
EE 308 Spring 2006

Fixes to Lab 4

• The wheel has 15 holes, not 19.

• The minimum speed you should be able to measure should be 20 RPM,
not 5 RPM.

9

10

3

4

5

6

7

8

11

12

13

14

15

16

2

Vcc

Optical Encoder

Display
PC

RS−232

TxD RxD

Tmotor

Port T7

9S12

Motor

+5V

Port Px

Port Ax
ENA1

ENA1

IN1

VM

OUT1

GND

GND

GND

GND

OUT4

IN4

OUT3

IN3

VDD

L293D

+15V

1

green

yellow

+5V

red

black

blue

OUT2

IN2

1

EE 308 Spring 2006

The 9S12 Serial Peripheral Interface (SPI)

• The 9S12 has a Synchronous Serial Interface

• On the 9S12 it is called the Serial Peripheral Interface (SPI)

• Information on the SPI can be found in the SPI Block User Guide.

• If an 9S12 generates the clock used for the synchronous data transfer it
is operating in Master Mode.

• If an 9S12 uses and external clock used for the synchronous data transfer
it is operating in Slave Mode.

• If two 9S12’s talk to each other using their SPI’s one must be set up as
the Master and the other as the Slave.

• The output of the Master SPI shift register is connected to the input of
the Slave SPI shift register over the Master Out Slave In (MOSI) line.

• The input of the Master SPI shift register is connected to the output of
the Slave SPI shift register over the Master In Slave Out (MISO) line.

• After 8 clock ticks, the data originally in the Master shift register has
been transfered to the slave, and the data in the Slave shift register has
been transfered to the Master.

2

http://www.ee.nmt.edu/~rison/datasheets/ee308/S12SPIV2.pdf

EE 308 Spring 2006

Clock

MOSI

MISO

Master Slave

Clk

SS

MOSI

T

V
11010110

T

V

Clock

T

V

MISO

10100101

Synchronous Serial Communications

SPI0DR SPI0DR

3

EE 308 Spring 2006

Use of Slave Select with the 9S12 SPI

• A master 9S12 can talk with more than one slave 9S12’s

• A slave 9S12 uses its Slave Select (SS) line to determine if it is the one
the master is talking with

• There can only be one master 9S12, because the master 9S12 is the device
which generates the serial clock signal.

Master

SS SS

MOSI

MISO

Clock

Slave 1 Slave 2

Synchronous Serial Communications

With select lines, one master can communicate with more than one slave

4

EE 308 Spring 2006

Using the 9S12 SPI with other devices

• The 9S12 can communicate with many types of devices using its SPI

• For example, consider a D/A (Digital-to-Analog) Converter

• The D/A converter has three digital lines connected to the 9S12:

– Serial Data

– Serial Clock

– Chip Select

• The 9S12 can send a digital number to the D/A converter. The D/A
converter will convert this digital number to a voltage.

Master

SPI Communication with a D/A Converter

MOSI

Clock

SS

SDATA

SCLK

CS

D/A Chip

Vout

5

EE 308 Spring 2006

Using the 9S12 SPI with other devices

• Another type of device the 9S12 can talk to is a Real Time Clock (RTC)

• An RTC keeps track of the time (year, month, day, hour, minute, second)

• An RTC can be programmed to generate an alarm (interrupt) at a par-
ticular time (07:00), or can generate a periodic interrupt at a regular
interval (once a second, once an hour, etc.)

• The 9S12 initially tells the RTC what the correct time is.

• The RTC keeps track of time from then on.

Master

SS CS

SPI Communication with a Real Time Clock

RTC Chip

Batt

MOSI

Clock SCLK

MISO Dout

Din

IntINT

• In a system, an 9S12 can communicate with many different devices over
its SPI interface.

6

EE 308 Spring 2006

Using the HCS12 SPI with other devices

• An interface with even fewer wires can be implemented by using one data
line in bidirectional mode.

• In bidirectional mode, a single data line functions both as serial data in
and serial data out.

• In lab, we will connect our 9S12 to a Dallas Semiconductor DS1302 Real
Time Clock, which uses a three-wire serial interface with a bidirectional
data line.

• The MOSI line on the 9S12 becomes a MOMI (Master Out Master In)
line.

– When the 9S12 wants to write data to the DS1302, it makes MIMO
an output.

– When the 9S12 wants to read data from the DS1302, it makes MIMO
an input.

Master

SS CS

RTC Chip

Batt
Clock SCLK

with a Real Time Clock

DataMIMO

When used as a master in bidirectional mode, the Master Out Slave In
pin becomes the Master Out Master In Pin

Bidirectional (3−Wire) SPI Communication

7

EE 308 Spring 2006

• In a system, an HCS12 can communicate with many different devices
over its SPI interface.

• It uses the same data and clock lines, and selects different devices by
using GPIO lines as slave selects.

8

EE 308 Spring 2006

Using the 9S12 SPI

• In synchronous serial communications, one device talks to another using
a serial data line and a serial clock.

• There are a number of decisions to be made before communication can
begin.

• For example

– Is the 9S12 operating in master or slave mode?

– Is the serial data sent out most significant bit (MSB) first, or least
significant bit (LSB) first?

– How many bits are sent in a single transfer cycle?

– Is the data valid on the rising edge or the falling edge of the clock?

– Is the data valid on the first edge or the second edge of the clock?

– What is the speed of the data transfer (how many bits per second)?

– Are there two uni-directional data lines or one bi-directional data
line?

• The 9S12 SPI is very versatile, and allows you to program all of these
parameters.

• The 9S12 SPI has 5 registers to set up and use the SPI system.

0

SPE MSTR CPOL CPHA SSOE

0 0 0 SPC0

0

0

SPR2 SPR1 SPR0

0 0 0SPIF MODF

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SPI0CR1

SPI0CR2

SPI0BR

SPI0SR

SPI0DR

SPTIE LSBFE 0x00D8

0x00D9

0x00DA

0x00DB

0x00DD

SPISWAIMODFEN BIRDIROE 0

SPPR1 SPPR0

0 SPTEF

SPIE

SPPR2

9

EE 308 Spring 2006

Setting up the 9S12 SPI Clock Mode

• You can program the SPI clock to determine the following things:

• Is the data valid on the first or the second edge of the clock (clock phase)?

• Is the clock idle high or idle low (clock polarity)?

• This setup is done in the SPI0CR0 register.

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

CPOL = 0, CPHA = 1

CPOL = 1, CPHA = 0

CPOL = 0, CPHA = 0

CPOL = 1, CPHA = 1

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

CPOL = 0: SCK idle low
CPOL = 1: SCK idle high

Bit 3: CPOL
CPHA = 0: Data valid on first clock edge
CPHA = 1: Data valid on second clock edge

Bit 2: CPHA

SPI Clock Polarity and Phase (SP0CR1 Bits 3 & 2)

SPPR2−SPPR0 −− SPI Baud Rate Preselection Bits
SCLK Speed (SP0BR Bits 6, 5, 4, 2, 1 & 0)

SPR2−SPR0 −− SPI Baud Rate Selection Bits

Baud Rate = Bus Clock / Baud Rate Divison

Baud Rate Divisor = (SPPR + 1) x 2
(SPR + 1)

10

EE 308 Spring 2006

Setting up the 9S12 SPI Clock Mode

• The speed of the 9S12 clock is set up in the SPI0BR register.

• The clock speed is set only if the 9S12 is being used as a master.

• The possible clock speeds (for an 24 MHz E-clock) are:

SPPR2 SPPR1 SPPR0 SPR2 SPR1 SPR0 E Clock Frequency at

Divisor bus clock = 24 MHz

0 0 0 0 0 0 2 12.0 MHz

0 0 0 0 0 1 4 6.0 MHz

0 0 0 0 1 0 8 3.0 MHz

0 0 0 0 1 1 16 1.5 MHz

0 0 0 1 0 0 32 750.0 kHz

0 0 0 1 0 1 64 375.0 kHz

0 0 0 1 1 0 128 187.5 kHz

0 0 0 1 1 1 256 93.75 kHz

0 0 1 0 0 0 4 6.0 MHz

0 0 1 0 0 1 8 3.0 MHz

0 0 1 0 1 0 16 1.5 MHz

0 0 1 0 1 1 32 750.0 kHz

0 0 1 1 0 0 64 375.0 kHz

0 0 1 1 0 1 128 187.5 kHz

0 0 1 1 1 0 256 93.75 kHz

0 0 1 1 1 1 512 46.875 kHz

0 1 0 0 0 0 6 4.0 MHz

0 1 0 0 0 1 12 2.0 MHz

0 1 0 0 1 0 24 1.0 MHz

0 1 0 0 1 1 48 500.0 kHz

0 1 0 1 0 0 96 250.0 kHz

0 1 0 1 0 1 192 125.0 kHz

0 1 0 1 1 0 384 62.5 kHz

0 1 0 1 1 1 768 31.25 kHz

11

EE 308 Spring 2006

SPPR2 SPPR1 SPPR0 SPR2 SPR1 SPR0 E Clock Frequency at

Divisor bus clock = 24 MHz

0 1 1 0 0 0 8 3.0 MHz

0 1 1 0 0 1 16 1.5 MHz

0 1 1 0 1 0 32 750.0 kHz

0 1 1 0 1 1 64 375.0 kHz

0 1 1 1 0 0 128 187.5 kHz

0 1 1 1 0 1 256 93.75 kHz

0 1 1 1 1 0 512 46.875 kHz

0 1 1 1 1 1 1024 23.438 kHz

1 0 0 0 0 0 10 2.4 MHz

1 0 0 0 0 1 20 1.2 MHz

1 0 0 0 1 0 40 600.0 kHz

1 0 0 0 1 1 80 300.0 kHz

1 0 0 1 0 0 160 150.0 kHz

1 0 0 1 0 1 320 75.0 kHz

1 0 0 1 1 0 640 37.5 kHz

1 0 0 1 1 1 1280 18.75 kHz

1 0 1 0 0 0 12 2.0 MHz

1 0 1 0 0 1 24 1.0 MHz

1 0 1 0 1 0 48 500.0 kHz

1 0 1 0 1 1 96 250.0 kHz

1 0 1 1 0 0 192 125.0 kHz

1 0 1 1 0 1 384 62.5 kHz

1 0 1 1 1 0 768 31.25 kHz

1 0 1 1 1 1 1536 15.625 kHz

1 1 0 0 0 0 14 1.714 MHz

1 1 0 0 0 1 28 857.14 kHz

1 1 0 0 1 0 56 428.57 kHz

1 1 0 0 1 1 112 214.29 kHz

1 1 0 1 0 0 224 107.14 kHz

1 1 0 1 0 1 448 53.57 kHz

1 1 0 1 1 0 896 26.785 kHz

1 1 0 1 1 1 1792 13.39 kHz

1 1 1 0 0 0 16 1.5 MHz

1 1 1 0 0 1 32 750 kHz

1 1 1 0 1 0 64 375.0 kHz

1 1 1 0 1 1 128 187.5 kHz

1 1 1 1 0 0 256 93.75 kHz

1 1 1 1 0 1 512 46.875 kHz

1 1 1 1 1 0 1024 23.438 kHz

1 1 1 1 1 1 2048 11.719 kHz

12

EE 308 Spring 2006

Using the 9S12 Serial Peripheral Interface

Things to set up when using the 9S12 SPI subsystem

• Enable SPI

• Master or Slave?

– Master generates clock for data transfers; slave uses master’s clock

• MSB first or LSB first?

– Normally, MSB first

• Clock Polarity

– Clock idle low or clock idle high?

• Clock Phase

– Data valid on first clock edge or second clock edge?

• Clock Speed (set by Master)

• Generate interrupt after data transfered?

• Bidirectional Mode

Use the following registers:

SPI0CR1, SPI0CR2, SPI0BR, SPI0SR, SPI0DR

13

EE 308 Spring 2006

1. Enable SPI (SPE bit of SPI0CR1)

2. Clock phase and polarity set to match device communicating with

3. Select clock polarity – CPOL bit of SPI0CR1

• CPOL = 0 for clock idle low

• CPOL = 1 for clock idle high

4. Select clock phase – CPHA bit of SPI0CR1

• CPHA = 0 for data valid on first clock edge

• CPHA = 1 for data valid on second clock edge

5. Select master or slave MSTR bit of SPI0CR1

• Will be master when talking to devices such as D/A, A/D, clock,
etc.

• May be slave if talking to another microprocessor

6. If you want to receive interrupt after one byte transfered, enable inter-
rupts with SPIE bit of SPI0CR1

• Normally master will not use interrupts – transfers are fast enough
that you will normally wait for transfer to complete

• Will often use interrupts when configured as a slave – you will get
interrupt when master sends you data

7. Configure LSBF of SPI0CR1 for MSB first (LSBF = 0) or LSB first (LSBF = 1)

• For most devices, use MSB first

8. Configure for uni-directional mode (bit SPC0 = 0) or bi-directiona mode
(bit �SPC0 = 1) in SPI0CR2

• Bidirectional mode (SPC0 = 1 in SPI0CR2) used for three-wire com-
munication.

• When in bidirectional mode, the BIDIROE bit of SPI0CR2 determines
if the data line is input or output. receiver

14

EE 308 Spring 2006

Master Mode:

1. Set clock rate – SPPR2:0 and SPR2:0 bits of SPI0BR

• Normally select clock at highest rate compatible with slave

2. If using bidirectional mode, MOSI pin is used for data (now called MOMI,
or Master Out Master In).

3. MISO automatically configured as input by choosing master mode

4. Configure some way to select slave(s) – probably SS if only one slave;
other I/O bits if multiple slaves

5. Start data transfer by writing byte to SPI0DR

6. After transfer complete (8 clock cycles), SPIF bit of SPI0SR set.

• If writing data to slave, can send next byte to SPI0DR

• If reading data from slave, can read data from SPI0DR

7. Set up SSOE of SPI0CR1

• SSOE = 0 if you want to control SS yourself (to be able to send more
than one byte with SS low)

• SSOE = 1 and MODFEN = 1 if you want to SS controlled automatically
(SS will be active for one byte at a time)

Slave Mode:

1. No need to set clock speed – slave accepts data at rate sent by master
(up to 12 MHz)

2. If using bidirectional mode, MISO pin is used for data (now called SISO,
or Slave In Slave Out).

3. No need to Make MOSI, SCLK, and SS inputs – this is done automati-
cally when configuring 9S12 as slave

• If receiving data from master, wait until SPIF flag of SPI0SR set (or
until SPI interrupt received), then read data from SPI0DR

• If sending data to master, write data to SPI0DR before master starts
transfer

15

EE 308 Spring 2006

A C program to use the 9S12 in master mode

#include "hcs12.h"

main()

{

char tmp;

/* Use Bit 0 of Port A for Slave Select */

DDRA = 0xff; /* Port A output */

/**

* SPI Setup

***/

SPI0CR1 = 0x50; /* 0 1 0 1 0 0 0 0

| | | | | | | |

| | | | | | | ____ MSB first

| | | | | | ______ Do not use SS to automatically

| | | | | | select slave

| | | | | ________ 0 phase (data on 1st clock edge)

| | | | __________ 0 polarity (clock idle low)

| | | ____________ Master mode

| | ______________ No interrupts on transmit

| ________________ Enable SPI

__________________ No interrupts

*/

SPI0CR2 = 0x00; /* Normal (not bi-directional) mode */

SPI0BR = 0x00; /* 12 MHz SPI clock */

/**

* End of SPI Setup

**/

PORTA = PORTA & ~0x01; /* Select slave */

while ((SPI0SR & 0x20) == 0) ; /* Wait for SPITEF flag */

SPI0DR = ’h’; /* Send ’h’ */

while ((SPI0SR & 0x80) == 0) ; /* Wait for transmission to complete */

tmp = SPI0DR; /* Clear SPIF flag */

PORTA = PORTA | 0x01; /* Deselect slave */

PORTA = PORTA & ~0x01;

while ((SPI0SR & 0x20) == 0) ; /* Wait for SPITEF flag */

SPI0DR = ’e’; /* Send ’e’ */

while ((SPI0SR & 0x80) == 0) ; /* Wait for transmission to complete */

tmp = SPI0DR; /* Clear SPIF flag */

16

EE 308 Spring 2006

PORTA = PORTA | 0x01;

PORTA = PORTA & ~0x01;

while ((SPI0SR & 0x20) == 0) ; /* Wait for SPITEF flag */

SPI0DR = ’l’; /* Send ’l’ */

while ((SPI0SR & 0x80) == 0) ; /* Wait for transmission to complete */

tmp = SPI0DR; /* Clear SPIF flag */

PORTA = PORTA | 0x01;

PORTA = PORTA & ~0x01;

while ((SPI0SR & 0x20) == 0) ; /* Wait for SPITEF flag */

SPI0DR = ’l’; /* Send ’l’ */

while ((SPI0SR & 0x80) == 0) ; /* Wait for transmission to complete */

tmp = SPI0DR; /* Clear SPIF flag */

PORTA = PORTA | 0x01;

PORTA = PORTA & ~0x01;

while ((SPI0SR & 0x20) == 0) ; /* Wait for SPITEF flag */

SPI0DR = ’o’; /* Send ’o’ */

while ((SPI0SR & 0x80) == 0) ; /* Wait for transfer to finish */

tmp = SPI0DR; /* Clear SPIF flag */

PORTA = PORTA | 0x01;

}

17

EE 308 Spring 2006

Here is a version using a loop to transfer data:

#include "hcs12.h"

main()

{

const char data[] = "hello";

int i;

char tmp;

/* Use Bit 0 of Port A for Slave Select */

DDRA = 0xff; /* Port A output */

/**

* SPI Setup

***/

SPI0CR1 = 0x50; /* 0 1 0 1 0 0 0 0

| | | | | | | |

| | | | | | | ____ MSB first

| | | | | | ______ Do not use SS to automatically

| | | | | | select slave

| | | | | ________ 0 phase (data on 1st clock edge)

| | | | __________ 0 polarity (clock idle low)

| | | ____________ Master mode

| | ______________ No interrupts on transmit

| ________________ Enable SPI

__________________ No interrupts

*/

SPI0CR2 = 0x00; /* Normal (not bi-directional) mode */

SPI0BR = 0x00; /* 12 MHz SPI clock */

/**

* End of SPI Setup

**/

for (i=0; ; i++)

{

if (data[i] == ’\0’) break; /* Exit loop at end of string */

PORTA = PORTA & ~0x01; /* Select slave */

while ((SPI0SR & 0x20) == 0) ; /* Wait for SPITEF flag */

SPI0DR = data[i]; /* Send data */

while ((SPI0SR & 0x80) == 0) ; /* Wait for transmission to complete */

tmp = SPI0DR; /* Read SPI0DR to clear SPIF */

PORTA = PORTA | 0x01; /* Deselect slave */

}

}

18

