
EE 308 Spring 2006

EXCEPTIONS ON THE 9S12

• Exceptions are the way a processor responds to things other than the
normal sequence of instructions in memory.

• Exceptions consist of such things as Reset and Interrupts.

• Interrupts allow a processor to respond to an event without constantly
polling to see whether the event has occurred.

• On the 9S12 some interrupts cannot be masked — these are the Unimple-
mented Instruction Trap and the Software Interrupt (SWI instruction).

• XIRQ interrupt is masked with the X bit of the Condition Code Register.
Once the X bit is cleared to enable the XIRQ interrupt, it cannot be set
to disable it.

– The XIRQ interrupt is for external events such as power fail which
must be responed to.

• The rest of the 9S12 interrupts are masked with the I bit of the CCR.

– All these other interrupts are also masked with a specific interrupt
mask. For example, the Timer Overflow Interrupt is masked with
the TOI bit of the TMSK2 register.

– This allows you to enable any of these other interrupts you want.

– The I bit can be set to 1 to disable all of these interrupts if needed.

1

EE 308 Spring 2006

USING INTERRUPTS ON THE 9S12

What happens when the 9S12 receives an unmasked interrupt?

1. Finish current instruction

2. Clear instruction queue

3. Calculate return address

4. Push Return Address, Y, X, A, B, CCR onto stack (SP is decremented
by 9)

CCR

B

A

X

Y

Y

XH

L

H

L

RTN

RTN

H

L

SP After Int

SP Before Int

Lower Addresses

Higher Addresses

5. Set I bit of CCR

6. If XIRQ interrupt, set X bit of CCR

7. Load Program Counter from interrupt vector for highest priority inter-
rupt which is pending

2

EE 308 Spring 2006

8. The following (from the MC9S12DP256B Device User Guide) shows
the exception priorities. The Reset is the highest priority, the Clock
Monitor Fail Reset the next hightest, etc.

MC9S12DP256B Device User Guide — V02.13

77

Section 5 Resets and Interrupts

5.1 Overview

Consult the Exception Processing section of the HCS12 Core User Guide for information on resets and
interrupts.

5.2 Vectors

5.2.1 Vector Table

Table 5-1 lists interrupt sources and vectors in default order of priority.

Table 5-1 Interrupt Vector Locations

Vector Address Interrupt Source CCR
Mask Local Enable HPRIO Value

to Elevate
$FFFE, $FFFF Reset None None –

$FFFC, $FFFD Clock Monitor fail reset None PLLCTL (CME, SCME) –

$FFFA, $FFFB COP failure reset None COP rate select –

$FFF8, $FFF9 Unimplemented instruction trap None None –

$FFF6, $FFF7 SWI None None –

$FFF4, $FFF5 XIRQ X-Bit None –

$FFF2, $FFF3 IRQ I-Bit IRQCR (IRQEN) $F2

$FFF0, $FFF1 Real Time Interrupt I-Bit CRGINT (RTIE) $F0

$FFEE, $FFEF Enhanced Capture Timer channel 0 I-Bit TIE (C0I) $EE

$FFEC, $FFED Enhanced Capture Timer channel 1 I-Bit TIE (C1I) $EC

$FFEA, $FFEB Enhanced Capture Timer channel 2 I-Bit TIE (C2I) $EA

$FFE8, $FFE9 Enhanced Capture Timer channel 3 I-Bit TIE (C3I) $E8

$FFE6, $FFE7 Enhanced Capture Timer channel 4 I-Bit TIE (C4I) $E6

$FFE4, $FFE5 Enhanced Capture Timer channel 5 I-Bit TIE (C5I) $E4

$FFE2, $FFE3 Enhanced Capture Timer channel 6 I-Bit TIE (C6I) $E2

$FFE0, $FFE1 Enhanced Capture Timer channel 7 I-Bit TIE (C7I) $E0

$FFDE, $FFDF Enhanced Capture Timer overflow I-Bit TSRC2 (TOF) $DE

$FFDC, $FFDD Pulse accumulator A overflow I-Bit PACTL (PAOVI) $DC

$FFDA, $FFDB Pulse accumulator input edge I-Bit PACTL (PAI) $DA

$FFD8, $FFD9 SPI0 I-Bit SP0CR1 (SPIE, SPTIE) $D8

$FFD6, $FFD7 SCI0 I-Bit
SC0CR2

(TIE, TCIE, RIE, ILIE)
$D6

$FFD4, $FFD5 SCI1 I-Bit
SC1CR2

(TIE, TCIE, RIE, ILIE)
$D4

$FFD2, $FFD3 ATD0 I-Bit ATD0CTL2 (ASCIE) $D2

$FFD0, $FFD1 ATD1 I-Bit ATD1CTL2 (ASCIE) $D0

$FFCE, $FFCF Port J I-Bit PTJIF (PTJIE) $CE

$FFCC, $FFCD Port H I-Bit PTHIF(PTHIE) $CC

$FFCA, $FFCB Modulus Down Counter underflow I-Bit MCCTL(MCZI) $CA

3

EE 308 Spring 2006

MC9S12DP256B Device User Guide — V02.13

78

5.3 Effects of Reset

When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the
respective module Block User Guides for register reset states.

5.3.1 I/O pins

Refer to the HCS12 Core User Guides for mode dependent pin configuration of port A, B, E and K out of
reset.

Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.

$FFC8, $FFC9 Pulse Accumulator B Overflow I-Bit PBCTL(PBOVI) $C8

$FFC6, $FFC7 CRG PLL lock I-Bit CRGINT(LOCKIE) $C6

$FFC4, $FFC5 CRG Self Clock Mode I-Bit CRGINT (SCMIE) $C4

$FFC2, $FFC3 BDLC I-Bit DLCBCR1(IE) $C2

$FFC0, $FFC1 IIC Bus I-Bit IBCR (IBIE) $C0

$FFBE, $FFBF SPI1 I-Bit SP1CR1 (SPIE, SPTIE) $BE

$FFBC, $FFBD SPI2 I-Bit SP2CR1 (SPIE, SPTIE) $BC

$FFBA, $FFBB EEPROM I-Bit EECTL(CCIE, CBEIE) $BA

$FFB8, $FFB9 FLASH I-Bit FCTL(CCIE, CBEIE) $B8

$FFB6, $FFB7 CAN0 wake-up I-Bit CAN0RIER (WUPIE) $B6

$FFB4, $FFB5 CAN0 errors I-Bit CAN0RIER (CSCIE, OVRIE) $B4

$FFB2, $FFB3 CAN0 receive I-Bit CAN0RIER (RXFIE) $B2

$FFB0, $FFB1 CAN0 transmit I-Bit CAN0TIER (TXEIE2-TXEIE0) $B0

$FFAE, $FFAF CAN1 wake-up I-Bit CAN1RIER (WUPIE) $AE

$FFAC, $FFAD CAN1 errors I-Bit CAN1RIER (CSCIE, OVRIE) $AC

$FFAA, $FFAB CAN1 receive I-Bit CAN1RIER (RXFIE) $AA

$FFA8, $FFA9 CAN1 transmit I-Bit CAN1TIER (TXEIE2-TXEIE0) $A8

$FFA6, $FFA7 CAN2 wake-up I-Bit CAN2RIER (WUPIE) $A6

$FFA4, $FFA5 CAN2 errors I-Bit CAN2RIER (CSCIE, OVRIE) $A4

$FFA2, $FFA3 CAN2 receive I-Bit CAN2RIER (RXFIE) $A2

$FFA0, $FFA1 CAN2 transmit I-Bit CAN2TIER (TXEIE2-TXEIE0) $A0

$FF9E, $FF9F CAN3 wake-up I-Bit CAN3RIER (WUPIE) $9E

$FF9C, $FF9D CAN3 errors I-Bit CAN3RIER (TXEIE2-TXEIE0) $9C

$FF9A, $FF9B CAN3 receive I-Bit CAN3RIER (RXFIE) $9A

$FF98, $FF99 CAN3 transmit I-Bit CAN3TIER (TXEIE2-TXEIE0) $98

$FF96, $FF97 CAN4 wake-up I-Bit CAN4RIER (WUPIE) $96

$FF94, $FF95 CAN4 errors I-Bit CAN4RIER (CSCIE, OVRIE) $94

$FF92, $FF93 CAN4 receive I-Bit CAN4RIER (RXFIE) $92

$FF90, $FF91 CAN4 transmit I-Bit CAN4TIER (TXEIE2-TXEIE0) $90

$FF8E, $FF8F Port P Interrupt I-Bit PTPIF (PTPIE) $8E

$FF8C, $FF8D PWM Emergency Shutdown I-Bit PWMSDN (PWMIE) $8C

$FF80 to
$FF8B

Reserved

4

E
E

308
S
p
rin

g
2006

The Real Time Interrupt

• Like the Timer Overflow Interrupt, the Real Time Interrupt allows you to interrupt the processor at
a regular interval.

• Information on the Real Time Interrupt is in the CRG Block User Guide

• There are two clock sources for 9S12 hardware.

– Some hardware uses the Oscillator Clock. The RTI system uses this clock.

∗ For our 9S12, the oscillator clock is 8 MHz.

– Some hardware uses the Bus Clock. The Timer system (including the Timer Overflow Interrupt)
use this clock.

∗ For our 9S12, the bus clock is 24 MHz.

Interrupt
I Bit
CCR

.

. 1, 2, 4, 8, 16, 32, 64 .
.

.

.

D Q

VCC

Write
RTIF

Read
RTIF

RTIE Bit

RTR 6:4 (RTICTL)

1, 2, 3, 4, . . ., 16

RTR 3:0 (RTICTL)2OSC Clock 10

8 MHz

CRGINT
CRGFLG

5

EE 308 Spring 2006

• The specific interrupt mask for the Real Time Interrupt is the RTIE bit
of the CRGINT register.

• When the Real Time Interrupt occurs, the RTIF bit of the CRGFLG
register is set.

– To clear the Real Time Interrupt write a 1 to the RTIF bit of the
CRGFLG register.

• The interrupt rate is set by the RTR 6:4 and RTR 2:0 bits of the RTICTL
register. The RTR 6:4 bits are the Prescale Rate Select bits for the RTI,
and the RTR 2:0 bits are the Modulus Counter Select bits to provide
additional graunularity.

RTIF 0PORF LOCKIF LOCK TRACK SCMIF SCM

0

0x0037 CRGFLG

0x0038 CRGINTRTIE LOCKIE SCMIE0 0 0 0

RTR0RTR6 RTR5 RTR1 0x003B RTICTLRTR3 RTR20 RTR4

• To use the Real Time Interrupt, set the rate by writing to the RTR 6:4
and the RTR 3:0 bits of the RTICTL, and enable the interrupt by setting
the RTIE bit of the CRGINT register

– In the Real Time Interrupt ISR, you need to clear the RTIF flag by
writing a 1 to the RTIF bit of the CRGFLG register.

6

EE 308 Spring 2006

• The following table shows all possible values, in ms, selectable by the
RTICTL register (assuming the system uses a 8 MHz oscillator):

RTR 3:0 RTR 6:4

000 001 010 011 100 101 110 111

(0) (1) (2) (3) (4) (5) (6) (7)

0000 (0) Off 0.128 0.256 0.512 1.024 2.048 4.096 8.192

0001 (1) Off 0.256 0.512 1.204 2.048 4.096 8.192 16.384

0010 (2) Off 0.384 0.768 1.536 3.072 6.144 12.288 24.576

0011 (3) Off 0.512 1.024 2.048 4.096 8.192 16.384 32.768

0100 (4) Off 0.640 1.280 2.560 5.120 10.240 20.480 40.960

0101 (5) Off 0.768 1.536 3.072 6.144 12.288 24.570 49.152

0110 (6) Off 0.896 1.792 3.584 7.168 14.336 28.672 57.344

0111 (7) Off 1.024 2.048 4.096 8.192 16.384 32.768 65.536

1000 (8) Off 1.152 2.304 4.608 9.216 18.432 36.864 73.728

1001 (9) Off 1.280 2.560 5.120 10.240 20.480 40.960 81.920

1010 (A) Off 1.408 2.816 5.632 11.264 22.528 45.056 90.112

1011 (B) Off 1.536 3.072 6.144 12.288 24.576 49.152 98.304

1100 (C) Off 1.664 3.328 6.656 13.312 26.624 53.248 106.496

1101 (D) Off 1.729 3.584 7.168 14.336 28.672 57.344 114.688

1110 (E) Off 1.920 3.840 7.680 15.360 30.720 61.440 122.880

1111 (F) Off 2.048 4.096 8.192 16.384 32.768 65.536 131.072

7

EE 308 Spring 2006

• Here is a C program which uses the Real Time Interrupt:

#include "hcs12.h"

#include "vectors12.h"

#include "DBug12.h"

#define enable() asm(" cli")

void INTERRUPT rti_isr(void);

main()

{

DDRA = 0xff;

PORTA = 0;

RTICTL = 0x63; /* Set rate to 16.384 ms */

CRGINT = 0x80; /* Enable RTI interrupts */

CRGFLG = 0x80; /* Clear RTI Flag */

UserRTI = (unsigned short) &rti_isr;

enable();

while (1)

{

asm(" wai"); /* Do nothing -- wait for interrupt */

}

}

void INTERRUPT rti_isr(void)

{

PORTA = PORTA + 1;

CRGFLG = 0x80;

}

• Note that in the above program, the do-nothing loop has the instruction

asm("_wai"); /* Do nothing -- wait for interrupt */

The assembly-language instruction WAI (Wait for Interrrupt) stacks the

8

EE 308 Spring 2006

registers and puts the 9S12 into a low-power mode until an interrupt
occurs.

• This allows the 9S12 to get into the ISR more quickly (because the time
needed for pushing the registers on the stack has already been done),
and lowers the power consumption of the 9S12 (because it doesn’t have
to execute a continuous loop while waiting for the interrupt).

9

EE 308 Spring 2006

What happens when an 9S12 gets in unmasked interrupt:

1. Completes current instruction

2. Clears instruction queue

3. Calculates return address

4. Stacks return address and contents of CPU registers

5. Sets I bit of CCR

6. Sets X bit of CCR if an XIRQ interrupt is pending

7. Fetches interrupt vector for the highest-priority interrupt which is pend-
ing

8. Executes ISR at the location of the interrupt vector

What happens when an 9S12 exits an ISR with the RTI
instruction:

1. If no other interrupt pending,

(a) 9S12 recovers stacked registers

(b) Execution resumes at the return address

2. If another interrupt pending

(a) 9S12 recovers stacked registers

(b) Subtracts 9 from SP

(c) Sets I bit of CCR

(d) Sets X bit of CCR if an XIRQ interrupt is pending

(e) Fetches interrupt vector for the highest-priority interrupt which is
pending

(f) Executes ISR at the location of the interrupt vector

10

EE 308 Spring 2006

Capturing the Time of an External Event

• One way to determine the time of an external event is to wait for the
event to occur, the read the TCNT register:

• For example, to determine the time a signal on Bit 0 of PORTB changes
from a high to a low:

while ((PORTB & 0x01) != 0) ; /* Wait while Bit 0 high */

time = TCNT; /* Read time after goes low */

• Two problems with this:

1. Cannot do anything else while waiting

2. Do not get exact time because of delays in software

• To solve problems use hardware which latches TCNT when event occurs,
and generates an interrupt.

• Such hardware is built into the 9S12 — called the Input Capture System

11

EE 308 Spring 2006

Measure the time between two events

+5V

∆ t

PB0

PB1

+5V

PB0 PB1

How to measure ∆t?

Wait until signal goes low, then measure TCNT

while ((PORTB & 0x01) == 0x01) ;

start = TCNT;

while ((PORTB & 0x01) == 0x02) ;

end = TCNT;

dt = end - start;

12

EE 308 Spring 2006

Measure the time between two events

+5V

∆ t

PB0

PB1

+5V

PB0 PB1

How to measure

∆t?

Wait until signal goes low, then measure TCNT

while ((PORTB & 0x01) == 0x01) ;

start = TCNT;

while ((PORTB & 0x01) == 0x02) ;

end = TCNT;

dt = end - start;

Problems: 1) May not get very accurate time

2) Can’t do anything while waiting for signal

level to change.

13

EE 308 Spring 2006

Measure the time between two events

+5V

∆ t

PB0

PB1

+5V

TCNT

INTERRUPT

Solution: Latch TCNT on falling edge of signal

Read latched values when interrupt occurs

14

EE 308 Spring 2006

The 9S12 Input Capture Function

• The 9S12 allows you to capture the time an external event occurs on any
of the eight PORTT pins

• An external event is either a rising edge or a falling edge

• To use the Input Capture Function:

– Enable the timer subsystem (set TEN bit of TSCR1)

– Set the prescaler

– Tell the 9S12 that you want to use a particular pin of PORTT for input
capture

– Tell the 9S12 which edge (rising, falling, or either) you want to cap-
ture

– Tell the 9S12 if you want an interrupt to be generated when the
cature occurs

15

E
E

308
S
p
rin

g
2006

A Simplified Block Diagram of the 9S12 Input Capture Subsystem

Write

Read
TFLG1

TFLG1

D Q

VCC
00: Disable

TCNT

16 Bit Counter

Capture

01: Rising
10: Falling
11: Either

 Edge
RegisterEDGx B:A

(TCTL 3:4)

INPUT CAPTURE

TCx

CxI

CxF

CxF

Interrupt
I Bit
CCR

Prescaler

Port T Pin x set up as Input Capture (IOSx = 0 in TOIS)

PORTT Pin x

Bus Clock

TIE

16

EE 308 Spring 2006

Registers used to enable Input Capture Function

TSWAI TSBCK TFFCA

 you want to measure

TOI TCRE PR2 PR1 PR0

PR2 PR1 PR0

0

0 1

1 0

1 1

0

0

0 1

1 0

1 1

0

0

0

0

0

1

1

1

1

Period Overflow

(s) (ms)µ

Make sure the overflow time is greater than the time difference

TEN

0

Write a 1 to Bit 7 of TSCR1 to turn on timer

To turn on the timer subsystem: TSCR1 = 0x80;

0x0046 TSCR1

Set the prescaler in TSCR2

0x004D TSCR2 0 0

0.0416

0.0833

0.1667

0.3333

0.6667

1.3333

2.6667

5.3333

2.73

 5.46

10.92

21.84

 43.69

 86.38

174.76

349.53

To have overflow rate of 21.84 ms:

TSCR2 = 0x03;

17

EE 308 Spring 2006

Write a 0 to the bits of TIOS to make those pins input capture

Write to TCTL3 and TCTL4 to choose edge(s) to capture

EDGnB EDGnA Configuration

0 0 Disabled

0 1 Rising

1 0 Falling

1 1 Any

To make Pin 3 an input capture pin: TIOS = TIOS & ~0X08;

To have Pin 3 capture a rising edge:

TCTL4 = (TCTL4 | 0x40) & ~0x80;

IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0

EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A

EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A

0x0040 TIOS

0x004A TCTL3

0x004B TCTL4

CF7 CF6 CF4 CF3 CF2 CF0CF5 CF1 0x008E TFLG1

When specified edge occurs, the corresponding bit in TFLG1 will be set.

To clear the flag, write a 1 to the bit you want to clear (0 to all others)

To wait until rising edge on Pin 3: while ((TFLG1 & 0x08) == 0) ;

To clear flag bit for Pin 3: TFLG1 = 0x08;

C4I C2IC5I

bit in TMSK1 register

To enable interrupt when specified edge occurs, set corresponding

C7I C6I C3I C1I C0I

To determine time of specified edge, read 16−bit result registers TC0 thru TC7

To read time of edge on Pin 3:

unsigned int time;
time = TC3;

4

To enable interrupt on Pin 3: TIE = TIE | 0x08;

0x004C TIE

18

