020 len: equ $20

1000 org prog

1000 ce e0 00 ldx #array ; initialize pointer

1003 cd 00 00 ldy #0 ; initialize sum to 0

1006 e6 00 loop: ldab 0,x ; get number

1008 0f 00 01 02 brclr 0,x,$01,skip ; skip if even

100c 19 ed aby ; odd - add to sum

100e 08 skip: inx ; point to next entry

100f 8e e0 20 cpx #(array+len) ; more to process?

1012 25 f2 blo loop ; if so, process

1014 7d 20 00 sty answer ; done -- save answer

1017 3f swi

2000 org data

2000 answer: ds.w 1 ; reserve 16-bit word for answer

And here is the .s19 file:

S012000046696C653A20746573742E61736D0ADA

S1131000CEE000CD0000E6000F00010219ED088ECD

S10B1010E02025F27D20003FE1

S9030000FC

17


