EE 308 Lab Spring 2009

EE 308 — LAB 2
ASSEMBLY LANGUAGE PROGRAMMING AND 9512 PORTS

In this sequence of three labs, you will learn howrite simple assembly language programs for the
MC9S12 microcontroller, and how to use general psep/O (input/output) ports.

Week 1
Introduction and Objectives
This laboratory will give you more experience wiitie tools we will use this semesterthe
Dragonl12 Plus evaluation board (EVB), the DBuglaitoo, the as12 assembler and the AsmIDE. Be sure

to read through the entire lab and do the prelaledgh section before coming to lab

1. Consider the program in Figure 1:

prog: $2000 : put program at address $2000
data: $1000 : put data at address $1000
#29 : Immediate (IMM} addressing mode
#235

: Inherent (INH) adressing mode
: Extended (EXT) addressing mode

result: . 1 : Reserve one word (two bytes) for result

Figure 1. Demo program for Part 1 of Lab 2.

PreLab
» Hand assemble this program, i.e., determine thedsscthe MC9S12 will use to execute this program.
» How many cycles will this take on the MC9S12? (b consider thewi instruction.)
» How long in time will this take? (Note: the MC9Sé&gecutes 24 million cycles per second.)

» What will be the state of the N, Z, V and C biteeafach instruction has been executed? (Ignere th
SWi instruction.)

» What will be in address 0x1000 and 0x1001 aftemptfogram executed?

a) Assemble the program usiagl2 Look at thdst ands19files. You should be able to relate thycodes
from the prelab to the data in the s19 file. Vetigt they agree.

EE 308 Lab Spring 2009

b) Load the program onto your Dragon12 Plus bodméce through the program. Verify that the Z, N, V
and C bits are what you expect after each instocti

c¢) Look at the contents of addresses 0x2000 an@dX%2Do the values agree with your answers from the
prelab?

d) You could change this program to add rather thbtract by changing tteba instruction to amba
instruction. Modify the program, assemble it angddhe new program into the MC9S12.

a. Find the address for tleba instruction. (You can find this from the .Istgfibr by using the
asm command in DBug-12.)

b. In theMC9S12 Core Users Guidgefind the op code for theba instruction.
c. Go to the address of thea instruction, and change the op code to that o&tiee instruction.

d. Run the program again, and verify that the mognow adds rather than subtracts.

2. Consider the program in Figure 2, which is mad&ts from one table into another.

: MC9512 program to copy a table of data from one location to another
: January 27, 2009

prog: equ $2000 : put program at address $2000
data: equ $1000 : put data at address $1000
count: equ 16 : 16 elements in the table
org prog
1dab #fcount : ACCB keeps count of number to transfer
Ldx #table_1 ; X points at table_l
1dy #table_2 : Y points at table_1
repeat: ldaa 1%+ : get data from table_1. X points to next element
staa 1.7+ : save into table_2. Y points to next element
dech : Decrement counter
bne repeat : If not done. continue with next element
swi : Done -- return to DBug-12
org data

: Initialize data in table
table_1: dc.b $44.%61.%74.%61.%20_%54,%61_ %62
de.b $6c,%65,500.%c2,%5a3.%5a, %31, 81T
table_2: ds.b count : Reserve count bytes of memory for result

Figure 2. Demo program for part 2 of lab 2

EE 308 Lab Spring 2009

a) Use the text editor to enter this program, asdmble it into an s19 file.
b) How many cycles will it take to execute the piaog take on the MC9S12?
¢) How long will it take to execute the program?

d) Load the program into your MC9S12. Use MD tafyehat the data is in the table at address 09100
Run the program, and verify that the table has lcepied intat abl e_2.

d) Use the Block Fill option of DBug-12 to change wvalues in addresses 0x1000 through Ox1FFF fo Oxf
Reload the s19 file.

e) Set a breakpoint at the labapeat . (Look at the .Ist file to find the address o thbel.)

f) Execute the program again. The program showalgd #te first time it reaches thepeat label, with
0x10 in ACCB, and 0x1000 in X.

g) Continue running the program. It should stophetiroe it gets to the repeat label, B should be
decremented by one, X should be incremented byantkthere should be a new entry in table2. Use th
RD and MD commands of DBug-12 to verify this.

3. Consider the code fragment of Figure 3. Do p@jt&nd (b) below before coming to lab

#1000
loopl: #25000
loop2: .

Figure 3. Demo program for part 3 of lab 2.

Question to answer before lab:

a) How many cycles will this program take on the 38127 (Again, ignore the swi instruction.)
b) How long will it take to execute this program?

¢) Use a text editor to enter the code into a g+ you will have to add org statements and other
assembler directives to make the program work.

d) Assemble the program and run it on the HC12v ltmg does it take to run?
This time should match your answer to part (b)

EE 308 Lab Spring 2009

WEEK 2
Introduction and Objectives

The purpose of this laboratory is to write a feweasbly language programs and test them on your
MC9S12. You will learn how to create delays witliterare loops, and how to do simple I/O.

PreLab

Make sure you have the programs written and clehdyght out before you come to the lab. You should
put all your code starting at memory location 0X200ou are encouraged to bring the programs in on a
flash drive.

The Lab

The Dragonl12 Plus has several ways to display dateas an LCD display, four seven-segment LED
displays, and eight individual LEDs. Programmihg LCD display is rather complicated, and will bet
discussed at this time. The easiest display t with is the individual LEDs. You will write soen
programs to display patterns on the LEDs.

You can display patterns on the LEDs by writinghte 1/O port at address 0x0001 (calRORTB).
Because of the way the LEDs are connected, itdesgary to do some other setup of I/O ports as well
The first five instructions in the program below ap the MC9S12 hardware so that you can writeeprst
to the LEDs. (For now, we will give you the codauyneed to set up the 1/O system properly. lerlat
labs, you will learn how to do the setup yoursélh following program will flash the LEDs:

PORTB equ $: Port B data register
DDRB equ $: Port B direction register
PTP equ $: Port P data register
DDRP equ $: Port P direction register
PTJ equ $: Port J data register
DDRJ equ $: Port J direction register

bset DORP.#$0F : Make PPO-PP3 outputs

bset PTP,#50F : Turn off seven-seg LEDs

bset DORJ,#%502 :; Make PJ1 output

bclr PTJ,#%02 : Turn on individual LEDs

bset DORB , #$FF : Activate control lines for LEDs

movh #$55_PORTE : Turn on every other LED
loop: com PORTB : Toggle LEDs
bra loop : Repeat

Figure 1. Demo program for week 2 of Lab 2.

EE 308 Lab Spring 2009

1) Complete the above program by adding the nepeas@resses and: assembler directives. Asseimble t
program.

a) Test your program on the MC9S12. Trace throhgHdop to see what is happening.
Note: The program should cause the LEDs to flashral off.

b) Run your program by typing “g 2000”. When youttts, the LEDs flash so quickly that it looks
like they are all lit. Add some code to createda ins delay between the last two instructions ef th
program. When you do this, you will be able to $ezlights flash.

2) Write a program which will start with all the D5 off, then increment the LEDs, implementing aaloyn
counter. Run your program to verify that it warkdake sure you use a delay so you can see thesLED
incrementing.

3) Write a program to count the number of odd biytesemory from address 0xffO0 to Oxffff. Display
this number on the LEDs. (Note: You need toupethe hardware to display on the LEDs as in the
program of Figure 1.)

4) Write a program which puts the exclusive ORhaf ¢ight-bit numbers from memory locations 0x8000
through Ox8FFF and display the result on the LEDkis operation is often used to generate a check s
to verify data transmission. The sending compuggregates and transmits the check sum along with the
data. The receiving computer calculates the cheokfsr the received data and compares it with tieck
sum sent by the sending computer. If the two vatieesot match, then there was an error in the
transmission.)

EE 308 Lab Spring 2009

WEEK 3

Introduction and Objectives

In this week’s lab you will write an assembly laage program to display various patterns on theteigh
individual LEDs on your Dragon12-Plus board. Thepthyed pattern will be based on the state oftit®

of the onboard DIP switch. You will also startngisubroutines, and investigate the stack and stack
pointer, and learn how to load your program intdPREM so the program will remain on your board after
a power cycle.

PreLab

The program for this lab will display four differepatterns on the LED display connected to PoY @&
will use the state of bits 1 and 0 of the onboal# Bwitch to select which of the four patterns igpthy.

Write a program to set up Port B as an eight hiipatuport (be sure to disable the seven-segmeplagis,
and to enable the individual LEDS), and to implet{@ra binary up counter, (ii) a Gray code coun(en
a Johnson counter, and (iv) a Ford Thunderbirastyin signal based on the state of the DIP switche
Insert a 100 ms delay between updates of the disphite the delay as a subroutine. Be sureit@lize
the stack pointer in you program.

(Note: you will be referring to a number of MC9SEgjisters in this and future programs. It iséediand
error-prone to look up and enter the addressdseofegisters each time you write a new progranerd is
a file on the EE 308 web page called “hcs12.inciclvthas a list of all registers and their addre$sethe
9S12DP256 version of the MC9S12 microcontrolldryou include that file in your program (by includj
the line#i ncl ude hcs12. i nc as the first line of your program), you can rdterll registers by name
rather than having to look up their addresses.)

(i) For the binary up counter, have the LEDs cdurt, 2, 3, 4, ...It should take 256 counts from the time
all LEDs are off until the next time all are off.

(ii) An eight-bit Gray code counter generates antavhere only one bit changes at a time. A simple
method to generate a Gray code count is to takextlesive OR of the binary count with the binaoyot
shifted right by one. (E.g., the numberyi8 01001111 To find the Gray code for this, take the XOR of
01001113 with 00100113, which gives 011010Q0 When you shift the binary count on the MC9S12,
use a logical shift rather than an arithmetic shiécause the MSB of the Gray code counter shaittido
same as the MSB of the binary counter.

(iii) A Johnson counter works as follows: To geaterthe next count from the present count, shift th
present count right by one bit. The most signiftdait of the next count will be the inverse of thast
significant bit of the present count. The starthogint for a Johnson counter is 00000000

EE 308 Lab Spring 2009

(iv) The TBird style turn signal looks like this:

00000000
O00@0000
00®ee0000
OC0®00000
0000000
00000000
O000@e000
(eJejele] I JeXe)
OO0OOCeeeO
(efejojox X X X J

The easiest way to implement the TBird style tugmal is to put the above pattern into a table anmary,
and cycle through the table.

Set up Port H as an input port, and use bits 10atiodcontrol which of the LED patterns are dispthgs
shown in Fig. 1. When you switch between functjahe new function should start up where it ended
when it was last activated, so set aside variableave the states of the various patterns. Inpmgram,
be sure to mask out the other bits of Port H sbahly PH1 and PHO are used to determine the atiter
display.

PH1 PHO Display
0 0 Binary Up Counter
0 1 Gray Code Counter
1 0 Johnson Counter
1 1 TBird Turn Signal

Figure 1. Port B inputs to control the Port A functions.

The Lab

Assemble your program, and run it on the MC9S1golf have difficulty getting your program to work,
start by trying to implement one function only -y stine binary counter. Once this works, start wogkbn
your next functions.

Verify that all the functions work correctly. lragicular, make sure that the Gray code countentsoboy
changing one bit only. You may have to slow thenter down, or put in a breakpoint, to verify this.

Set a break point at the first line of your delapr®utine after you save the registers used bgubeoutine
on the stack. When the breakpoint is reached, ctieckalue of the stack pointer, and the data en th
stack. Make sure you understand what these ma&hat(value is in the SP register? What data ithen
stack? What do the data on the stack represertike Bure you document this in your lab book.)

When you get your program to work, have your latirirctor or TA verify the program operation.

EE 308 Lab Spring 2009

The MC9S12 has EEPROM (Electrically Erasable Prognable Read Only Memory) functionality. If you
put your program into EEPROM the program will remtiere when you turn off power.

The EEPROM is located at addre€x40Q You can just change the origin statement of yamsembly
language program, then reassemble, and reloadpyogram. (Loading programs into EEPROM takes a
longer time than loading programs into RAM. DBW+ieeds to tell the ASMIDE to wait while it
programs some EEPROM bytes before ASMIDE sendadRieset of bytes to program. It uses a protocol
called Xon/Xoff to do this. Make sure ASMIDE ist £ to use Xon/Xoff. To do this, go to the
View/Options drop-down menu, click on “Set COM Raeders”, and make sure “Flow Control” is set to
Xon/Xoff.) Use the MD command to verify that yquiogram was correctly loaded into EEPROM. Type
“G 400 to run your program out of EEPROM. It should wahe same as it did when you ran it out of
RAM . (Try it.) You can power cycle your board, andrtigpe ‘G 400", and again your program will run
correctly. (Try it. The TBird pattern may not wac@rrectly. The reason for this and the solut®n i
discussed below.)

For some applications it would be nice if you could your program without having to typ& ‘400" — if
your board is controlling a robot, and no compigeronnected to it, it would be impossible to staet
program by typing G 400'. DBug12 has a special mode to allow you to rypr@gram out of EEPROM
without having to typeG 400'. If you set the two switches on the LOAD DIP sstitto “Jump to
EEPROM” mode (Switch 2 on, Switch 1 off), and powsecle the board (or push the reset button), the
program will run immediately out of EEPROM. (Try)iYou will notice that the program runs much
slower — actually, six times slower than it did wheu ran it by typing G 400'". This is because DBug12
does some system initialization which is bypasskdmnyou run your program directly from EEPROM. In
particular, the Dragon12-Plus board has an 8 Midelgland the MC9S12 runs at half the clock freqyenc
or 4 MHz. The MC9S12 has a built in phases loclpl¢PLL) which allows the chip to generate a faster
clock internally, and run with a 24 MHz E-clockdigency. In order to get the chip to run at the éigh
frequency, you must do the initialization which bles the PLL. Here is some code which will do that
initialization (adapted from the Dragon12-Plus Refiee Manual):

: PLL code for 24MHz bus speed from an 8 crystal
: disable interrupts
.%10000000 : clear bit 7. clock derived from oscclk
L%01000000 : Turn PLL on. bit 6 = 1 PLL on. bit 6 = 0 PLL off

#505, : 5+1=6 multiplier
#6501, : divisor=1+1=2_ 8#2x6 /2 = 48MHz PLL freq.
: for 8 MHz crystal
wait_b3: . 200001000, : Mait until bit 3 = 1

210000000 : derive clock from PLL

Add the above code to your program, right after“tirg $400” line and before the first line of your
program. Load this new code inEEPROM. (Be sure tanove SW1 of the LOAD DIP switch downin
order to get back to the DBug12 monitor so youload new code into memory.) Nawove SW1 of the
LOAD DIP SWITCH to the up position, power cycle your board, and your program shouldat the
same speed it did when running out of RAM.

Another problem with running out of EEPROM is tdata which is loaded when you load your program is
not present when you start your program out of EBNMRafter a power cycle. For example, if the TBird
pattern is put into RAM, when you turn power ofétipattern is lost, and when you run turn powek!mac
and start running the program from EEPROM, an irexzirpattern is displayed. To fix this, put theléa

into the program section of memory rather thanddu@ section. In this way, the table is programméal
EEPROM as well your program. Now if you power eythe board, the table with the TBird patterniié st

EE 308 Lab Spring 2009

there. When you put a program into EEPROM, omlgrables which change should be put into the data
section. Also, you need to initialize these vadgabn the program rather than usingda ' b” directive.

Note: The documentéadme_EEPROM.pdf’ which came on the DRAGON12-Plus CD says that you
need to convert your S1 code (in the S19 file)2ac&de to successfully load a program into EEPROM.
This is because thdC9S12 EEPROM must be programmed with an even number of bytebnaust be
programmed starting at an even address. Howewand had no problem loading a program which starts
on an odd address or has an odd number of bytieigki that, when DBug12 sees that a user wantsad |

a program which starts on an odd address or cangairodd number of bytes, into EEPROM, it
automatically adds the bytes needed to make ttgrgmostart on an even address or to contain an even
number of bytes. If you have trouble getting an RBW® program to load correctly, you should try
converting your S1 code to S2 code as discussttifrfeadme_EEPROM.pdf’ document.

