
EE 308 Spring 2006

Pointers in C

• To access a memory location:

*address

• You need to tell compiler whether you want to access 8-bit or 16 bit
number, signed or unsigned:

*(type *)address

– To read from an eight-bit unsigned number at memory location
0x2000:

x = *(unsigned char *)0x2000;

– To write an 0xaa55 to a sixteen-bit signed number at memory loca-
tions 0x2010 and 0x2011:

*(signed int *)0x2010 = 0xaa55;

• If there is an address which is used alot:

#define PORTA (* (unsigned char *) 0x0000)

x = PORTA; /* Read from address 0x0000 */

PORTA = 0x55; /* Write to address 0x0000 */

• To access consecutive locations in memory, use a variable as a pointer:

unsigned char *ptr;

ptr = (unsigned char *)0x2000;

ptr = 0xaa; / Put 0xaa into address 0x2000 */

ptr = ptr+2; /* Point two further into table */

x = *ptr; /* Read from address 0x2002 */

• To set aside ten locations for a table:

unsigned char table[10];

• Can access the third element in the table as:

table[2]

1

EE 308 Spring 2006

or as

*(table+2)

• To set up a table of constant data:

const unsigned char table[] = {0x00,0x01,0x03,0x07,0x0f};

This will tell the compiler to place the table of constant data with the
program (which might be placed in EEPROM) instead of with regular
data (which must be placed in RAM).

• There are a lot of registers (such as PORTA and DDRA) which you will use
when programming in C. Rather than having to define the registers each
time you use them, you can include a header file for the HC12 wihch has
the registers predefined. The CD in the textbook has such a header file,
called hcs12.h. You can find the complete file on the EE 308 homepage.
Here are a few entries from that file:

#define IOREGS_BASE 0x0000

#define _IO8(off) *(unsigned char volatile *)(IOREGS_BASE + off)

#define _IO16(off) *(unsigned short volatile *)(IOREGS_BASE + off)

#define PORTA _IO8(0x00) //port a = address lines a8 - a15

#define PORTB _IO8(0x01) //port b = address lines a0 - a7

#define DDRA _IO8(0x02) //port a direction register

#define DDRB _IO8(0x03) //port b direction register

Here is a program which uses hcs12.h to write a 0x55 to PORTA:

#include "hcs12.h"

main()

{

DDRA = 0xff; // Make PORTA output

PORTA = 0x55; // write a 0x55 to PORTA

asm(" swi");

}

2

EE 308 Spring 2006

Some C basics

• Every C program has a function main()

– The simplest C program is:

main()

{

}

– Our compiler ends a program by executing an infinite loop – the
program never returns to DBug-12. In order to return to DBug-12,
include the swi assembly language instruction. Here is how to do
that:

main()

{

asm(" swi");

}

• Every statement ends with a semicolon

x = a+b;

• Comment starts with /* ends with */

/* This is a comment */

• Simple program – increment Port A

#include "hcs12.h"

main()

{

DDRA = 0xff; /* Make PORTA output */

PORTA = 0; /* Start at 0 */

while(1) /* Repeat forever */

{

PORTA = PORTA + 1;

}

}

3

EE 308 Spring 2006

• Data Types:

8-bit 16-bit

unsigned char unsigned int
signed char signed int

4

EE 308 Spring 2006

• Need to declare variable before using it:

signed char c;

unsigned int i;

• Can initialize variable when you define it:

signed char c = 0xaa;

signed int i = 1000;

– You tell compiler it you are using signed or unsiged numbers; the
compiler will figure out whether to use BGT or BHI

• Arrays:

unsigned char table[10]; /* Set aside 10 bytes for table */

– Can refer to elements table[0] through table[9]

– Can initialize an array when you define it:

unsigned char table[] = {0xaa, 0x55, 0xa5, 0x5a};

• Arithmetic operators:

+ (add) x = a+b;

- (subtract) x = a-b;

* (multiply) x = a*b;

/ (divide) x = a/b;

% (modulo) x = a%b; (Remainder on divide)

• Logical operators

& (bitwise AND) y = x & 0xaa;

| (bitwise OR) y = x | 0xaa;

^ (bitwise XOR) y = x ^ 0xaa;

<< (shift left) y = x << 1;

>> (shift right) y = x >> 2;

~ (1’s complement) y = ~x;

- (2’s complement - negate) y = -x;

5

EE 308 Spring 2006

Check for equality - use ==

if (x == 5)

Check if two conditions true:

if ((x==5) && (y==10))

Check if either of two conditions true:

if ((x==5) || (y==10))

• Assign a name to a number

#define COUNT 5

• Include a header file (such as hcs12.h):

#include "hcs12.h"

• Declare a function: Tell what parameters it uses, what type of number
it returns:

int read_port(int port);

• If a function doesn’t return a number, declare it to be type void

void delay(int num);

6

EE 308 Spring 2006

Hello, World!

• Here is the standard ”hello, world” program:

#include <stdio.h>

main()

{

printf("hello, world\r\n");

}

• To write the ”hello, world” program, you need to use the printf()

function.

• The printf() function is normally a library function

• Our compiler does not have a library which includes the printf() func-
tion.

• DBug-12 has a built-in printf, which you can access in the following way:

#include "DBug12.h"

main()

{

DB12FNP->printf("hello, world\r\n");

asm(" swi");

}

• The above program is about 40 bytes long.

• Note that the DBug-12 printf() does not work for floating point num-
bers.

• You can access a few other standard C functions through DBug-12. Look
at the DBug12.h include file (on the EE 308 web page) to see which ones.

7

EE 308 Spring 2006

Setting and Clearing Bits using Assembly and C

• To put a specific number into a memory location or register (e.g., to put
0x55 into PORTA):

– In assembly:

ldaa #$55

staa PORTA

– In C:

PORTA = 0x55;

• To set a particular bit of a register (e.g., set Bit 4 of PORTA) while
leaving the other bits unchanged:

– In assembly, use the bset instruction with a mask which has 1’s in
the bits you want to set:

bset PORTA,#$10

– In C, do a bitwise OR of the register with a mask which has 1’s in
the bits you want to set:

PORTA = PORTA | 0x10;

• To clear a particular bit of a register (e.g., clear Bits 0 and 5 of PORTA)
while leaving the other bits unchanged:

– In assembly, use the blcr instruction with a mask that has 1’s in the
bits you want to clear:

bclr PORTA,#$21

– In C, do a bitwise AND of the register with a mask that has 0’s in
the bits you want to clear:

PORTA = PORTA & 0xDE;

or

PORTA = PORTA & ~0x21;

8

EE 308 Spring 2006

Waiting for a bit to be set or cleared in Assembly and C

• You often have to wait for an event to occur before taking some action.

• For example, wait for the wash cycle to finish before starting the rinse
cycle.

• Usually, when an event occurs, a bit is either set or cleared.

• Here is how to wait until Bit 3 of PORTB is set:

– In assembly:

l1: brclr PORTB,#$08,l1

– In C:

while ((PORTB & 0x08) == 0) ;

• Here is how to wait until Bit 3 of PORTB is cleared:

– In assembly:

l1: brset PORTB,#$08,l1

– In C:

while ((PORTB & 0x08) != 0) ;

9

EE 308 Spring 2006

Sum the odd 8-bit numbers in an array

• Write a program to sum all the odd numbers in an array of data.

• The numbers in the array should be treated as unsigned 8-bit numbers.

• The array starts at address 0xE000 and ends at address 0xE01F.

• This is the same program which was done in assembly language on Feb.
4, 2006.

START

Process
Entries

Init

Init

Done

0 −> Sum

Addr −>
Pointer

Done

Save
Answer

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE000X −>

0xE01F

 4
 5
 1
 8
 6
11

Process
Entries

Get
Num

Inc
Pointer

Add Num
to Sum

More
to do?

No

Yes

loop:

even:

Done

Yes

No
Odd?

10

EE 308 Spring 2006

Convert to C

0xE000

0xE01F

 4
 5
 1
 8
 6
11

ptr −>

START

Process
Entries

Init

Init

Done

0 −> Sum

Addr −>
Pointer

Done

Save
Answer

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

Process
Entries

Init

Get
Num

Inc
Pointer

Add Num
to Sum

More
to do?

No

Yes

How to check if odd?

Divide by 2, if REM = 1 odd
Modulo (%) in C returns REM

if−then do−while

Odd?
No

Yes

x = *ptr;
if ((x % 2) == 1) {

sum = sum + x;
}

sum = 0;
do {

ptr = ptr + 1;
}

main() {

}

ptr = (unsigned char *) 0xe000;

while (ptr <= (unsigned char *) 0xe01f);

11

EE 308 Spring 2006

/* Program to sum the odd numbers in an array

* The numbers are unsigned characters

* The array starts at address 0xE000 and

* is 0x20 bytes long

*/

#include "DBug12.h"

#define START 0xE000

#define LEN 0x20

#define END (START+LEN-1)

main()

{

unsigned int sum; /* Keep the running sum (need 16-bit number) */

unsigned char *ptr; /* Pointer to array element */

unsigned char x; /* Character from array */

ptr = (unsigned char *) START;

sum = 0;

do

{

x = *ptr; /* Get entry */

if ((x % 2) == 1) /* Is number odd? */

{

sum = sum + x; /* Odd: add to sum */

/* C automatically makes x 16-bits */

}

ptr = ptr + 1; /* Advance to next */

}

while (ptr <= (unsigned char *) END); /* Done? */

DB12FNP->printf("sum = %d\r\n",sum);

asm(" swi");

}

12

EE 308 Spring 2006

A software delay

• To enter a software delay, put in a nested loop, just like in assembly.

– Write a function delay(num) which will delay for num milliseconds

void delay(unsigned int num)

{

unsigned int i;

while (num > 0)

{

i = XXXX;

/* ------------------------ */

while (i > 0) /* */

{ /* Want inner loop to delay */

i = i - 1; /* for 1 ms */

} /* */

/* ------------------------ */

num = num - 1;

}

}

• What should XXXX be to make a 1 ms delay?

13

EE 308 Spring 2006

• Look at assembly listing generated by compiler:

0000206f <delay>:

206f: 34 pshx

2070: 7c 10 02 std 1002 <_.z>

2073: 27 1e beq 2093 <delay+0x24>

2075: 18 00 80 03 movw #XXX <__bss_size+0xXXX>, 0,SP

2079: e8

207a: ec 80 ldd 0,SP

207c: 27 0a beq 2088 <delay+0x19>

inner | 207e: ed 80 ldy 0,SP

loop | 2080: 1a 5f leax -1,Y

takes | 2082: 6e 80 stx 0,SP

13 cycles | 2084: ec 80 ldd 0,SP

| 2086: 26 f6 bne 207e <delay+0xf>

2088: fc 10 02 ldd 1002 <_.z>

208b: c3 ff ff addd #ffff <_stack+0xc3ff>

208e: 7c 10 02 std 1002 <_.z>

2091: 26 e2 bne 2075 <delay+0x6>

2093: 30 pulx

2094: 3d rts

14

EE 308 Spring 2006

• Inner loop takes 13 cyles.

• One millisecond takes 24,000 cycles
(24,000,000 cycles/sec × 1 millisecond = 24,000 cycles)

• Need to execute inner loop 24,000/13 = 1,846 times to delay for 1 mil-
lisecond

void delay(unsigned int num)

{

unsigned int i;

while (num > 0)

{

i = 1846;

/* ------------------------ */

while (i > 0) /* */

{ /* Inner loop takes 13 cycles */

i = i - 1; /* Execute 1836 times to */

} /* delay for 1 ms */

/* ------------------------ */

num = num - 1;

}

}

15

EE 308 Spring 2006

Program to increment LEDs connected to PORTA, and delay for
50 ms between changes

#include "hcs12.c"

#define D_1MS (24000/13) // Inner loop takes 13 cycles

// Need 24,000 cycles for 1 ms

void delay(unsigned int num);

main()

{

DDRA = 0xff; /* Make PORTA output */

PORTA = 0; /* Start with all off */

while(1)

{

PORTA = PORTA + 1;

delay(50);

}

}

void delay(unsigned int num)

{

unsigned int i;

while (num > 0)

{

i = D_1MS;

while (i > 0)

{

i = i - 1;

}

num = num - 1;

}

}

16

EE 308 Spring 2006

Program to display a particular pattern of lights on PORTA

#include "hcs12.c"

#define D_1MS (24000/13) // Inner loop takes 13 cycles

// Need 24,000 cycles for 1 ms

#define TABLEN 8

void delay(unsigned int num);

main()

{

const char table[] = {0x80,0x40,0x20,0x10,

0x08,0x04,0x02,0x01};

int i;

DDRA = 0xff; /* Make PORTA output */

PORTA = 0; /* Start with all off */

i = 0;

while(1)

{

PORTA = table[i];

delay(50);

i = i + 1;

if (i >= TABLEN) i = 0; /* Start over when */

/* end is reached */

}

}

17

