
E
E

308
S
p
rin

g
2006

Consider a 9S12 executing the following program loop:

org $480

0480 FE4000 l1: ldx $4000 % 3 cycles

0483 724001 inc $4001 % 4 cycles

0486 B64000 ldaa $4000 % 3 cycles

0489 20F5 bra $l1 % 3 cycles

If you assemble this program, you get the following:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0480 FE 40 00 72 40 01 B6 40 00 20 F5 3B FC 10 18 F3

Here is what is on the bus during these 13 cycles:

0480 0482FE40 0072 0484 4001 4000 AA79 0486 B640 0486 ZZZZ 4001 ZZ79

E

AD15−0

R/W

LSTRB

LSTRB

R/W

AD15−0

E 5 D 6 B

12 D

0020 FC10 ZZZZ048C048CAAZZ4000F638048AZZ7A40010488 0480 FE40

1 D1 A13 D13 A12 A11 D11 A10 D10 A

7 D7 A6 A5 A4 D4 A3 A 3 D2 D2 A1 D1 A

8 A 8 D 9 A 9 D

1

EE 308 Spring 2006

Here is what happens cycle by cycle:

1. 9S12 does a 16 bit read from address $0480. The memory returns $FE40, the first two
bytes of the ldx $4000 instruction.

2. 9S12 does a 16-bit read from address $0482. The memory returns $0072, the third byte
of the the ldx $4000 instruction and the first byte of the inc $4001 instruction.

3. 9S12 does a 16-bit read from address $0484. The memory returns $4001, the second
and third byte of the inc $4001 instruction.

4. 9S12 does a 16 bit read from address $4000 (it is executing the ldx $4000 instruction);
the memory returns $AA79.

5. 9S12 does a 16-bit read from address $0486. The memory returns $B640, the first two
bytes of the ldaa $4000 instruction.

6. 9S12 does nothing on bus (it puts the last address it used on the bus, during the address
cycle, and nothing on the bus during the data cycle). It is completing the ldx $4000

instruction.

7. 9S12 does an 8 bit read from address $4001 (it is executing the inc $4001 instruction,
and has to read the byte at address $4001); the memory returns $AA79.

8. 9S12 does a 16-bit read from address $0488. The memory returns $0020, the third byte
of the the ldaa $4000 instruction and the first byte of the bra l1 instruction.

9. 9S12 does an 8 bit write to address $4001 (it is executing the inc $4001 instruction,
and has to write the incremented byte to address $4001); it puts a $7A on the low byte
and nothing of the high byte.

10. 9S12 does a 16-bit read from address $048A. The memory returns $F53B, the second
byte of the the bra l1 instruction and the next byte in memory.

11. 9S12 does an 8 bit read from address $4000 (it is executing the ldaa $4000 instruction);
the external device put a $AA on the high byte and nothing of the low byte.

12. 9S12 does a 16-bit read from address $048C. The memory returns $FC10, next two
bytes in memory. The 9S12 has not yet figured out that it has to branch, so it is
reading the next to bytes to fill its instruction pipeline.

13. 9S12 does nothing on bus (it puts the last address it used on the bus, during the address
cycle, and nothing on the bus during the data cycle). It is figuring out where it needs
to branch to.

1. The loop executes again.

2

EE 308 Spring 2006

Asynchronous Data Transfer

• In asynchronous data transfer, there is no clock line between the two devices

• Both devices use internal clocks with the same frequency

• Both devices agree on how many data bits are in one data transfer (usually 8, sometimes
9)

• A device sends data over an TxD line, and receives data over an RxD line

– The transmitting device transmits a special bit (the start bit) to indicate the start
of a transfer

– The transmitting device sends the requisite number of data bits

– The transmitting device ends the data transfer with a specical bit (the stop bit)

• The start bit and the stop bit are used to synchronize the data transfer

V

T

Idle

S
t
a
r
t

L

B
0 1 1 0 1 0 1 1

Idle
S
t
o
p

Asynchronous Serial Communications

RxD TxD

RxDTxD

One byte requires 10 bit times

S

0xD6
11010110

3

EE 308 Spring 2006

Asynchronous Data Transfer

• The reciever knows when new data is coming by looking for the start bit (digital 0 on
the RxD line).

• After receiving the start bit, the receiver looks for 8 data bits, followed by a stop bit
(digital high on the RxD line).

• If the receiver does not see a stop bit at the correct time, it sets the Framing Error bit
in the status register.

• Transmitter and receiver use the same internal clock rate, called the Baud Rate.

• At 9600 baud (the speed used by D-Bug12), it takes 1/9600 second for one bit, 10/9600
second, or 1.04 ms, for one byte.

V

T

Idle

S
t
a
r
t

L

B
0 1 1 0 1 0 1 1

Idle
S
t
o
p

Asynchronous Serial Communications

RxD TxD

RxDTxD

One byte requires 10 bit times

S

0xD6
11010110

4

EE 308 Spring 2006

Parity in Ascyncronous Serial Transfers

• The HCS12 can use a parity bit for error detection.

– When enabled in SCI0CR1, the parity function uses the most significant bit for
parity.

– There are two types of parity – even parity and odd parity

∗ With even parity, and even number of ones in the data clears the parity bit;
an odd number of ones sets the parity bit. The data transmitted will always
have an even number of ones.

∗ With odd parity, and odd number of ones in the data clears the parity bit;
an even number of ones sets the parity bit. The data transmitted will always
have an odd number of ones.

– The HCS12 can tranmit either 8 bits or 9 bits on a single transfer, depending on
the state of M bit of SCI0CR1.

– With 8 data bits and parity disabled, all eight bits of the byte will be sent.

– With 8 data bits and parity enabled, the seven least significant bits of the byte
are sent; the MSB is replaced with a parity bit.

– With 9 data bits and parity disabled, all eight bits of the byte will be sent, and
an additional bit can be sent in the sixth bit of SCI0DRH.

∗ It usually does not make sense to use 9 bit mode without parity.

– With 9 data bits and parity enabled, all eight bits of the byte are sent; the ninth
bit is the parity bit, which is put into the MSB of SCI0DRH in the receiver.

5

EE 308 Spring 2006

Asynchronous Data Transfer

• The HCS12 has two asynchronous serial interfaces, called the SCI0 and SCI1 (SCI
stands for Serial Communications Interface)

• SCI0 is used by D-Bug12 to communicate with the host PC

• When using D-Bug12 you normally cannot independently operate SCI0 (or you will
lose your communications link with the host PC)

• The D-Bug12 printf() function sends data to the host PC over SCI0

• The SCI0 TxD pin is bit 1 of Port S; the SCI1 TxD pin is bit 3 of Port S.

• The SCI0 RxD pin is bit 0 of Port S; the SCI1 RxD pin is bit 2 of Port S.

• In asynchronous data transfer, serial data is transmitted by shifting out of a transmit
shift register into a receive shift register

TxD Shift Reg RxD Shift Reg

RxD Shift Reg TxD Shift Reg

TxD

RxD TxD

RxD

PS1 PS0

PS0 PS1

SCI0DR (Write)

SCI0DR (Read)

SCI0DR (Read)

SCI0DR (Write)

SCI0DR receive and transmit registers are separate registers.
distributed into two 8−bit registers, SCI0DRH and SCI0DRL

An overrun error is generated if RxD shift register filled before SCI0DR read

6

EE 308 Spring 2006

Timing in Asynchronous Data Transfers

• The BAUD rate is the number of bits per second.

• Typical baud rates are 1200, 2400, 4800, 9600, 19,200, and 115,000

• At 9600 baud the transfer rate is 9600 bits per second, or one bit in 104 µs.

• When not transmitting the TxD line is held high.

• When starting a transfer the trasmitting device sends a start bit by bringing TxD low
for one bit period (104 µs at 9600 baud).

• The receiver knows the transmission is starting when it sees RxD go low.

• After the start bit, the transmitter sends the requisite number of data bits.

• The receiver checks the data three times for each bit. If the data within a bit is different,
there is an error. This is called a noise error.

• The transmitter ends the transmission with a stop bit, which is a high level on TxD
for one bit period.

• The reciever checks to make sure that a stop bit is received at the proper time.

• If the receiver sees a start bit, but fails to see a stop bit, there is an error. Most likely
the two clocks are running at different frequencies (generally because they are using
different baud rates). This is called a framing error.

• The transmitter clock and receiver clock will not have exactly the same frequency.

• The transmission will work as long as the frequencies differ by less 4.5%(4% for 9-bit
data).

7

E
E

308
S
p
rin

g
2006

Timing in Asynchronous Data Transfers

RT
1

RT
15

RT
16

RT
2

RT
3

RT
4

RT
5

RT
6

RT
7

RT
8

RT
9

RT
10

RT
11

RT
12

RT
13

RT
14

RT
1

RT
15

RT
16

RT
2

RT
3

RT
4

RT
5

RT
6

RT
7

RT
8

RT
9

RT
10

RT
11

RT
12

RT
13

RT
14

RT
1

RT
1

RT
1

RT
1

ASYNCHRONOUS SERIAL COMMUNIATIONS

Baud Clock = 16 x Baud Rate

Data Bit − Check at RT8,9,10

(Majority decides value)

(If not all same, noise flag set)

If no stop bit detected, Framing Error Flag set

(Two of RT3,5,7 must be zero −

 If not all zero, Noise Flag set)

Start Bit LSB

Baud clocks can differ by 4.5% (4% for 9 data bits)
with no errors.

Even parity −− the number of ones in data word is even

Odd parity −− the number of ones in data word is odd

When using parity, transmit 7 data + 1 parity, or 8 data + 1 parity

Start Bit − Three 1’s followed by 0’s at RT1,3,5,7

8

EE 308 Spring 2006

Baud Rate Generation

• The SCI transmitter and receiver operate independently, although they use the same
baud rate generator.

• A 13-bit modulus counter generates the baud rate for both the receiver and the trans-
mitter.

• The baud rate clock is divided by 16 for use by the transmitter.

• The baud rate is

mboxSCIBaudRate =
Bus Clock

16× SCI1BR[12:0]

0 to 8192Clock
Bus

Receiver

Transmitter16

• With a 24 MHz bus clock, the following values give typically used baud rates.

Bits Receiver Transmitter Target Error
SPR[12:0] Clock (Hz) Clock (Hz) Baud Rate (%)

39 615,384.6 38,461.5 38,400 0.16
78 307,692.3 19,230.7 19,200 0.16
156 153,846.1 38,461.5 9,600 0.16
312 76,693.0 38,461.5 4,800 0.16

9

EE 308 Spring 2006

SCI Registers

• Each SCI uses 8 registers of the HCS12. In the following we will refer to SCI1.

• Two registers are used to set the baud rate (SCI1BDH and SCI1BDL)

• Control register SCI1CR2 is used for normal SCI operation.

• SCI1CR1 is used for special functions, such as setting the number of data bits to 9.

• Status register SCI1SR1 is used for normal operation.

• SCI1SR2 is used for special functions, such as single-wire mode.

• The transmitter and receiver can be separately enabled in SCI1CR2.

• Transmitter and receiver interrupts can be separately enabled in SCI1CR2.

• SCI1SR1 is used to tell when a transmission is complete, and if any error was generated.

• Data to be transmitted is sent to SCI1DRL.

• After data is received it can be read in SCI1DRL. (If using 9-bit data mode, the ninth
bit is the MSB of SCI0DRH.)

10

EE 308 Spring 2006

M ILTWAKE

TCIE RIE ILIE TE RE RWU SBKTIE

SBR12 SBR10 SBR9 SBR8

SBR5 SBR4 SBR2 SBR1 SBR0

SBR11

SBR7 SBR6 SBR3

PE PTRSRCLOOPS

TDRE TC RDRF IDLE OR NF FE

0 0 0 0 0

0 0 0 0 0 0R8 T8

R7/T7 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 R0/T0R6/T6

SCI1BDH − 0x00D0

SCI1BDL − 0x00D1

SCI1CR1 − 0x00D2

SCI1CR2 − 0x00D3

SCI1SR1 − 0x00D4

SCI1SR2 − 0x00D5

SCI1DRH − 0x00D5

SCI1DRL − 0x00D7

000

SCISWAI

PF

RAFBRK13 TXDIR

11

EE 308 Spring 2006

Example program using the SCI Transmitter

#include <iodp256.h>

/* Program to transmit data over SCI port */

main()

{

/**

* SCI Setup

***/

SCI1BDL = 156; /* Set BAUD rate to 9,600 */

SCI1BDH = 0;

SCI1CR1 = 0x00; /* 0 0 0 0 0 0 0 0

| | | | | | | |

| | | | | | | ____ Even Parity

| | | | | | ______ Parity Disabled

| | | | | ________ Short IDLE line mode (not used)

| | | | __________ Wakeup by IDLE line rec (not used)

| | | ____________ 8 data bits

| | ______________ Not used (loopback disabled)

| ________________ SCI1 enabled in wait mode

__________________ Normal (not loopback) mode

*/

SCI1CR2 = 0x08; /* 0 0 0 0 1 0 0 0

| | | | | | | |

| | | | | | | ____ No Break

| | | | | | ______ Not in wakeup mode (always awake)

| | | | | ________ Reciever disabled

| | | | __________ Transmitter enabled

| | | ____________ No IDLE Interrupt

| | ______________ No Reciever Interrupt

| ________________ No Tranmit Complete Interrupt

__________________ No Tranmit Ready Interrupt

*/

/**

* End of SCI Setup

***/

SCI1DRL = ’h’; /* Send first byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’e’; /* Send next byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

12

EE 308 Spring 2006

SCI1DRL = ’l’; /* Send next byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’l’; /* Send next byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’o’; /* Send next byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

}

13

EE 308 Spring 2006

Example program using the SCI Receiver

/* Program to receive data over SCI1 port */

#include "db12.h"

#include <iodp256.h>

@interrupt void sci1_isr(void)

volatile unsigned char data[80];

volatile int i;

main()

{

/**

* SCI Setup

***/

SCI1BDL = 156; /* Set BAUD rate to 9,600 */

SCI1BDH = 0;

SCI1CR1 = 0x00; /* 0 0 0 0 0 0 0 0

| | | | | | | |

| | | | | | | ____ Even Parity

| | | | | | ______ Parity Disabled

| | | | | ________ Short IDLE line mode (not used)

| | | | __________ Wakeup by IDLE line rec (not used)

| | | ____________ 8 data bits

| | ______________ Not used (loopback disabled)

| ________________ SCI1 enabled in wait mode

__________________ Normal (not loopback) mode

*/

SCI1CR2 = 0x04; /* 0 0 1 0 0 1 0 0

| | | | | | | |

| | | | | | | ____ No Break

| | | | | | ______ Not in wakeup mode (always awake)

| | | | | ________ Reciever enabled

| | | | __________ Transmitter disabled

| | | ____________ No IDLE Interrupt

| | ______________ Reciever Interrupts used

| ________________ No Tranmit Complete Interrupt

__________________ No Tranmit Ready Interrupt

*/

DB12FNP->SetUserVector(UserSCI1,sci1_isr);

14

EE 308 Spring 2006

i = 0;

enable();

/**

* End of SCI Setup

***/

while (1)

{

/* Wait for data to be received in ISR, then

* do something with it

*/

}

}

@interrupt void sci1_isr(void)

{

char tmp;

/* Note: To clear receiver interrupt, need to read

* SCI1SR1, then read SCI1DRL.

* The following code does that

*/

if ((SCI1SR1 & 0x20) == 0) return; /* Not receiver interrrupt */

data[i] = SCI1DRL;

i = i+1;

return;

}

15

