
EE 308 Spring 2006

Motor Control

Consider a motor which has a maximum speed of 5000 RPM. The speed
vs. duty cycle may look something like this:

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Duty Cycle (%)

Sp
ee

d 
(R

PM
)

Motor Speed vs. Duty Cycle

The motor doesn’t start rotating until it is driven with a 10% duty cycle,
after which it will increase speed linearly with the increase in duty cycle.

If the motor is initially stopped, and is then turned on (with 100% duty
cycle), the speed vs. time might look something like this:

0 1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

t (seconds)

Sp
ee

d 
(R

PM
)

Step Response of Motor

1



EE 308 Spring 2006

We will control the motor by adjusting the duty cycle with the HCS12.
We will do this by measuring the speed and updating the duty cycle on a
regular basis. Let’s do the adjustments once every 8 ms. This means that we
will adjust the duty cycle, wait for 8 ms to find the new speed, then adjust
the duty cycle again. How much change in speed will there be in 8 ms? The
motor behaves like a single time constant system, so the equation for the
speed as a function of time is:

S(t) = Sf + e−t/τ(Si − Sf)

where Si is the speed at time 0, Sf is the speed at time ∞, and τ is the time
constant of the system. With a duty cycle of D, the final speed will be:

Sf = αD + S0

where S0 is the speed the motor would turn with a 0% duty cycle if the speed
continued linearly for duty cyclces less than 10%, and α is the slope of the
speed vs. duty cycle line (5000/0.9 in this example).

Here I assume that the time constant of the small motors we are using
is about 1 second — i.e., it takes about 5 seconds (5 time constants) for the
motor to go from a dead stop to full speed. If T = 8 ms, the motor will have
changed its speed from Si to

S(T ) = Sf + e−T/τ(Si − Sf)

S(T ) = (αD + S0)(1− e−T/τ) + e−t/τSi

S[n] = (αD + S0)(1− e−T/τ) + e−t/τS[n− 1]

where S[n] is the speed at the nth cycle.

Consider an integral controller where the duty cycle is adjusted according
to:

D[n] = D[n− 1] + k(Sd − Sm[n])

2



EE 308 Spring 2006

We can simulate the motor response by iterating through these equations.
Start with Sm[1] = 0, D[1] = 0, and Sd = 1500. Then we calculate:

Sm[n] = (αD − S0)(1− e−T/τ + e−t/τSm[n− 1]

D[n] = D[n− 1] + k(Sd − Sm[n])

In MATLAB we can simulate this as:

Sm = 0;

D = 0;

ee = exp(-T/tau);

for n=2:1000

Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);

D(n) = k*(Sd - Sm(n)) + D(n-1);

end

By changing the value of k we can see how this parameter affects the
response. Here is the curve for k = 1.0× 10−7:

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−7

With this value of k, it will take about 1 minute for the motor to get to the
desired speed.

3



EE 308 Spring 2006

Here is the curve for k = 1.0× 10−6:

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

1800

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−6

Now it takes about 10 seconds to get to the desired speed, with a little bit of
overshoot.

Let’s try k = 1.0× 10−5:

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−5

4



EE 308 Spring 2006

This gets to the desired value more quickly, but with a lot of oscillation. Let’s
increase k to 10−4.

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−4

For this value of k there is a significant oscillation. However, a real motor
will not act like this. If we look at the duty cycle vs time, we see:

0 1 2 3 4 5 6 7 8 9 10
−150

−100

−50

0

50

100

150

200

250

T (seconds)

Du
ty

 C
yc

le

Integral Control, k = 1 × 10−4

To get this oscillating response, the duty cycle must go to over 100%, and
below 0%, which is clearly impossible. To get the response we expect in the
lab, we need to limit the duty cycle to remain between 20% and 100%. Thus,
we change our simulation to be:

5



EE 308 Spring 2006

Sm = 0;

D = 0;

ee = exp(-T/tau);

for n=2:1000

Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);

D(n) = k*(Sd - Sm(n)) + D(n-1);

if (D(n) > 1)

D(n) = 1;

end;

if (D(n) < 0.2)

D(n) = 0.2;

end;

end

When we use this to simulate the motor response, we get:

0 2 4 6 8 10
0

500

1000

1500

2000

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−4

0 2 4 6 8 10
0

20

40

60

80

100

120

T (seconds)

Du
ty

 C
yc

le

Integral Control, k = 1 × 10−4

In your program for Lab 5, you will use a Real Time Interrupt with an
8 ms period. In the RTI interrupt service routine, you will measure the
speed, and set the duty cycle based on the measured speed. Your ISR will
look something like this:

6



EE 308 Spring 2006

void INTERRUPT rti_isr(void)

{

Code to read potentiometer voltage and convert into RPM

Code to measure speed Sm in RPM

Code which sets duty cycle to

DC = DC + k*(Sd-Sm)

if (DC > 1.0) DC = 1.0;

if (DC < 0.2) DC = 0.2;

Code which writes the PWM Duty Cycle Register

to generate duty cycle DC.

Code which clears RTI flag

}

In the main program, you will print the measured speed, desired speed,
and duty cycle to the screen.

Your values of k will probably be different than the values in these notes
because speed vs. duty cycle, time constant, and maximum speed will most
likely be different than the values I used.

7



EE 308 Spring 2006

Using Floating Point Numbers with the Gnu C Compiler

It will be much easier to do the necessary calculations by using floating
point numbers. Here is an example of a program which uses floating point:

#include "DBug12.h"

main()

{

float x;

x = 10.2;

printf("x = %d\r\n",(short) x);

}

To use floating point numbers with the Gnu C compiler, go to the Op-
tions menu, Project options submenu, and add -fshort-double to the
list of compiler opitons:

You cannot use math functions such as sqrt(). The size of the code which
will be created if you use the math library for the Gnu C compiler will be
too large to fit in the memory of the 9S12. You can do standard arithmetic
operations such as addition, multiplication and divison. Also, you cannot

8



EE 308 Spring 2006

print floating point numbers using DB12FNP->printf(). You must convert
numbers to integer before printing them.

9


