
EE 308 Spring 2006

Using the 9S12 SPI

• The SPI has a data register (SPIDR) and a shift register.

• To write data to the SPI, you write to the SPIDR data register. The
9S12 automatically transfers the data to the shift register for transfer.

– The SPTEF (SPI Tranmsit Empty Flag) indicates whether it is okay
to write new data to the SPIDR.

– Make sure the SPTEF is set before writing to the SPI Data Register.

– The SPTEF flag is automatically cleared when data is written to the
SPI data register, and is automatically set when data is transfered
from the data register to the shift register.

– When you first write a byte of data to SPIDR, the SPTEF bit is
cleared, the data is transfered immediately to the shift register, and
the SPTEF flag is set, indicating that it is okay to write another byte
to SPIDR. It does not mean that the transmission of the first byte
has finished.

8−Bit Shift Register

Baud
SPI

SPI Data Register

MISO

MOSI

• To read data from the SPI, you read from the SPIDR after the trans-
mission has completed.

– The SPIF (SPI Flag) indicates that a tranmission has completed,
and that it is okay to read data from the SPIDR.

1

EE 308 Spring 2006

– Make sure the SPIF (SPI Flag) is set before reading from the SPI
Data Register.

– The SPIF flag is automatically cleared by reading the SPISR followed
by reading the SPIDR.

2

EE 308 Spring 2006

Configuring the SPI

1. Enable SPI (SPE bit of SPI0CR1)

2. Clock phase and polarity set to match device communicating with

(a) Select clock polarity – CPOL bit of SPI0CR1

• CPOL = 0 for clock idle low

• CPOL = 1 for clock idle high

(b) Select clock phase – CPHA bit of SPI0CR1

• CPHA = 0 for data valid on first clock edge

• CPHA = 1 for data valid on second clock edge

3. Select master or slave MSTR bit of SPI0CR1

• Will be master when talking to devices such as D/A, A/D, clock,
etc.

• May be slave if talking to another microprocessor

4. If you want to receive interrupt after one byte transfered, enable receive
interrupts by setting SPIE bit of SPI0CR1

• Normally master will not use interrupts – transfers are fast enough
that you will normally wait for transfer to complete

• Will often use interrupts when configured as a slave – you will get
interrupt when master sends you data

5. If you want to receive interrupt when okay to transmit next byte, enable
transmit ready interrups by setting SPTIE bit of SPI0CR1

6. Configure LSBFE of SPI0CR1 for MSB first (LSBFE = 0) or LSB first
(LSBFE = 1)

• For most devices, use MSB first

3

EE 308 Spring 2006

7. Configure for normal or bidirectional mode

(a) Configure for normal mode by clearing bit SPC0 of SPI0CR2

(b) Configure for bidirectional mode by setting bit SPC0 of SPI0CR2

• In Bidirectional Mode, use Bit BIDIROE of SPI0CR2 to control the
direction of the data line

• BIDIROE = 1 => data line output

• BIDIROE = 0 => data line input

4

EE 308 Spring 2006

Using the 9S12 SPI in Master Mode

• When using the 9S12 SPI in Master Mode you can talk to several devices
over the same serial lines

• When sending data to a device:

1. Select the device (usually be setting a general purpose I/O line ac-
tive)

– If using bidirectional mode, make data line an output by setting
BIDIROE

2. The SPTEF (SPI Transmit Empty Flag) must be set before writing
to the SPI data register. Keep reading the SPISR register until
SPTEF becomes set.

3. Write the data to the SPI data register (starts the serial clock, sends
data out the MOSI pin and brings data in from MISO pin)

4. Repeat steps 2, and 3 if more data to send

5. Deselect the device (usually be making a general purpose I/O line
inactive) after tranmission is completed.

– The SPIF flag indicates transmission is complete. You should
wait until SPIF is set before deselecting the slave

– However, the SPIF flag may have been set before the 9S12 started
sending the final byte of the sequence.

– The simplest way to make sure you do not deselct the slave before
the last transmission is finished is to always wait for the SPIF flag
before sending a new byte to the data register, then reading the
data register to clear the SPIF flag.

The following assumes that the SPI has been set up in master mode, and
Bit 7 of PORT S has been made a general purpose output pin.

PTS = PTS & ~0x80; /* Bring SS low to select device */

while ((SPI0SR & 0x20) == 0) ; /* Wait until SPTEF flag set */

SPI0DR = data[0]; /* Write data to device */

while ((SPI0SR & 0x80) == 0) ; /* Wait until transmission complete */

tmp = SPI0DR; /* Read data register to clear SPIF */

5

EE 308 Spring 2006

while ((SPI0SR & 0x20) == 0) ; /* Wait until SPTEF flag set */

SPI0DR = data[1]; /* Write data to device */

while ((SPI0SR & 0x80) == 0) ; /* Wait until transmission complete */

tmp = SPI0DR; /* Read data register to clear SPIF */

PTS = PTS | 0x80; /* Bring SS high to deselect device */

6

EE 308 Spring 2006

Using the 9S12 SPI in Master Mode

• When reading data from a device:

1. Select the device (usually be bringing a general purpose I/O line
active)

– If using bidirectional mode, make data line an input by clearing
BIDIROE

2. The SPTEF (SPI Transmit Empty Flag) must be set before writing
to the SPI data register. Read the SPISR register until SPTEF
becomes set.

3. Write a junk byte to the SPI data register (starts the serial clock,
which brings data in from MISO)

4. Wait until the SPIF flag is set (which indicates data transfer is fin-
ished) by reading the SPI status register until the SPIF bit is 1 (this
is also the first step in clearing the SPIF)

5. Read data from the SPI data register (gets data and completes clear-
ing the SPIF flag)

6. Repeat steps 2, 3, 4 and 5 if more data to receive

7. Deselect the device (usually be bringing a general purpose I/O line
inactive)

The following assumes that the SPI has been set up in master mode, and
Bit 7 of PORT S has been made a general purpose output pin.

PTS = PTS & ~0x80; /* Bring SS low to select device */

while ((SPI0SR & 0x20) == 0) ; /* Wait until SPTEF flag set */

SPI0DR = 0; /* Write junk byte to device */

while ((SPI0DR & 0x80)==0) ; /* Wait for transfer to finish */

data[0] = SPI0DR; /* Get data byte; clears SPIF */

while ((SPI0SR & 0x20) == 0) ; /* Wait until SPTEF flag set */

SPI0DR = 0; /* Write junk byte to device */

while ((SPI0DR & 0x80)==0) ; /* Wait for transfer to finish */

data[0] = SPI0DR; /* Get data byte; clears SPIF */

PTS = PTS | 0x80; /* Bring SS high to deselect device */

7

EE 308 Spring 2006

Using the 9S12 SPI in Slave Mode

• When using the 9S12 SPI is Slave Mode you can send and/or receive
data only when the master device brings your Slave Select line low

• You know when a transfer is complete when the SPIF flag is set

• When using the 9S12 SPI in Slave Mode you often use interrupts so you
respond to a transfer in an interrupt service routine

• If you need to send data to the master SPI, you need to put that data
in SPI0DR before the master starts the data transfer

• You may need to use a general purpose I/O line to let the master know
you have data to send it

• Example: Receiving data from an SPI master:

1. Wait for SPIF flag to become set — this happens when master device
brings your slave select low, and sends 8 ticks on the serial clock

2. Read the SPI0DR to get data from master

while ((SPI0SR & 0x80)==0) ; /* Wait for transfer to finish */

data = SPI0DR; /* Get data byte; clears SPIF */

8

EE 308 Spring 2006

The Dallas Semiconductor (Maxim) DS1302 Real Time Clock

• In a future lab you will connect a DS1302 Real Time Clock to your
9S12 board. A copy of the data sheet for the DS1302 is available from
the same location you got these notes, or you can download it from the
Maxim website at www.maxim-ic.com.

• Be sure to have a copy of the data sheet when reading these notes.

• As outlined in the General Description part of the DS1302 data sheet.
the DS1302 is:

– A Real Time Clock which keeps track of time and date, and is correct
for leap years.

– It uses a simple 3-wire interface

• To use the DS1302 with the 9S12 you need to know how to make the
hardware connections, and how to set up the 9S12 software protocol to
be compatible with the DS1302

• As shown in the data sheet, the DS1302 has an active high chip enable
(CE) input (which can be connected to a general purpose I/O pin of the
9S12, or to the SS line of the 9S12 SPI interface), a SCLK line (which
should be connected to the 9S12’s SCK line) and a bidirectional I/O line
(which should be connected to the 9S12’s MOMI line)

• The DS1302 has two inputs for a 32.764 kHz crystal. The DS1302 divides
the 32.764 kHz crystal by 215 to generate a one second pulse for time-
keeping.

• The DS1302 has power VCC2 and ground GND inputs. VCC2 can range
from 2 to 5.5 V.

• The DS1302 has backup power VCC1 input. This can be connected to a
battery to keep time when power is turned off.

9

EE 308 Spring 2006

Using the DS1302 Real Time Clock

• The serial transfer protocol shown in Figure 5 of the data sheet shows
the following:

– CE is active high

– The serial clock is idle low, so you should use CPOL = 0

– The data is valid on the first clock edge, so you should use CPHA =
0

– The data is sent out with Least Significant Bit (LSB) first, so you
should use LSBFE = 1

– The 9S12 needs to transfer multiple bytes with CE high, so you must
use SSOE = 0

• The General Description says the the DS1302 will work with a serial
clock speed of up to 2 MHz (when the supply voltage is 5 V). Further
details of this are given in the AC Electrical Characteristics table on
Page 11.

10

EE 308 Spring 2006

Using the DS1302 Real Time Clock with the 9S12

Writing data to the DS1302

• To write data to the DS1302 you need to send a control byte followed by
a data byte, as shown in Figure 5

• The control byte format is shown in Figure 4, with an example in Table 3.
The 8 control bits work as follows:

– Bit 7 must be 1

– Bit 6 is a 0 to access the clock, a 1 to access the 31 bytes of RAM

– Bits 5 through 1 indicate which register to access

– Bit 0 is a 1 to read from the DS1302, and a 0 to write to the DS1302

• The DS1302 uses 8 registers to access the clock, and 1 register to access
a trickle charge function (to charge a rechargeable battery), as shown in
Table 2.

– Note: Bit 7 of the seconds register is a Clock Halt bit — writing a
1 to bit 7 of the seconds register stops the oscillator, and puts the
DS1302 into a low power mode.

When setting the time, remember to write a 1 to Bit 7 of the seconds
register to start the oscillator.

– Note: Bit 7 of register 8 is a Write Protect bit. When high you
cannot write to the clock registers or RAM.

In order to set the clock, you must write a 0 the the Write Protect
bit.

After setting the clock, you might want to bring the Write Protect
bit high to

• You can write the time by writing one register at a time — make MOMI
an output, bring CE high, write a control word to select the appropriate
register, write the data to the register, bring CE low.

• You can use burst mode to write all the register in succession — make
MOMI an output, bring CE high, write the control word 0xBE to select
register 31, write the time to the registers in order seconds, minutes,
hours, day of month, month, day of week, year, then bring CE low.

11

EE 308 Spring 2006

A C program to use the DS1302 with the 9S12 SPI

/* Program to write the seconds register of the DS1302

* It is assumed that the CE line of the DS1302 is connected to

* the SS line of SPI0 of the 9S12 */

#include "hcs12.h"

main()

{

short tmp; /* Temporary variable */

DDRS = DDRS | 0x80; /* SS output */

PTS = PTS & ~0x80; /* Deselect DS1302 */

SPI0CR1 = 0x51; /* 0 1 0 1 0 0 0 1

| | | | | | | |

| | | | | | | ____ LSB first

| | | | | | ______ multiple bytes with SS asserted

| | | | | ________ 0 phase (data valid on 1st edge)

| | | | __________ 0 polarity (clock active low)

| | | ____________ Master mode

| | ______________ No interrupt on transmit reg empty

| ________________ Enable SPI

__________________ No interrupt on transfer complete

*/

SPI0CR2 = 0x01; /* 0 0 0 0 0 0 0 1

| | | | | | | |

| | | | | | | ____ Bidirectional mode

| | | | | | ______ SPI operates normally in wait mode

| | | | | ________ Not used

| | | | __________ MOMI line input

| | | ____________ Disable MODF flag

| | ______________ Not used

| ________________ Not used

__________________ Not used

*/

SPI0BR = 0x50; /* 2 MHz SPI clock */

12

EE 308 Spring 2006

PTS = PTS | 0x80; /* Select DS1302 */

SPI0CR2 = SPI0CR2 | 0x08; /* Make MOMI an output */

while ((SPI0SR & 0x20) == 0) ; /* Wait until okay to transmit */

SPI0DR = 0x80; /* Select Seconds register for write */

while ((SPI0SR & 0x80) == 0) ; /* Wait until transmission complete */

tmp = SPI0DR; /* Read data register to clear SPIF */

while ((SPI0SR & 0x20) == 0) ; /* Wait until okay to transmit */

SPI0DR = 0x35; /* Set Seconds to 35, enable oscillator */

while ((SPI0SR & 0x80) == 0) ; /* Wait until transmission complete */

tmp = SPI0DR; /* Read data register to clear SPIF */

PTS = PTS & ~0x80; /* Deselect slave */

asm(" swi");

}

13

EE 308 Spring 2006

Using the DS1302 Real Time Clock with the 9S12

Reading data from the DS1302

• To read data to the DS1302 you need to send a control byte followed by
a data byte, as shown in Figure 5

• Bit 0 the the control byte must be a 1 to read from the DS1302

• You need to select the DS1302, make MOMI an output, write the control
byte, make MOMI an input, write a dummy byte to SPI0DR, then read
the data from the DS1302.

Here is an example in C:

PTS = PTS | 0x80; /* Select DS1302 */

SPI0CR2 = SPI0CR2 | 0x08; /* Make MOMI an output */

while ((SPI0SR & 0x20) == 0) ; /* Wait until okay to transmit */

SPI0DR = 0x81; /* Select Seconds register for read */

while ((SPI0SR & 0x80) == 0) ; /* Wait until transmission complete */

tmp = SPI0DR; /* Read data register to clear SPIF */

SPI0CR2 = SPI0CR2 & ~0x08; /* Make MOMI an input */

while ((SPI0SR & 0x20) == 0) ; /* Wait until okay to transmit */

SPI0DR = 0x00; /* Write junk byte to start SPI clock */

while ((SPI0SR & 0x80) == 0) ; /* Wait until transmission complete */

seconds = SPI0DR & 0x7f; /* read Seconds register; clear Clock Halt bit */

PTS = PTS & ~0x80; /* Deselect slave */

14

