
EE 308 Spring 2006

Exam 1
Monday, Feb. 20

• You will be able to use all of the Motorola data manuals on the exam.

• No calculators will be allowed for the exam.

• Numbers

– Decimal to Hex (signed and unsigned)

– Hex to Decimal (signed and unsigned)

– Binary to Hex

– Hex to Binary

– Addition and subtraction of fixed-length hex numbers

– Overflow, Carry, Zero, Negative bits of CCR

• Programming Model

– Internal registers – A, B, (D = AB), X, Y, SP, PC, CCR

• Addressing Modes and Effective Addresses

– INH, IMM, DIR, EXT, REL, IDX (Not Indexed Indirect)

– How to determine effective address

• Instructions

– What they do - Core Users Guide

– What machine code is generated

– How many cycles to execute

– Effect on CCR

– Branch instructions – which to use with signed and which with un-
signed

• Machine Code

– Reverse Assembly

• Stack and Stack Pointer

– What happens to stack and SP for instructions (e.g., PSHX, JSR)

– How the SP is used in getting to and leaving subroutines

1

EE 308 Spring 2006

• Assembly Language

– Be able to read and write simple assembly language program

– Know basic assembler directives – e.g., equ, dc.b, ds.w

– Flow charts

2

EE 308 Spring 2006

Timer inside the 68HC12:

 When you enable timer (by writing a 1 to bit 7 of TSCR),

 You can read the counter at address TCNT.

The counter will start at 0, will count to 0xFFFF, then

To enable timer on HC12, set Bit 7 of register TCSR:

 you connect an 24−MHz oscillator to a 16−bit counter.

roll over to 0x0000. It will take 2.7307 ms for this to happen.

bset TSCR1,#$80 TSCR1 = TSCR1 | 0x80;

16−Bit Counter

TEN
24 MHz

TCNT (addr 0x44)

(Bit 7 of TSCR1, addr 0x46)

3

EE 308 Spring 2006

ECT_16B8C Block User Guide V01.03

22

3.3.6 TSCR1 — Timer System Control Register 1

Figure 3-6 Timer System Control Register 1 (TSCR1)

Read or write anytime.

TEN — Timer Enable
0 = Disables the main timer, including the counter. Can be used for reducing power consumption.
1 = Allows the timer to function normally.

If for any reason the timer is not active, there is no ÷64 clock for the pulse accumulator since the ÷64
is generated by the timer prescaler.

TSWAI — Timer Module Stops While in Wait
0 = Allows the timer module to continue running during wait.
1 = Disables the timer module when the MCU is in the wait mode. Timer interrupts cannot be used

to get the MCU out of wait.
TSWAI also affects pulse accumulators and modulus down counters.

TSFRZ — Timer and Modulus Counter Stop While in Freeze Mode
0 = Allows the timer and modulus counter to continue running while in freeze mode.
1 = Disables the timer and modulus counter whenever the MCU is in freeze mode. This is useful

for emulation.
TSFRZ does not stop the pulse accumulator.

TFFCA — Timer Fast Flag Clear All
0 = Allows the timer flag clearing to function normally.
1 = For TFLG1($0E), a read from an input capture or a write to the output compare channel

($10–$1F) causes the corresponding channel flag, CnF, to be cleared. For TFLG2 ($0F), any
access to the TCNT register ($04, $05) clears the TOF flag. Any access to the PACN3 and
PACN2 registers ($22, $23) clears the PAOVF and PAIF flags in the PAFLG register ($21).
Any access to the PACN1 and PACN0 registers ($24, $25) clears the PBOVF flag in the
PBFLG register ($31). This has the advantage of eliminating software overhead in a separate
clear sequence. Extra care is required to avoid accidental flag clearing due to unintended
accesses.

Register offset: $_06

BIT7 6 5 4 3 2 1 BIT0

R
TEN TSWAI TSFRZ TFFCA

0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

4

EE 308 Spring 2006

Block User Guide — S12ECT16B8CV1/D V01.03

21

3.3.4 OC7D — Output Compare 7 Data Register

Figure 3-4 Output Compare 7 Data Register (OC7D)

Read or write anytime.

A channel 7 output compare can cause bits in the output compare 7 data register to transfer to the timer
port data register depending on the output compare 7 mask register.

3.3.5 TCNT — Timer Count Register

Figure 3-5 Timer Count Register (TCNT)

The 16-bit main timer is an up counter.

A full access for the counter register should take place in one clock cycle. A separate read/write for high
byte and low byte will give a different result than accessing them as a word.

Read anytime.

Write has no meaning or effect in the normal mode; only writable in special modes (test_mode = 1).

The period of the first count after a write to the TCNT registers may be a different size because the write
is not synchronized with the prescaler clock.

Register offset: $_03

BIT7 6 5 4 3 2 1 BIT0

R
OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0

W

RESET: 0 0 0 0 0 0 0 0

Register offset: $_04-$_05

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R tcnt
15

tcnt
14

tcnt
13

tcnt
12

tcnt
11

tcnt
10

tcnt
9

tcnt
8

tcnt
7

tcnt
6

tcnt
5

tcnt
4

tcnt
3

tcnt
2

tcnt
1

tcnt
0W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5

EE 308 Spring 2006

• To put in a delay of 2.7307 ms, you could wait from one reading of 0x0000
to the next reading of 0x0000.

• Problem: You cannot read the TCNT register quickly enough to make
sure you will see the 0x0000.

TCNT == 0x0000:

Problem: You might see 0xFFFF and 0x0001, and miss 0x0000

 bne l1

To put in a delay for 2.7307 ms, could watch timer until

 bset TSCR1,#$80 TSCR1 = TSCR1 | 0x80;
l1: ldd TCNT while (TCNT != 0x0000) ;

16−Bit Counter

TEN
24 MHz

TCNT (addr 0x44)

(Bit 7 of TSCR1, addr 0x46)

6

EE 308 Spring 2006

• Solution: The 9S12 has built-in hardware with will set a flip-flop every
time the counter rolls over from 0xFFFF to 0x0000.

• To wait for 2.7307 ms, just wait until the flip-flop is set, then clear the
flip-flop, and wait until the next time the flip-flop is set.

• You can find the state of the flip-flop by looking at bit 7 (the Timer
Overflow Flag (TOF) bit) of the Timer Flag Register 2 (TFLG2) register
at address 0x004F.

• You can clear the flip-flop by writing a 1 to the TOF bit of TFLG2.

Solution: When timer overflows, latch a 1 into a flip−flop.

Now when timer overflows (goes from 0xFFFF to 0x0000),

Bit 7 of TFLG2 register is set to one. Can clear

register by writting a 1 to Bit 7 of TFLG register.

 Bit 7 of TFLG2 for a write)
(Note: Bit 7 of TFLG2 for a read is different than

 ldaa #$80
 staa TFGL2 ; Clear TOF flag

while ((TFLG2 & 0x80) == 0) ; // Wait for TOF
TFLG2 = 0x80; // Clear TOF

l1: brclr TFLG2,#$80,l1 ; Wait until Bit 7 of TFLG2 is set
 bset TSCR1,#$80 ; Enable timer

TSCR1 = TSCR1 | 0x80; //Enable timer

Overflow

D

R

Q

VCC

16−Bit Counter

TIMER OVERFLOW INTERRUPT

TOF
Read

TEN

Write
TOF

(Bit 7 of TFLG2, addr 0x4F)

24 MHz
TCNT (addr 0x44)

(Bit 7 of TFLG2, addr 0x4F)

(Bit 7 of TSCR1, addr 0x46)

7

EE 308 Spring 2006

Block User Guide — S12ECT16B8CV1/D V01.03

27

3.3.13 TFLG2 — Main Timer Interrupt Flag 2

Figure 3-13 Main Timer Interrupt Flag 2 (TFLG2)

TFLG2 indicates when interrupt conditions have occurred. To clear a bit in the flag register, write the bit
to one.

Read anytime. Write used in clearing mechanism (set bits cause corresponding bits to be cleared).

Any access to TCNT will clear TFLG2 register if the TFFCA bit in TSCR register is set.

TOF — Timer Overflow Flag
Set when 16-bit free-running timer overflows from $FFFF to $0000. This bit is cleared automatically
by a write to the TFLG2 register with bit 7 set. (See also TCRE control bit explanation.)

Register offset: $_0F

BIT7 6 5 4 3 2 1 BIT0

R
TOF

0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

8

EE 308 Spring 2006

• Another problem: Sometimes you may want to delay longer than 2.7307 ms,
or time an event which takes longer than 2.7307 ms. This is hard to do
if the counter rolls over every 2.7307 ms.

• Solution: The 9S12 allows you to slow down the clock which drives the
counter.

• You can slow down the clock by dividing the 24 MHz clock by 2, 4, 8,
16, 32, 64 or 128.

• You do this by writing to the prescaler bits (PR2:0) of the Timer System
Control Register 2 (TSCR2) Register at address 0x004D.

slow down the clock:

2.7307 ms will be too short if you want to see lights flash.

PR2:0 Divide Freq Overflow Rate

000 1 24 MHz 2.7307 ms
001 2 12 MHz 5.4613 ms
010 4 6 MHz 10.9227 ms
011 8 3 MHz 21.8453 ms
100 16 1.5 MHz 43.6907 ms
101 32 0.75 MHz 87.3813 ms

You can slow down clock by dividing it before you send it to

110 64 0.375 MHz 174.7627 ms
111 128 0.1875 MHz 349.5253 ms

the 16−bit counter. By setting prescaler bits PR2,PR1,PR0 of TSCR2 you can

bset TSCR1,#$80

staa TSCR2

TSCR1 = TSCR1 | 0x80;

To set up timer so it will overflow every 87.3813 ms:

ldaa #$05 TSCR2 = 0x05;

VCC

16−Bit Counter

TIMER OVERFLOW INTERRUPT

Prescaler
TEN

PR[2..0]

Overflow

D Q
TOF
Read

R

Write
TOF

(Bit 7 of TFLG2, addr 0x4F)

24 MHz
TCNT (addr 0x44)

(Bit 7 of TFLG2, addr 0x4F)

(Bit 7 of TSCR1, addr 0x46)

(Bits 2−0 of TSCR2, addr 0x4D)

9

EE 308 Spring 2006

Block User Guide — S12ECT16B8CV1/D V01.03

25

3.3.10 TIE — Timer Interrupt Enable Register

Figure 3-10 Timer Interrupt Enable Register (TIE)

Read or write anytime.

The bits in TIE correspond bit-for-bit with the bits in the TFLG1 status register. If cleared, the
corresponding flag is disabled from causing a hardware interrupt. If set, the corresponding flag is enabled
to cause a interrupt.

C7I–C0I — Input Capture/Output Compare “x” Interrupt Enable

3.3.11 TSCR2 — Timer System Control Register 2

Figure 3-11 Timer System Control Register 2 (TSCR2)

Read or write anytime.

TOI — Timer Overflow Interrupt Enable
0 = Interrupt inhibited
1 = Hardware interrupt requested when TOF flag set

TCRE — Timer Counter Reset Enable
This bit allows the timer counter to be reset by a successful output compare 7 event. This mode of
operation is similar to an up-counting modulus counter.

0 = Counter reset inhibited and counter free runs
1 = Counter reset by a successful output compare 7

If TC7 = $0000 and TCRE = 1, TCNT will stay at $0000 continuously. If TC7 = $FFFF and TCRE =
1, TOF will never be set when TCNT is reset from $FFFF to $0000.

PR2, PR1, PR0 — Timer Prescaler Select

Register offset: $_0C

BIT7 6 5 4 3 2 1 BIT0

R
C7I C6I C5I C4I C3I C2I C1I C0I

W

RESET: 0 0 0 0 0 0 0 0

Register offset: $_0D

BIT7 6 5 4 3 2 1 BIT0

R
TOI

0 0 0
TCRE PR2 PR1 PR0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

10

EE 308 Spring 2006

ECT_16B8C Block User Guide V01.03

26

These three bits specify the number of ÷2 stages that are to be inserted between the bus clock and the
main timer counter.

The newly selected prescale factor will not take effect until the next synchronized edge where all
prescale counter stages equal zero.

3.3.12 TFLG1 — Main Timer Interrupt Flag 1

Figure 3-12 Main Timer Interrupt Flag 1 (TFLG1)

TFLG1 indicates when interrupt conditions have occurred. To clear a bit in the flag register, write a one
to the bit.

Use of the TFMOD bit in the ICSYS register ($2B) in conjunction with the use of the ICOVW register
($2A) allows a timer interrupt to be generated after capturing two values in the capture and holding
registers instead of generating an interrupt for every capture.

Read anytime. Write used in the clearing mechanism (set bits cause corresponding bits to be cleared).
Writing a zero will not affect current status of the bit.

When TFFCA bit in TSCR register is set, a read from an input capture or a write into an output compare
channel ($10–$1F) will cause the corresponding channel flag CnF to be cleared.

C7F–C0F — Input Capture/Output Compare Channel “n” Flag.
C0F can also be set by 16 - bit Pulse Accumulator B (PACB). C3F - C0F can also be set by 8 - bit pulse
accumulators PAC3 - PAC0.

Table 3-4 Prescaler Selection

PR2 PR1 PR0 Prescale Factor
0 0 0 1

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Register offset: $_0E

BIT7 6 5 4 3 2 1 BIT0

R
C7F C6F C5F C4F C3F C2F C1F C0F

W

RESET: 0 0 0 0 0 0 0 0

11

EE 308 Spring 2006

What Happens When You Reset the HCS12?

• What happens to the HCS12 when you turn on power or push the reset
button?

• How does the HCS12 know which instruction to execute first?

• On reset the HCS12 loads the PC with the address located at address
0xFFFE and 0xFFFF.

• Here is what is in the memory of our HCS12:

0 1 2 3 4 5 6 7 8 9 A B C D E F

FFF0 F6 EC F6 F0 F6 F4 F6 F8 F6 FC F7 00 F7 04 F0 00

• On reset or power-up, the first instruction your HCS12 will execute is
the one located at address 0xF000.

12

EE 308 Spring 2006

Using the Timer Overflow Flag to implement a delay

• The HCS12 timer counts at a rate set by the prescaler:

PR2:0 Divide Clock Clock Overflow
Freq Period Period

000 1 24 MHz 0.042 µs 2.73 ms

001 2 12 MHz 0.083 µs 5.46 ms

010 4 6 MHz 0.167 µs 10.92 ms

011 8 3 MHz 0.333 µs 21.85 ms

100 16 1.5 MHz 0.667 µs 43.69 ms

101 32 750 kHz 1.333 µs 87.38 ms

110 64 375 kHz 2.667 µs 174.76 ms

111 128 187.5 kHz 5.333 µs 349.53 ms

• When the timer overflows it sets the TOF flag (bit 7 of the TFLG2
register).

• To clear the TOF flag write a 1 to bit 7 of the TFLG2 register, and 0 to
all other bits of TFLG2:

TFLG2 = 0x80;

• You can implement a delay using the TOF flag by waiting for the TOF
flag to be set, then clearing it:

void delay(void)

{

while ((TFLG2 & 0x80) == 0) ; /* Wait for TOF */

TFLG2 = 0x80; /* Clear flag */

}

• If the prescaler is set to 010, you will exit the delay subroutine after
10.92 ms have passed.

13

EE 308 Spring 2006

Introduction to Interrupts

Can implement a delay by waiting for the TOF flag to become set:

void delay(void)

{

while ((TFLG2 & 0x80) == 0) ;

TFLG2 = 0x80;

}

Problem: Can’t do anything else while waiting. Wastes resources of HCS12.

Solution: Use an interrupt to tell you when the timer overflow has occurred.

Interrupt: Allow the HCS12 to do other things while waiting for an event
to happen. When the event happens, tell HCS12 to take care of event,
then go back to what it was doing.

What happens when HCS12 gets an interrupt: HCS12 automatically
jumps to part of the program which tells it what to do when it receives
the interrupt (Interrupt Service Routine).

How does HCS12 know where the ISR is located: A set of memory lo-
cations called Interrupt Vectors tell the HCS12 the address of the ISR
for each type of interrupt.

How does HCS12 know where to return to: Return address pushed onto
stack before HCS12 jumps to ISR. You use the RTI (Return from Inter-
rupt) instruction to pull the return address off of the stack when you
exit the ISR.

What happens if ISR changes registers: All registers are pushed onto
stack before jumping to ISR, and pulled off the stack before returning to
program. When you execute the RTI instruction at the end of the ISR,
the registers are pulled off of the stack.

To Return from the ISR You must return from the ISR using the RTI

instruction. The RTI instruction tells the HCS12 to pull all the registers
off of the stack and return to the address where it was processing when
the interrupt occurred.

14

EE 308 Spring 2006

How to generate an interrupt when the timer overflows

Take care of event

To generate a TOF interrupt: Inside TOF ISR:

Enable interrupts (clear I bit of CCR)

Clear TOF flag (Write 1 to Bit 7 of TFLG2)
Return with RTI

Enable timer (set Bit 7 of TSCR1)
Set prescaler (Bits 2:0 of TSCR2)
Enable TOF interrupt (set Bit 7 of TSCR2)

Overflow

D

R

Interrupt
I Bit
CCR

TOI Bit

Q

VCC

16−Bit Counter

TIMER OVERFLOW INTERRUPT

Write

TOF
Read

(Enable by clearing I bit with CLI instr)

Prescaler
TEN

PR[2..0]

TOF

P Clock
24 MHz

(Bit 7 of TSCR1, addr 0x46)

(Bits 2−0 of TSCR2, addr 0x4D)

TCNT (addr 0x44)

(Bit 7 of TFLG2, addr 0x4F)

(Bit 7 of TFLG2, addr 0x4F)

TSCR2
(Bit 7 of TSCR2, addr 0x4D)

(Enable by setting Bit 7 of TSCR2)

#include "hcs12.h"

main()

{

DDRA = 0xff; /* Make Port A output */

TSCR1 = 0x80; /* Turn on timer */

TSCR2 = 0x85; /* Enable timer overflow interrupt, set prescaler */

TFLG2 = 0x80; /* Clear timer interrupt flag */

enable(); /* Enable interrupts (clear I bit) */

while (1)

{

/* Do nothing */

}

}

void INTERRUPT toi_isr(void)

{

PORTA = PORTA + 1; /* Increment Port A */

TFLG2 = 0x80; /* Clear timer interrupt flag */

}

15

EE 308 Spring 2006

How to tell the HCS12 where the Interrupt Service Routine is
located

• You need to tell the HCS12 where to go when it receives a TOF interrupt

• You do this by setting the TOF Interrupt Vector

• The TOF interrupt vector is located at 0xFFDE. This is in flash EPROM,
and is very difficult to change — you would have to modify and reload
DBug-12 to change it.

• DBug-12 redirects the interrupts to a set of vectors in RAM, from 0x3E00

to 0x3E7F. The TOF interrupt is redirected to 0x3E5E. When you get
a TOF interrupt, the HCS12 initially executes code starting at 0xFFDE.
This code tells the HCS12 to load the program counter with the address
in 0x3E5E. Because this address in in RAM, you can change it without
having to modify and reload DBug-12.

• Because the redirected interrupt vectors are in RAM, you can change
them in your program.

16

EE 308 Spring 2006

How to Use Interrupts in C Programs

• For our C compiler, you can set the interrupt vector by including the
file vectors12.h. In this file, pointers to the locations of all of the 9212
interrupt vectors are defined.

• For example, the pointer to the Timer Overflow Interrupt vector is called
UserTimerOvf:

#define VECTOR_BASE 0x3E00

#define _VEC16(off) *(volatile unsigned short *)(VECTOR_BASE + off*2)

#define UserTimerOvf _VEC16(47)

You can set the interrupt vector to point to the interrupt service routine
toi_isr() with the C statement:

UserTimerOvf = (unsigned short) &toi_isr;

17

EE 308 Spring 2006

• Here is a program where the interrupt vector is set in the program:

#include <hcs12.h>

#include <vectors12.h>

#include "DBug12.h"

#define enable() _asm(" cli")

#define disable() _asm(" sei")

void INTERRUPT toi_isr(void);

main()

{

DDRA = 0xff; /* Make Port A output */

TSCR1 = 0x80; /* Turn on timer */

TSCR2 = 0x86; /* Enable timer overflow interrupt, set prescaler

so interrupt period is 175 ms */

TFLG2 = 0x80; /* Clear timer interrupt flag */

UserTimerOvf = (unsigned short) &toi_isr;

enable(); /* Enable interrupts (clear I bit) */

while (1)

{

/* Do nothing - go into low power mode */

}

}

void INTERRUPT toi_isr(void)

{

PORTA = PORTA+1;

TFLG2 = 0x80; /* Clear timer interrupt flag */

}

18

EE 308 Spring 2006

How to Use Interrupts in Assembly Programs

• For our assembler, you can set the interrupt vector by including the file
hcs12.inc. In this file, the addresses of all of the 9212 interrupt vectors
are defined.

• For example, the pointer to the Timer Overflow Interrupt vector is called
UserTimerOvf:

UserTimerOvf equ $3E5E

You can set the interrupt vector to point to the interrupt service routine
toi_isr with the Assembly statement:

movw #toi_isr,UserTimerOvf

19

EE 308 Spring 2006

• Here is a program where the interrupt vector is set in the program:

#include "hcs12.h"

#define prog $1000

movw #toi_isr,UserTimerOvf ; Set interrupt vector

movb #$ff,DDRA

movb #$80,TSCR1 ; Turn on timer

movb #$86,TSCR2 ; Enable timer overflow interrupt, set prescaler

; so interrupt period is 175 ms

movb #$80,TFLG2 ; Clear timer interrupt flag

cli ; Enable interrupts

l1: wai ; Do nothing - go into low power mode */

bra l1

toi_isr:

inc PORTA

movb #$80,TFLG2 ; Clear timer overflow interrupt flag

rts

20

EE 308 Spring 2006

USING INTERRUPTS ON THE HCS12

What happens when the HCS12 receives an unmasked interrupt?

1. Finish current instruction

2. Push all registers onto the stack

3. Set I bit of CCR

4. Load Program Counter from interrupt vector for particular interrupt

Most interrupts have both a specific mask and a general mask. For most
interrupts the general mask is the I bit of the CCR. For the TOF interrupt
the specific mask is the TOI bit of the TSCR2 register.

Before using interrupts, make sure to:

1. Load stack pointer

• Done for you in C by the C startup code

2. Write Interrupt Service Routine

• Do whatever needs to be done to service interrupt

• Clear interrupt flag

• Exit with RTI

– Use the INTERRUPT definition in the Gnu C compiler

3. Load address of interrupt service routine into interrupt vector

4. Do any setup needed for interrupt

• For example, for the TOF interrupt, turn on timer and set prescaler

5. Enable specific interrupt

6. Enable interrupts in general (clear I bit of CCR with cli instruction or
enable() function

Can disable all (maskable) interrupts with the sei instruction or disable()
function.

21

EE 308 Spring 2006

An example of the HCS12 registers and stack when a TOF
interrupt is received

A B

X

Y

SP

PC

CCR

FFE0

FFDF

FFDE

FFDD

FFDC

FFDB

FFDA

FFD9

FFD8

FFD7

FFD6

AA BB

0123

4567

07

3A

4B

52

67

79

HC12 STATE BEFORE RECEIVING TOF INTERRUPT

3C00

1015

3C00

3BFF

3BFE

3BFD

3BFC

3BFB

3BFA

3BF9

3BF8

3BF7

3BF6

10

10

10

10

10

10

22

EE 308 Spring 2006

An example of the HCS12 registers and stack just after a TOF
interrupt is received

• All of the HCS12 registers are pushed onto the stack, the PC is loaded
with the contents of the Interrupt Vector, and the I bit of the CCR is
set

A B

X

Y

SP

PC

CCR

FFE0

FFDF

FFDE

FFDD

FFDC

FFDB

FFDA

FFD9

FFD8

FFD7

FFD6

AA BB

0123

4567

17

HC12 STATE AFTER RECEIVING TOF INTERRUPT

3A

4B

52

67

79

A

Y

X

B

A

CCR

Return
Address

67

45

23

01

AA

BB

07

15

10

10

10

10

10

10

10

103A

3BF6

3BF7

3BF8

3BF9

3BFA

3BFB

3BFC

3BFD

3BFE

3BFF

3C00

3BF7

23

EE 308 Spring 2006

Interrupt vectors for the 68HC912B32

• The interrupt vectors for the MC9S12DP256 are located in memory from
0xFF80 to 0xFFFF.

• These vectors are programmed into Flash EEPROM and are very difficult
to change

• DBug12 redirects the interrupts to a region of RAM where they are easy
to change

• For example, when the HCS12 gets a TOF interrupt:

– It loads the PC with the contents of 0xFFDE and 0xFFDF.

– The program at that address tells the HCS12 to look at address
0x3E5E and 0x3E5F.

– If there is a 0x0000 at these two addresses, DBug12 gives an error
stating that the interrupt vector is uninitialized.

– If there is anything else at these two addresses, DBug12 loads this
data into the PC and executes the routine located there.

– To use the TOF interrupt you need to put the address of your TOF
ISR at addresses 0x3E5E and 0x3E5F.

24

EE 308 Spring 2006

Commonly Used Interrupt Vectors for the MC9S12DP256

Interrupt Specific General Normal DBug-12
Mask Mask Vector Vector

SPI2 SP2CR1 (SPIE, SPTIE) I FFBC, FFBD 3E3C, 3E3D
SPI1 SP1CR1 (SPIE, SPTIE) I FFBE, FFBF 3E3E, 3E3F
IIC IBCR (IBIR) I FFC0, FFC1 3E40, 3E41
BDLC DLCBCR (IE) I FFC2, FFC3 3E42, 3E43
CRG Self Clock Mode CRGINT (SCMIE) I FFC4, FFC5 3E44, 3E45
CRG Lock CRGINT (LOCKIE) I FFC6, FFC7 3E46, 3E47
Pulse Acc B Overflow PBCTL (PBOVI) I FFC8, FFC9 3E48, 3E49
Mod Down Ctr UnderFlow MCCTL (MCZI) I FFCA, FFCB 3E4A, 3E4B
Port H PTHIF (PTHIE) I FFCC, FFCD 3E4C, 3E4D
Port J PTJIF (PTJIE) I FFCE, FFCF 3E4E, 3E4F
ATD1 ATD1CTL2 (ASCIE) I FFD0, FFD1 3E50, 3E51
ATD0 ATD0CTL2 (ASCIE) I FFD2, FFD3 3E52, 3E53
SCI1 SC1CR2 I FFD4, FFD5 3E54, 3E55

(TIE, TCIE, RIE, ILIE)
SCI0 SC0CR2 I FFD6, FFD7 3E56, 3E57

(TIE, TCIE, RIE, ILIE)
SPI0 SP0CR1 (SPIE) I FFD8, FFD9 3E58, 3E59
Pulse Acc A Edge PACTL (PAI) I FFDA, FFDB 3E5A, 3E5B
Pulse Acc A Overflow PACTL (PAOVI) I FFDC, FFDD 3E5C, 3E5D
Enh Capt Timer Overflow TSCR2 (TOI) I FFDE, FFDF 3E5E, 3E5F
Enh Capt Timer Channel 7 TIE (C7I) I FFE0, FFE1 3E60, 3E61
Enh Capt Timer Channel 6 TIE (C6I) I FFE2, FFE3 3E62, 3E63
Enh Capt Timer Channel 5 TIE (C5I) I FFE4, FFE5 3E64, 3E65
Enh Capt Timer Channel 4 TIE (C4I) I FFE6, FFE7 3E66, 3E67
Enh Capt Timer Channel 3 TIE (C3I) I FFE8, FFE9 3E68, 3E69
Enh Capt Timer Channel 2 TIE (C2I) I FFEA, FFEB 3E6A, 3E6B
Enh Capt Timer Channel 1 TIE (C1I) I FFEC, FFED 3E6C, 3E6D
Enh Capt Timer Channel 0 TIE (C0I) I FFEE, FFEF 3E6E, 3E6F
Real Time CRGINT (RTIE) I FFF0, FFF1 3E70, 3E71
IRQ IRQCR (IRQEN) I FFF2, FFF3 3E72, 3E73
XIRQ (None) X FFFF, FFFF 3E74, 3E75
SWI (None) (None) FFF6, FFF7 3E76, 3E77
Unimplemented Instruction (None) (None) FFF8, FFF9 3E78, 3E79
COP Failure COPCTL (None) FFFA, FFFB 3E7A, 3E7B

(CR2-CR0 COP Rate Select)
COP Clock Moniotr Fail PLLCTL (CME, SCME) (None) FFFC, FFFD 3E7C, 3E7D
Reset (None) (None) FFFE, FFFF 3E7E, 3E7F

25

