
EE 308 Spring 2006

The HCS12 Output Compare Function

;

Want event to happen at a certain time

Want to produce pulse pulse with width T

PA0

T

while (TCNT != 0x0000) ;
PORTA = PORTA | 0x01;
while (TCNT != T) ;
PORTA = PORTA & ~0x01;

Wait until TCNT == 0x0000, then bring PA0 high

Wait until TCNT == T, then bring PA0 low

1

EE 308 Spring 2006

Want event to happen at a certain time

Want to produce pulse pulse with width T

PA0

T

while (TCNT != 0x0000) ;
PORTA = PORTA | 0x01;
while (TCNT != T) ;
PORTA = PORTA & ~0x01;

Wait until TCNT == 0x0000, then bring PA0 high

Wait until TCNT == T, then bring PA0 low

Problems:

1) May miss TCNT == 0x0000 or TCNT == T
2) Time not exact −− software delays
3) Cannot do anything else while waiting

2

E
E

308
S
p
rin

g
2006

Want event to happen at a certain time

Want to produce pulse pulse with width T

T

TCNT

0x0000

CMP

CMP

T

PT0

PT0CLK

When TCNT == 0x0000, the output goes high
When TCNT == T, the output goes low

=

=

S Q
R

Now pulse is exaclty T cycles long

3

E
E

308
S
p
rin

g
2006

D Q

VCC

Write

Read
TFLG1

TFLG1

Register

TCNT

16 Bit Counter

COMPARATOR

16 Bit

D Q

OUTPUT COMPARE PORT T 0−7
To use Output Compare, you must set IOSx to 1 in TIOS

11 => VCC
10 => GND
01 => Q

00 => Not Used

OMx OLx (TCTL 1:0)

PORT T

TCx Interrupt
I Bit
CCR

CxI

CxF

PTx Pin

Write time you want event
to happen to TCx Register

Tell HC12 what type
of event you want

TIE

CxF

Time Clock

Set rate with prescaler
Enable with TEN

4

EE 308 Spring 2006

The HCS12 Output Compare Function

• The HCS12 allows you to force an event to happen on any of the eight
PORTT pins

• An external event is a rising edge, a falling edge, or a toggle

• To use the Output Compare Function:

– Enable the timer subsystem (set TEN bit of TSCR1)

– Set the prescaler

– Tell the HCS12 that you want to use Bit x of PORTT for output
compare

– Tell the HCS12 what you want to do on Bit x of PORTT (generate
rising edge, falling edge, or toggle)

– Tell the HCS12 what time you want the event to occur

– Tell the HCS12 if you want an interrupt to be generated when the
event is forced to occur

• There are some more complicated features of the output compare sub-
system which are activated using registers CFORC, OC7M, OC7D and TTOV.

– Writing a 1 to the corresponding bit of CFORC forces an output com-
pare event to occur, the same as if a successful comparison has taken
place (Section 8.6.5 of Huang).

– Using OC7M and OC7D allow Timer Channel 7 to control multiple
output compare functions (Section 8.6.4 of Huang).

– Using TTOV allows you to toggle an output compare pin when TCNT

overflows. This allows you to use the output compare system to
generate pulse width modulated signals.

– We will not discuss these advanced features in this class.

5

EE 308 Spring 2006

TSWAI TSBCK TFFCA

TOI TCRE PR2 PR1 PR0

PR2 PR1 PR0

0

0 1

1 0

1 1

0

0

0 1

1 0

1 1

0

0

0

0

0

1

1

1

1

Period Overflow

(s) (ms)µ

TEN

0

Write a 1 to Bit 7 of TSCR1 to turn on timer

To turn on the timer subsystem: TSCR1 = 0x80;

0x0046 TSCR1

Set the prescaler in TSCR2

0x004D TSCR2 0 0

0.0416

0.0833

0.1667

0.3333

0.6667

1.3333

2.6667

5.3333

2.73

 5.46

10.92

21.84

 43.69

 86.38

174.76

349.53

To have overflow rate of 21.84 ms:

TSCR2 = 0x03;

Make sure the overflow time is greater than the width of the pulse

 you want to generate

6

EE 308 Spring 2006

IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 0x0080 TIOS

0 0

0 1

1 0

1 1

Write a 1 to the bits of TIOS to make those pins output compare

To make Pin 4 an output compare pin: TIOS = TIOS | 0X10;

Write to TCTL1 and TCTL2 to choose action to take

OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4

OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0

OMn OLn To have Pin 4 toggle on compare:

TCTL1 = (TCTL1 | 0x01) & ~0x02;Disconnected

Toggle

Clear

Set

Configuration

0x0048 TCTL1

0x0049 TCTL2

C4I C2IC5IC7I C6I C3I C1I C0I

To clear the flag, write a 1 to the bit you want to clear (0 to all others)

To wait until TCNT == TC4: while ((TFLG1 & 0x10) == 0) ;

To enable interrupt when compare occurs, set corresponding

Write time you want event to occur to TCn register.

To have event occur on Pin 4 when TCNT == 0x0000: TC4 = 0x0000;

To have next event occur T cycles after last event, add T to TCn.

To have next event occur on Pin 4 500 cycles later: TC4 = TC4 + 500;

When TCNT == TCn, the specified action will occur, and flag CFn will be set.

To clear flag bit for Pin 4: TFLG1 = 0x10;

CF7 CF6 CF4 CF3 CF2 CF0CF5 CF1 0x004E TFLG1

bit in TIE register

0x004C TIE

To enable interrupt when TCNT == TC4: TIE = TIE | 0x10;

7

EE 308 Spring 2006

USING OUTPUT COMPARE ON THE HCS12

1. In the main program:

(a) Turn on timer subsystem (TSCR1 reg)

(b) Set prescaler (TSCR2 reg)

(c) Set up PTx as OC (TIOS reg)

(d) Set action on compare (TCTL 1-2 regs, OMx OLx bits)

(e) Clear Flag (TFLG1 reg)

(f) Enable int (TIE reg)

2. In interrupt service routine

(a) Set time for next action to occur (write TCx reg)

• For periodic events add time to TCx register

(b) Clear flag (TFLG1 reg)

8

EE 308 Spring 2006

/*

* Program to generate square wave on PT2

* Frequency of square wave is 500 Hz

* Period of square wave is 2 ms

* Set prescale to give 0.667 us cycle

* 2 ms is 3,000 cycles of 1.5 MHz clock

*

*/

#include "hcs12.h"

#include "vectors12.h"

#define PERIOD 3000

#define HALF_PERIOD (PERIOD/2)

#define TRUE 1

#define enable() asm(" cli")

void INTERRUPT toc2_isr(void);

main()

{

TSCR1 = 0x80; /* Turn on timer subsystem */

TSCR2 = 0x04; /* Set prescaler to 15 (0.666 us) */

TIOS = TIOS | 0x04; /* Configure PT2 as Output Compare */

TCTL2 = (TCTL2 | 0x10) & ~0x20; /* Set up PT2 to toggle on compare */

TFLG2 = 0x04; /* Clear Channel 2 flag */

/* Set interrupt vector for Timer Channel 2 */

UserTimerCh2 = (unsigned short) &toc2_isr;

TIE = TIE | 0x04; /* Enable interrupt on Channel 2 */

enable();

while (TRUE)

{

asm("wai");

}

}

void INTERRUPT toc2_isr(void)

{

TC2 = TC2 + HALF_PERIOD;

TFLG1 = 0x04;

}

9

EE 308 Spring 2006

Setting and Clearing Bits in the Timer Subsystem

• Registers in the timer subsystem control multiple timer channels.

– Usually, you want to use ANDS and ORS to change only that channel
you are working on.

– For example, to make Channel 2 an output compare, and set it to
toggle on compare, do this:

TIOS = TIOS | 0x04; /* Configure PT2 as Output Compare */

TCTL2 = (TCTL2 | 0x10) & ~0x20; /* Set up PT2 to toggle on compare */

– Do not do this:

TIOS = 0x04; /* Configure PT2 as Output Compare */

TCTL2 = 0x10); /* Set up PT2 to toggle on compare */

This would set up Channel 2 as an output compare, toggle on suc-
cessful compare. However, it will force all the other channels to input
capture – this may not be what you want to do.

• To clear a flag bit, do not use ORs!

– To clear Timer Channel 2 flag, do the following:

TFLG1 = 0x04;

This will clear Timer Channel 2 flag, and leave all other flags unaf-
fected.

– Do not do this:

TFLG1 = TFLG1 | 0x04; /* DO NOT DO THIS */

This will clear Timer Channel 2 flag, but will also clear any other
flag which is set.

Suppose, for example, Timer Channel 2 and Timer Channel 3 flags
are both set at the same time, so TFLG1 register is 0x0C. You want
to deal the Timer Channel 2 first and Timer Channel 3 afterwards.

The command:

TFLG1 = TFLG1 | 0x04; /* DO NOT DO THIS */

will read TFLG1, which will return an 0x0C. ORing that with a 0x04

will result in an 0x0C. Writing that back to TFLG1 will clear Timer
Channel 2 flag and Timer Channel 3 flag. Now Timer Channel 3
flag is cleared, so you will never deal with the event which set Timer
Channel 3 flag.

10

EE 308 Spring 2006

Another Output Capture Example

• Suppose you want to generate a signal which looks like this:

3 ms 7 ms

• Need to set prescaler to a value such that the overflow rate is greater
than 7 ms.

• Need to do something different each time you enter the ISR

3 ms 7 ms

Add 3 ms to TC1
Set output to go low

Add 7 ms to TC1
Set output to go high

/*

* Program to generate a signal wilth

* a 100 Hz frequency and a 30% duty cycle

*

*/

#include "hcs12.h"

#include "vectors12.h"

#define HIGH 4500 /* At 1.5 MHz, 4500 cycles = 3 ms */

#define LOW 10500 /* At 1.5 MHz, 10500 cycles = 7 ms */

#define TRUE 1

#define enable() asm(" cli")

void INTERRUPT toc1_isr(void);

volatile int phase;

11

EE 308 Spring 2006

main()

{

TSCR1 = 0x80; /* Turn on timer subsystem */

TSCR2 = 0x04; /* Set prescaler to 1.5 MHz (0.666 us) */

TIOS = TIOS | 0x02; /* Configure PT1 as Output Compare */

TCTL2 = TCTL2 | 0xC0; /* Set up PT1 to go high on compare */

TFLG2 = 0x02; /* Clear Channel 1 flag */

/* Set interrupt vector for Timer Channel 1 */

UserTimerCh1 = (unsigned short) &toc1_isr;

TIE = TIE | 0x02; /* Enable interrupt on Channel 1 */

phase = 0; /* Keep track of how many times in ISR */

enable();

while (TRUE)

{

asm("wai");

}

}

void INTERRUPT toc1_isr(void)

{

if (phase == 0)

{

TC1 = TC1 + HIGH; /* Stay high this long */

TCTL2 = TCTL2 & ~0x04; /* Next compare, go low */

phase = 1; /* Flag to say output is high */

}

else

{

TC1 = TC1 + LOW; /* Stay low this long */

TCTL2 = TCTL2 | 0x04; /* Next time go high */

phase = 0; /* Flag to say output is low */

}

TFLG1 = 0x02; /* Clear Channel 1 flag */

}

12

EE 308 Spring 2006

Pulse Width Modulation

• Often want to control something by adjusting the percentage of time the
object is turned on

• For example,

– A DC motor — the higher the percentage, the faster the motor goes

– A light – the higher the percentage, the brighter the light

– A heater – the higher the percentage, the more heat output

• Can use Output Compare to generate a PWM signal

• Because PWM is used so often the HCS12 has a built-in PWM system

• The PWM system on the HCS12 is very flexible

– It allows you to set a wide range of PWM frequencies

– It allows you to generate up to 8 separate PWM signals, each with
a different frequency

– It allows you to generate 8-bit PWM signals (with 0.5% accuracy)
or 16-bit PWM signals (with 0.002% accuracy)

– It allows you to select high polarity or low polarity for the PWM
signal

– It allows you to use left-aligned or center-aligned PWM signals

• Because the HCS12 PWM systes is so flexible, it is fairly complicated to
program

• To simplify the discussion we will only discuss 8-bit, left-aligned, high-
polarity PWM signals.

13

E
E

308
S
p
rin

g
2006

% High

Period

Need a way to set the PWM period and duty cycle

 The HC12 sets the PWM period by counting from 0 the some maximum count

 with a special PWM clock

 Once the PWM period is selected, the PWM duty cycle is set by telling the

 HC12 how many counts it should keep the signal high for

 PWM Duty Cycle = (Count High + 1)/(Max Count + 1)

 PWM Period = PWM Clock Period x (Max Count + 1)

Pulse Width Modulation

 The hard part about PWM on the HC12 is figuring out how to set the PWM Period

14

EE 308 Spring 2006

The HCS12 Pulse Width Modulation System

PER

DTY

Pulse Width Modulation

Control speed of motor by adjusting percent

of time power is applied to the motor.

Need to choose period, and have a way to adjust
duty cycle

• The HCS12 has a flexible, and complicated, PWM system

• There are eight 8-bit PWM channels

– Two 8-bit channels can be combined into a single 16-bit channel

– We will discuss only 8-bit mode

• You can select center-aligned or left-aligned PWM

– We will discuss only left-aligned mode

• You can select high polarity or low polarity

– We will discuss only high polarity mode

• Full information about the HCS12 PWM subsystem can be found in
PWM 8B8C Block User Guide.

15

http://www.ee.nmt.edu/~rison/datasheets/ee308/S12PWM8B8CV1.pdf

