EE 308 – Homework 9
Due Apr. 1, 2009

For all problems below assume you are using a MCS12DP256 chip with a 24 MHz bus clock and a 8 MHz oscillator clock.

1. Write some code which will enable the ATD1 A/D converter, put it into 10-bit right-justified mode, and convert the analog inputs on pins PAD8 through PAD15 continuously.

2. Write some code which will enable the A/D converter ATD1, put it into 10-bit right-justified mode, and convert the analog inputs on pins PAD8 through PAD15 once. Add some code which will wait until the eight conversions are completed.

3. Write some code which will enable the A/D converter ATD1, put it into 8-bit right-justified mode, and convert the analog input on pin PAD9 eight times, then stop. Add some code which will wait until the eight conversions are completed.

4. Add some code to the above problem which will average the eight values of the conversions of PAD9.

5. On an 9S12, VRL is connected to 1 V, and VRH is connected to 4 V. The A/D converter is set up to do 10-bit right-justified conversions.
 (a) What voltage step will cause the A/D converter to change value?
 (b) If the input to the A/D converter is 3.1 V, what number will result from a conversion?
 (c) If the result of a conversion is 0x17B, what was the input voltage to the A/D converter?

6. The LM35 is a sensor from National Semiconductor which puts out an analog voltage which is a linear function of the temperature. When connected properly, the sensor 0 V at a temperature of 0°C, and a voltage of 1.5 V at +150°C. This output is connected to an A/D input of the HCS12. The HCS12 ATD is running in 10 bit mode. VRL is connected to ground, and VRH is connected to +5 V.
 (a) What is the smallest temperature change which can be measured?
 (b) What is the temperature when the A/D output is 0x007C?

7. Assume an LM35 is connected to A/D port PAD9. Write a program to read the voltage from PAD9, convert it to temperature, and display it on the PC terminal using the DBug12 printf() function.