1. Write an instruction sequence to swap the contents of memory locations 0x1000 and 0x1001.

2. Write an instruction sequence which adds the contents of accumulator B to the 16-bit number stored at locations 1000 and 1001, and stores the 16-bit result in addresses 1002 and 1003. Treat the value stored in B as a signed number. (Hint: use the **SEX** instruction.)

3. Consider the following program from Lab 2:

```assembly
prog: equ $2000
data: equ $1000

org prog
ldab #29
ldaa #235
sba
std result
swi

org data
result: ds.w 1
```

(a) Hand-assemble the program. That is, figure out what the op codes of the instructions are, and where they will be located in memory.

(b) How many cycles will it take the MC9S12 to execute this program. (Do not include the **swi** instruction.)

(c) How long will it take an MC9S12 with a 24 MHz E clock to execute this program? (Assume that, when the program starts, all these bits are zero.)

(d) Determine the state of the N, Z, V and C bits after each instruction has been executed.

(e) What will be the contents of addresses 0x1000 and 0x1001 after the program executes?

4. Consider the following program fragment:

```assembly
ldy #1000
loop1: ldx #25000
loop2: dbne x,loop2
dbne y,loop1
swi
```

(a) How many instruction cycles will it take the MC9S12 to execute the following program? (Do not consider the **swi** instruction.)

(b) How many seconds will this take the MC9S12 with an 24 Mhz E-clock? (You should give the answer to the nearest microsecond.)
5. An MC9S12 has the following data in its memory:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>20D0</td>
<td>10</td>
<td>23</td>
<td>3B</td>
<td>7C</td>
<td>10</td>
<td>04</td>
<td>86</td>
<td>80</td>
<td>B7</td>
<td>10</td>
<td>25</td>
<td>3B</td>
<td>FC</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>20E0</td>
<td>20</td>
<td>F5</td>
<td>FD</td>
<td>10</td>
<td>18</td>
<td>86</td>
<td>40</td>
<td>B7</td>
<td>10</td>
<td>23</td>
<td>3B</td>
<td>FC</td>
<td>10</td>
<td>12</td>
<td>DD</td>
</tr>
<tr>
<td>20F0</td>
<td>86</td>
<td>02</td>
<td>B7</td>
<td>10</td>
<td>23</td>
<td>3B</td>
<td>7C</td>
<td>10</td>
<td>03</td>
<td>86</td>
<td>40</td>
<td>B7</td>
<td>10</td>
<td>25</td>
<td>3B</td>
</tr>
</tbody>
</table>

Determine the contents of the A and X register after executing the following code fragments. (Before the first instruction, the X register has 0x0000.) List the value in hexadecimal. Also, indicate what addressing mode is used, and what the effective address of the instruction is. (Assume that the first instruction is at address 0x2000.)

(a) ldax #37
(b) ldax $20E7
(c) ldx $20E0
 ldax -2,X
(d) ldx #$20E0
 ldax -2,X
(e) ldx #$20E0
 ldax 2,+X
(f) ldax #$20E0
 ldax 2, X+