EE 308 Lab Spring 2009

EE 308 - LAB 1
MC9S12 ASSEMBLER AND MONITOR
Introduction and Objectives

The purpose of this lab is to help you become famwith your Dragon12-Plus Evaluation Board (EVB),
and some of the software tools which you will usevtite programs for this course. This laboratory
introduces you to the following MC9S12 assemblyglaage programming tools:

* The Freescale MC9S12 assemlalget2 This runs on the PC.
» The D-Bug12 monitor that runs on the MC9S12.

» The AsmIDE Integrated Development Environmemrtdifor assembling programs and interacting with
your EVB.

An assembler takes assembly language code in atf@ina human can reasonably read and write (with a
little practice), translates it to machine codechkha microprocessor can understand, and storesahkine
code in as19file which the MC9S12 monitor program can undardtdn this lab we will use the
Freescalasl2assembler, which is on the PCs in the Digital/Moonatrollers lab. The as12 assembler is
also included on the CD-ROM which comes with youadbn12-Plus board. The as12 assembler produces
an output file with an .s19 extension which candaeled into and run on the MC9S12. The D-Bug12
monitor, running from MC9S12 Flash memory, load$ $cords into the MC9S12 and provides some
tools for debugging loaded programs.

Pre-Lab

You should read this entire lab and answer alhefquestions in the pre-lab section before conuorigh.
The pre-lab questions are repeated on a sepamgget@aelp you prepare for lab.

The D-Bug12 monitor allows you to interact with t€&€9S12 microcontroller. You can use it to load
programs, to find out what is in the MC9S12'’s ré&gyis and memory, to change the contents of thatergi
and memory, and many other things. The D-Bug12 canus of interest for this lab are:

ASM BF, BR, NOBR, G HELP, LOAD, MO, MDW MM MWN RM RD, andT.

Read the descriptions of these commands in Chapiéthe D-Bugl12 Reference Guide
http://www.ee.nmt.edu/~rison/datasheets/DB12RG4 qdih Sections 3.5 and 3.6 of Huang.

Questions to answer before lab:
1. What is the difference between thB andMDWcommands?

2. How would you change the value of the X registedx65AA? (There are several ways to do this;
you only need to find one way.)

The Dragon12-Plus has a two-line LCD display, dretd is a way for you to identify your board by
putting your name (up to 16 characters) on the liime of the display. You can do this by conwegtiyour
name into ASCII, and putting these ASCII data iategion of the EEPROM on your board.

EE 308 Lab Spring 2009

3. Convert you name to ASCII. For example, “Jane Biitould become 0x4A 0x61 Ox6E 0x65
0x20 0x53 0x6D 0x69 0x74 0x68. You will enter ta&sSClI characters into you board in lab.

Programs for the MC9S12 can be written in assefalniguage. An assembly language instruction will be
converted by the assembler into a single machisteuction for the MC9S12. The assembly language
instructions of interest to us for this lab are:

LDAA, STAA, STAB, ADDA, LSRA, ASRA, CLRBandDECB

Read the descriptions of these commands irst®CPUV2manual
(http://www.freescale.com/files/microcontrollers/dofref manual/S12CPUV2.pdj. At this point you
will not understand everything the manual says abmse instructions, but you should understandigino
to get you through this lab.

Figure lis a simple program for the MC9S12. We will ustitllustrate how to use the assembler, the
simulator and D-Bug12. Note: We will always use 8WI instruction to end a program. This instruction
will transfer control of the MC9S12 from the progrdo the D-Bug12 monitor.

;s MCBE1Z demo program
; EE 308
; 14 January 2009

;s This 15 & program to add four numbers in memory from 51000 through 51003,
P

; divide the sum by four, and store the result in address 51004

prog: eqn 2000 ; Starting address for program
data: eqn 21000 ; Starting address for data
org prog s S=t initisl program counter valus
ldaa inputl : Load first number inteo ACC A4
adda input?2 ; add second number
adda input3 ; add third number
adda input4 : add fourth number
lsra ; divide by 2
lsra ; divide by £ ag=2in
=taa average s Save result in memory
swi
org data s Put data stating at this location
inputl: dc.b £15 : First number
input2: de.b 63 ; LSecond numkber
input3: de.b 524 ; Third numbsr
input4: de.b £3f ; Fourth number
average: ds.b 1 s Reserve one byte for result

Figure 1: An assembly language program used to get startédasil? and D-Bugl12.

EE 308 Lab Spring 2009

Question to answer before lab:
4. What are the contents of the A register after éastnuction of the program shown in Figure 1
executes?

We will use D-Bugl12 to explore the memory of the 8812 on your evaluation board. The memory map
for your MC9S12 is shown on page 24 of ME9S12DP256B Device Users Guid@vailable in the zip
file http://www.freescale.com/files/microcontrollers/diata_sheet/9S12DP256B.yip(Look the figure
labeled “Normal Single Chip”.) Some of the memarysed by the D-Bug12 monitor. For this class you
can useRAM from 0x1000to Ox3BFF, andEEPROM from 0x0400to OXOEFF. Normally, you should
use theRAM from 0x2000throughOx3BFF for programs, and froix1000throughOx1FFF for data. In
later labs, you will load programs into tBEPROM so the programs will remain on you board after
cycling the power. Do not usAM from 0x3C00throughOx3FFF or EEPROM from 0xOF00through
OXOFFF.

AsmIDE is an integrated development environmentiforking with assembly language files and the
M9S12 microcontroller. The AsmIDE program is inadgdon the CD which came with your Dragon12-
Plus board, or you can download the latest versmm http://www.ericengler.com/AsmIDE.aspX he
getting started.pdffile which comes on the CD with your Dragon12-Rhasrd shows how to install and
use the AsmIDE software on you personal computse. &f AsmIDE is also discussed in Section 3.6 of
Huang.

Use the AsmIDE or a text editor to enter the progsihown in Figure 1 before coming to lab, and save
under the namkb01.asm To assemble the program double-click on the Admiédn on your desktop.
Open the file with the File:Open menu option. Asbenwith the Build:Assemble menu option. Bring the
lab01.asmfile to lab on a flash drive (or put it onto awetked computer so you can download it in lab).

The as12 assembler will create a file calbdaD1.Istwhich shows what op codes were generated by the

assembler, and a file calléab01.s19 which is the file you will use to load your pragn onto the
MC9S12 evaluation board.

The Lab
On your account on the EE network, create a dirgdto this course (say, U:\EE308). Inside this
directory create a subdirectory for this lab (ay¥EE308\LABO1). Put théab01.asmprogram into this
directory, and assemble it with the commands shatave.

Here are some questions on the output of the assentbe sure to answer these questions in yoi daiix.

1. Look at thelab01.Istfile. Where in memory will the machine code foe tihstruction
st aa aver age be stored?

2. What machine code is generated forgh@a aver age mnemonic? Is this what you expected?
(Look up the STAA instruction in yolMC9S12 CPU12 Core Users Guid determine what
code this instruction should generate.)

3. At what address will the variablever age be located in the MC9S12 memory?

EE 308 Lab Spring 2009

Connect your Dragon12-Plus board to your compuerguthe included serial cable. Make sure AsmIDE is
running, and that the Terminal window is activewpup the Dragon12-Plus board.

4.

10.

11.

12.

13.

14.

Use thevMcommand to put 0x55 into memory location 0x2006 @xAA into memory location
0x2001. Use th&D command to verify that this was done.

Use thevMWcommand to put 0x55 into memory location 0x2100 @xAA into memory location
0x2101. Use th&D command to verify that this was done.

Use theBF command to load 0x55 into memory locations Ox2800x2FFF. Use thD
command to verify that it worked.

Use thevMcommand to put the ASCII value &f'into address OxFDE and the ASCII value of
‘C'into address OxFDF. Then put the ASCII repreatoim for your name into addresses OXFEO
through OXFEF. Use theD command to verify these addresses hold the coredaes. Push the
Reset button. Your name should now be in the ffinstof the LCD display.

Use theASM2000 command to enter the following simple progetraddress 0x2000. (What does
this program do?)

| daa #$1C
adda #$AL
clrb

decb

st aa $1000
st ab $1001
SW

You can trace (execute your program one stepiated through your program by setting the PC
(Program Counter) to the address of the first iredion of your program, and then use The

(Trace) command. Use tiMcommand to change the value of the Program Cotmt@x2000,

the address of the first instruction of the simplegram. Trace through your program and observe
what is happening to the registers and memory. {hskD command to display memory.)

Verify that the values in A and B are what you estyagter each instruction.

Use theG 2000 command to run your entire program.

Load your prograneb01.s19into the EVB. To do this, typeQAD into the terminal window, then
use the Build:Download menu option to send the gagto the EVB.

In the Terminal window typASM 2000 followed by the ENTER key. You should see thet firs
instruction of your program, along with its addrassl machine code. Each time you hit ENTER
you should see the next instruction in the programexit this mode, type a period before hitting
ENTER.

Trace through your program. How do the contefth® A register compare to what you
predicted in the Pre-lab after the execution ohdastruction?

When you are done tracing through your progranoaetit and run the entire program by giving
the commandG 2000. Verify that the program worked correctly.

EE 308 Lab Spring 2009

15.

16.

When debugging a long program, it is impracticadtep through the entire program to get to the
section of code which is giving problems.bfeakpoint is a way to run a program up to the point
in the code you want to debug, and stop thereerAtfiopping at the breakpoint, you can then trace
through your code to try to resolve the problenautan set a breakpoint with tBR command.

The format iBR xxxx, wherexxxx is the address you want to break at. Find theesddf the
first| sr a instruction, and set a breakpoint there. Givecttramands 2000, and your program
should run until it is ready to execute the fisstlinstruction. You can trace through your
program after that to see what the instructions@o.this. When done, use tN©BR command

to remove the breakpoint.

Change the twb sr a instructions tasr a instructions. Rerun your program. Does it give a
different result? Why?

