
EE 308 Spring 2006

THE STACK AND THE STACK POINTER

• Sometimes it is useful to have a region of memory for temporary storage,
which does not have to be allocated as named variables.

• When we use subroutines and interrupts it will be essential to have such
a storage region.

• Such a region is called a Stack.

• The Stack Pointer (SP) register is used to indicate the location of the
last item put onto the stack.

• When you put something onto the stack (push onto the stack), the SP is
decremented before the item is placed on the stack.

• When you take something off of the stack (pull from the stack), the SP

is incremented after the item is pulled from the stack.

• Before you can use a stack you have to initialize the Stack Pointer to
point to one value higher than the highest memory location in the stack.

• For the HC12 use a block of memory from about $3B00 to $3BFF for the
stack.

• For this region of memory, initialize the stack pointer to $3C00.

• Use the LDS (Load Stack Pointer) instruction to initialize the stack
point.

• The LDS instruction is usually the first instruction of a program which
uses the stack.

• The stack pointer is initialized only one time in the program.

• For microcontrollers such as the HC12, it is up to the programmer to
know how much stack his/her program will need, and to make sure
enough space is allocated for the stack. If not enough space is allo-
cated the stack can overwrite data and/or code, which will cause the
program to malfunction or crash.

1

EE 308 Spring 2006

The stack is an array of memory dedicated to temporary storage

SP

D

X

Y

PC

A B

CCR

SP decreases when you put item on stack

SP increases when you pull item from stack

 placed in block

 LDS #STACK

SP points to location last item

STACK: EQU $3C00

0x3B03

0x3B02

0x3B01

0x3BFF

0x3B00

0x3AFE

0x3AFD

0x3AFC

0x3AFB

0x3AFA

0x3AF9

0x3AF8

0x3AF7

0x3AF6

0x3AF5

For HC12 EVBU, use 0x3C00 as initial SP:

2

EE 308 Spring 2006

An example of some code which uses the stack

Stack Pointer:

 Initialize ONCE before first use

 Decreases when you put something on stack

 Increases when you take something off stack

(LDS #STACK)

X

SP

A

 lds #STACK

 pshx
 psha

 clra

 CODE THAT USES A & X

 pulx
 pula

CODE: section .text

 ldaa #$2e
 ldx #$1254

 ldx #$ffff

 Points to last used storage location

0x3C00

0x3BFF

0x3BFE

0x3BFD

0x3BFC

0x3BFB

0x3BFA

0x3BF9

0x3BF8

0x3BF7

0x3BF6

0x3BF5

STACK: equ $3C00

 org 0x1000

3

EE 308 Spring 2006

Core User Guide — S12CPU15UG V1.2

439

Operation (SP) – $0001 ⇒ SP
(A) ⇒ MSP

Decrements SP by one and loads the value in A into the address to which SP points.

Push instructions are commonly used to save the contents of one or more CPU registers at
the start of a subroutine. Complementary pull instructions can be used to restore the saved
CPU registers just before returning from the subroutine.

CCR
Effects

Code and
CPU
Cycles

PSHA Push A onto Stack PSHA

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PSHA INH 36 Os

4

EE 308 Spring 2006

Subroutines

• A subroutine is a section of code which performs a specific task, usually
a task which needs to be executed by different parts of a program.

• Example:

– Math functions, such as square root

• Because a subroutine can be called from different places in a program,
you cannot get out of a subroutine with an instruction such as

jmp label

because you would need to jump to different places depending upon
which section of code called the subroutine.

• When you want to call the subroutine your code has to save the address
where the subroutine should return to. It does this by saving the return
address on the stack.

– This is done automatically for you when you get to the subroutine by
using the JSR (Jump to Subroutine) or BSR (Branch to Subroutine)
instruction. This instruction pushes the address of the instruction
following the JSR (BSR) instruction on the stack.

• After the subroutine is done executing its code it needs to return to the
address saved on the stack.

– This is done automatically for you when you return from the sub-
routine by using the RTS (Return from Subroutine) instruction. This
instruction pulls the return address off of the stack and loads it into
the program counter, so the program resumes execution of the pro-
gram with the instruction following that which called the subroutine.

The subroutine will probably need to use some HC12 registers to do its
work. However, the calling code may be using its registers for some rea-
son — the calling code may not work correctly if the subroutine changes
the values of the HC12 registers.

5

EE 308 Spring 2006

– To avoid this problem, the subroutine should save the HC12 registers
before it uses them, and restore the HC12 registers after it is done
with them.

6

EE 308 Spring 2006

Core User Guide — S12CPU15UG V1.2

333

Operation (SP) – $0002 ⇒ SP
RTNH:RTNL ⇒ MSP:MSP + 1
(PC) + $0002 + rel ⇒ PC

Sets up conditions to return to normal program flow, then transfers control to a subroutine.
Uses the address of the instruction after the BSR as a return address.

Decrements the SP by two, to allow the two bytes of the return address to be stacked.

Stacks the return address (the SP points to the high byte of the return address).

Branches to a location determined by the branch offset.

Subroutines are normally terminated with an RTS instruction, which restores the return
address from the stack.

CCR
Effects

Code and
CPU
Cycles

BSR Branch to Subroutine BSR

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BSR rel8 REL 07 rr SPPP

7

EE 308 Spring 2006

Core User Guide — S12CPU15UG V1.2

463

Operation (MSP):(MSP + 1) ⇒ PCH:PCL
(SP) + $0002 ⇒ SP

Restores the value of PC from the stack and increments SP by two. Program execution
continues at the address restored from the stack.

CCR
Effects

Code and
CPU
Cycles

RTS Return from Subroutine RTS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

RTS INH 3D UfPPP

Example of a subroutine to delay for a certain amount of time

; Subroutine to wait for 100 ms

8

EE 308 Spring 2006

delay: ldaa #250

loop2: ldx #800

loop1: dex

bne loop1

deca

bne loop2

rts

• Problem: The subroutine changes the values of registers A and X

• To solve, save the values of A and X on the stack before using them, and
restore them before returning.

; Subroutine to wait for 100 ms

delay: psha ; Save regs used by sub on stack

pshx

ldaa #250

loop2: ldx #800

loop1: dex

bne loop1

deca

bne loop2

pulx ; Restore regs in opposite

pula ; order

rts

9

EE 308 Spring 2006

; Program to make a binary counter on LEDs

;

; The program uses a subroutine to insert a delay

; between counts

prog: equ $1000

STACK: equ $3C00 ;Stack ends of $3BFF

PORTA: equ $0000

PORTB: equ $0001

DDRA: equ $0002

DDRB: equ $0003

org prog

lds #STACK ; initialize stack pointer

ldaa #$ff ; put all ones into DDRA

staa DDRA ; to make PORTA output

clr PORTA ; put $00 into PORTA

loop: jsr delay ; wait a bit

inc PORTA ; add one to PORTA

bra loop ; repeat forever

; Subroutine to wait for 100 ms

delay: psha

pshx

ldaa #250

loop2: ldx #800

loop1: dex

bne loop1

deca

bne loop2

pulx

pula

rts

10

EE 308 Spring 2006

 RTS

MY_SUB: LDX #$1234

 SWI

 JSR MY_SUB

 LDS #STACK

 ORG $1000

1006 7F

1007 CE 12 34

100A 3D

1000 CF 3C 00

1003 16 10 07

SP

D

X

Y

PC

A B

CCR

JSR and BSR place return address on stack
RTS returns to instruction after JSR or BSR

STACK: EQU $3C00

0x3B03

0x3B02

0x3B01

0x3B00

0x3AFF

0x3AFE

0x3AFD

0x3AFC

0x3AFB

0x3AFA

0x3AF9

0x3AF8

0x3AF7

0x03A6

0x3AF5

Another example of using a subroutine

Using a subroutine to wait for an event to occur, then take an action.

11

EE 308 Spring 2006

• Wait until bit 7 of address $00C4 is set.

• Write the value in ACCA to address $00C7.

; This routine waits until the HC12 serial

; port is ready, then sends a byte of data

; to the HC12 serial port

putchar: brclr $00CC,#$80,putchar

staa $00CF

rts

• Program to send the word hello to the HC12 serial port

; Program fragment to write the word "hello" to the

; HC12 serial port

ldx $str

loop: ldaa 1,x+ ; get next char

beq done ; char == 0 => no more

jsr putchar

bra loop

swi

str: dc.b "hello"

fc.b $0A,$0D,0 ; CR LF

12

EE 308 Spring 2006

Here is the complete program to write a line to the screen:

prog: equ $1000

data: equ $2000

stack: equ $3c00

org prog

lds #stack

ldx #str

loop: ldaa 1,x+ ; get next char

beq done ; char == 0 => no more

jsr putchar

bra loop

done: swi

putchar: brclr $00CC,$80,putchar

staa $00CF

rts

org data

str: fcc "hello"

dc.b $0a,$0d,0 ; CR LF

13

EE 308 Spring 2006

Using DIP switches to get data into the HC12

• DIP switches make or break a connection (usually to ground)

+5V

DIP Switches on Breadboard

14

EE 308 Spring 2006

• To use DIP switches, connect one end of each switch to a resistor

• Connect the other end of the resistor to +5 V

• Connect the junction of the DIP switch and the resistor to an input port
on the HC12

+5V+5V+5V +5V

+5V

PB1
PB0

Using DIP Switches

• When the switch is open, the input port sees a logic 1 (+5 V)

• When the switch is closed, the input sees a logic 0 (0 V)

15

EE 308 Spring 2006

Looking at the state of a few input pins

• Want to look for a particular pattern on 4 input pins

– For example want to do something if pattern on PB3-PB0 is 0110

• Don’t know or care what are on the other 4 pins (PB7-PB4)

• Here is the wrong way to do it:

ldaa PORTB

cmpa #b0110

beq task

• If PB7-PB4 are anything other than 0000, you will not execute the task.

• You need to mask out the Don’t Care bits before checking for the pattern
on the bits you are interested in

ldaa PORTB

anda #b00001111

cmpa #b00000110

beq task

• Now, whatever pattern appears on PB7-4 is ignored

16

EE 308 Spring 2006

Using an HC12 output port to control an LED

• Connect an output port from the HC12 to an LED.

Using an output port to control an LED

PA0

When a current flows
through an LED, it
emits light

Resistor, LED, and
ground connected
internally inside
breadboard

17

EE 308 Spring 2006

Making a pattern on a seven-segment LED

• Want to generate a particular pattern on a seven-segment LED:

d

c

g
b

a

f

e

• Determine a number (hex or binary) which will generate each element of
the pattern

– For example, to display a 0, turn on segments a, b, c, d, e and

f, or bits 0, 1, 2, 3, 4 and 5 of PTH. The binary pattern is 00111111,
or $3f.

– To display 0 2 4 6 8, the hex numbers are $3f, $5b, $66, $7d,

$7f.

• Put the numbers in a table

• Go through the table one by one to display the pattern

• When you get to the last element, repeat the loop

18

EE 308 Spring 2006

Flowchart to display a pattern of lights on a set of LEDs

X < end?

Inc
Pointer

Output to
PORTA

PORTA
Output

Point to
first entry

Get entry

table X START

ldaa #$ff
staa DDRA

ldx #table

ldaa 0,x

staa PORTA

inx

cpx #table_end

bls l2

bra l1

l1:

l2:

0x3f

0x5b

0x66

0x7d

table_end 0x7f

19

EE 308 Spring 2006

; Program using subroutine to make a time delay

prog: equ $1000

data: equ $2000

stack: equ $3C00

PTH: equ $0260

DDRH: equ $0262

org prog

lds #stack ; initialize stack pointer

ldaa #$ff ; Make PTH output

staa DDRH ; 0xFF -> DDRH

l1: ldx #table ; Start pointer at table

l2: ldaa 1,x+ ; Get value; point to next

staa PTH ; Update LEDs

jsr delay ; Wait a bit

cpx #table_end ; More to do?

bls l2 ; Yes, keep going through table

bra l1 ; At end; reset pointer

delay: psha

pshx

ldaa #250

loop2: ldx #8000

loop1: dex

bne loop1

deca

bne loop2

pulx

pula

rts

org data

table: dc.b $3f

dc.b $5b

dc.b $66

dc.b $7d

table_end: dc.b $7F

20

