
EE 308 Spring 2006

Parallel Data Transfer

• Suppose you need to transfer data from one HCS12 to another. How can
you do this?

• You could connect PORTA of the sending computer (set up as an output
port) to PORTA of the receiving computer (set up as an input port).

• The sending computer puts the data on its PORTA, one byte at a time.

• The receiving computer reads the data on its PORTA.

• For example, want to sent the five bytes corresponding to the five char-
acters ”hello”:

Port A

0x68 0x65 0x6c 0x6f

h e o

Port A

PARALLEL COMMUNICATIONS

l

Need 9 wires to transmit 8 bits of data

How can receiver tell when it should read the data?

Port A

1



EE 308 Spring 2006

Parallel Data Transfer

• The sending computer needs to tell the receiving computer when to read
the data.

• It can do this with another line used as a clock line.

• On the rising edge of the clock line, the receiving computer should read
the data:

Port A

0x68 0x65 0x6c 0x6f

h e ll o

Port A

clkclkclk

PARALLEL COMMUNICATIONS

Need 10 wires to transmit 8 bits of data

Port A

2



EE 308 Spring 2006

Parallel Data Transfer

– How can the sending computer know that the receiving computer
has received the data?

– Can use a method called handshaking.

∗ The sending computer uses a Data Valid line to tell the receiving
computer that the data on the data lines is valid.

∗ The receiving computer uses a Data Received line to tell the send-
ing computer that it has read the current data byte.

Port APort A

PARALLEL COMMUNICATIONS

Use two lines −− Handshake −− sender knows when receiver
is ready for new data.

NEW DATA

Need 11 wires to transmit 8 bits of data

DV
DR

DV

DR

Port A

– In the above figure, the sending computer puts the data on the data
lines and brings DV low to indicate new data is available.

– When the receiving computer sees the new data is available it reads
the data on the data lines, then brings DR low to say that it has
read the data.

– When the sending computer sees DR go low, it brings DV high.

– When the receiving computer sees DV go high, it brings DR high.

– Both computers are now ready for the next data transfer.

3



EE 308 Spring 2006

Serial Data Transfer

• Using parallel data transfer you can use 10 wires to transfer one byte at
a time from one computer to another.

• Using 18 wires, you can transfer two bytes (16 bits) at a time.

• Parallel data transfer is a very fast way to transfer data between two
computers.

• There are two problems with parallel data transfer:

– It takes a lot of wires between the computers.

– It uses lots of I/O pins on the computers.

• Serial data transfer is a slower transfer mechanism, but it uses fewer
wires and fewer I/O pins.

• Serial data transfer sends one bit at a time between two computers:

SERIAL COMMUNICATIONS

serial out serial in

0 1 0 1 0

’h’ = 0x68 = B"01101000"

Can’t tell how many ones or zeros there are

4



EE 308 Spring 2006

Synchronous Serial Data Transfer

• To use serial data transfer, you need to have a way for the receiving
computer to know when the data bit is valid.

• There are two ways to do this:

– Synchronous Serial Data Transfers (SPI on the HCS12)

– Asynchronous Serial Data Transfers (SCI on the HCS12)

• Synchronous Seraial Data Transfer uses a clock line between the two
computers for the sending computer to tell the receiving computer when
each data bit is valid:

clkclkclk clk

serial out serial in

0 1 1 0 1 0 00

Need 3 wires to transmit 1 bit at a time

’h’ = 0x68 = B"01101000"

SYNCHRONOUS SERIAL COMMUNICATIONS

5



EE 308 Spring 2006

Synchronous Serial Data Transfer

• In synchronous serial data transfer, the sending computer puts the data
byte it wants to send into an internal shift register.

• The sending computer uses a clock to shift the 8 data bits out of the
shift register onto an external data pin.

• The receiving computer puts the data from the sending computer on the
input of an internal shift register.

• The receiving computer uses the clock from the sending computer to
shift the data into its shift register.

• After 8 clock ticks, the data has been transfered from the sending com-
puter to the recieving computer.

0 1 1 0 1 0 00

Need 3 wires to transmit 1 bit at a time

’h’ = 0x68 = B"01101000"

SYNCHRONOUS SERIAL COMMUNICATIONS

clkclkclk

clk

shift register shift register

6



EE 308 Spring 2006

The HCS12 Serial Peripheral Interface (SPI)

• The HCS12 has a Synchronous Serial Interface

• On the HCS12 it is called the Serial Peripheral Interface (SPI)

• If an HCS12 generates the clock used for the synchronous data transfer
it is operating in Master Mode.

• If an HCS12 uses and external clockused for the synchronous data trans-
fer it is operating in Slave Mode.

• If two HCS12’s talk to each other using their SPI’s one must be set up
as the Master and the other as the Slave.

• The output of the Master SPI shift register is connected to the input of
the Slave SPI shift register over the Master Out Slave In (MOSI) line.

• The input of the Master SPI shift register is connected to the output of
the Slave SPI shift register over the Master In Slave Out (MISO) line.

• After 8 clock ticks, the data originally in the Master shift register has
been transfered to the slave, and the data in the Slave shift register has
been transfered to the Master.

7



EE 308 Spring 2006

Clock

MOSI

MISO

Master Slave

Clk

SS

MOSI

T

V
11010110

T

V

Clock

T

V

MISO

10100101

SP0DR SP0DR

Synchronous Serial Communications

8



EE 308 Spring 2006

Use of Slave Select with the HCS12 SPI

• A master HCS12 can talk with more than one slave HCS12’s

• A slave HCS12 uses its Slave Select (SS) line to determine if it is the one
the master is talking with

• There can only be one master HCS12, because the master HCS12 is the
device which generates the serial clock signal.

Master

SS SS

MOSI

MISO

Clock

Slave 1 Slave 2

Synchronous Serial Communications

With select lines, one master can communicate with more than one slave

9



EE 308 Spring 2006

Using the HCS12 SPI with other devices

• The HCS12 can communicate with many types of devices using its SPI

• For example, consider a D/A (Digital-to-Analog) Converter

• The D/A converter has three digital lines connected to the HCS12:

– Serial Data

– Serial Clock

– Chip Select

• The HCS12 can send a digital number to the D/A converter. The D/A
converter will convert this digital number to a voltage.

Master

SPI Communication with a D/A Converter

MOSI

Clock

SS

SDATA

SCLK

CS

D/A Chip

Vout

10



EE 308 Spring 2006

Using the HCS12 SPI with other devices

• Another type of device the HCS12 can talk to is a Real Time Clock
(RTC)

• An RTC keeps track of the time (year, month, day, hour, minute, second)

• An RTC can be programmed to generate an alarm (interrupt) at a par-
ticular time (07:00), or can generate a periodic interrupt at a regular
interval (once a second, once an hour, etc.)

• The HCS12 initially tells the RTC what the correct time is.

• The RTC keeps track of time from then on.

Master

SS CS

SPI Communication with a Real Time Clock

RTC Chip

Batt

MOSI

Clock SCLK

MISO Dout

Din

IntINT

11



EE 308 Spring 2006

Using the HCS12 SPI with other devices

• An interface with even fewer wires can be implemented by using one data
line in bidirectional mode.

• In bidirectional mode, a single data line functions both as serial data in
and serial data out.

• In lab, we will connect our 9S12 to a Dallas Semiconductor DS1302 Real
Time Clock, which uses a three-wire serial interface with a bidirectional
data line.

• The MOSI line on the 9S12 becomes a MOMI (Master Out Master In)
line.

– When the 9S12 wants to write data to the DS1302, it makes MIMO
an output.

– When the 9S12 wants to read data from the DS1302, it makes MIMO
an input.

Master

SS CS

RTC Chip

Batt
Clock SCLK

with a Real Time Clock

DataMIMO

When used as a master in bidirectional mode, the Master Out Slave In
pin becomes the Master Out Master In Pin

Bidirectional (3−Wire) SPI Communication

12



EE 308 Spring 2006

• In a system, an HCS12 can communicate with many different devices
over its SPI interface.

• It uses the same data and clock lines, and selects different devices by
using GPIO lines as slave selects.

13


