
EE 308 Lab Spring 2009
__

EE 308 – LAB 2

ASSEMBLY LANGUAGE PROGRAMMING AND 9S12 PORTS

In this sequence of three labs, you will learn how to write simple assembly language programs for the
MC9S12 microcontroller, and how to use general purpose I/O (input/output) ports.

Week 1

Introduction and Objectives

This laboratory will give you more experience with the tools we will use this semester ― the
Dragon12 Plus evaluation board (EVB), the DBug12 monitor, the as12 assembler and the AsmIDE. Be sure
to read through the entire lab and do the prelab for each section before coming to lab

1. Consider the program in Figure 1:

Figure 1. Demo program for Part 1 of Lab 2.

PreLab

• Hand assemble this program, i.e., determine the opcodes the MC9S12 will use to execute this program.

• How many cycles will this take on the MC9S12? (Do not consider the swi instruction.)

• How long in time will this take? (Note: the MC9S12 executes 24 million cycles per second.)

• What will be the state of the N, Z, V and C bits after each instruction has been executed? (Ignore the
swi instruction.)

• What will be in address 0x1000 and 0x1001 after the program executed?

a) Assemble the program using as12. Look at the lst and s19 files. You should be able to relate the opcodes
from the prelab to the data in the s19 file. Verify that they agree.

EE 308 Lab Spring 2009
__

b) Load the program onto your Dragon12 Plus board. Trace through the program. Verify that the Z, N, V
and C bits are what you expect after each instruction.

c) Look at the contents of addresses 0x2000 and 0x2002. Do the values agree with your answers from the
prelab?

d) You could change this program to add rather than subtract by changing the sba instruction to an aba
instruction. Modify the program, assemble it and load the new program into the MC9S12.

a. Find the address for the sba instruction. (You can find this from the .lst file or by using the
asm command in DBug-12.)

 b. In the MC9S12 Core Users Guide, find the op code for the aba instruction.

 c. Go to the address of the sba instruction, and change the op code to that of the aba instruction.

 d. Run the program again, and verify that the program now adds rather than subtracts.

2. Consider the program in Figure 2, which is moves data from one table into another.

Figure 2. Demo program for part 2 of lab 2

EE 308 Lab Spring 2009
__

a) Use the text editor to enter this program, and assemble it into an s19 file.

b) How many cycles will it take to execute the program take on the MC9S12?

c) How long will it take to execute the program?

d) Load the program into your MC9S12. Use MD to verify that the data is in the table at address 0x1000.
Run the program, and verify that the table has been copied into table_2.

d) Use the Block Fill option of DBug-12 to change the values in addresses 0x1000 through 0x1FFF to 0xff.
Reload the s19 file.

e) Set a breakpoint at the label repeat. (Look at the .lst file to find the address of the label.)

f) Execute the program again. The program should stop the first time it reaches the repeat label, with
0x10 in ACCB, and 0x1000 in X.

g) Continue running the program. It should stop each time it gets to the repeat label, B should be
decremented by one, X should be incremented by one, and there should be a new entry in table2. Use the
RD and MD commands of DBug-12 to verify this.

3. Consider the code fragment of Figure 3. Do parts (a) and (b) below before coming to lab

Figure 3. Demo program for part 3 of lab 2.

Question to answer before lab:

a) How many cycles will this program take on the MC9S12? (Again, ignore the swi instruction.)

b) How long will it take to execute this program?

c) Use a text editor to enter the code into a program – you will have to add org statements and other
 assembler directives to make the program work.

 d) Assemble the program and run it on the HC12. How long does it take to run?
 This time should match your answer to part (b)

EE 308 Lab Spring 2009
__

WEEK 2

Introduction and Objectives

The purpose of this laboratory is to write a few assembly language programs and test them on your
MC9S12. You will learn how to create delays with software loops, and how to do simple I/O.

PreLab

Make sure you have the programs written and clearly thought out before you come to the lab. You should
put all your code starting at memory location 0x2000. You are encouraged to bring the programs in on a
flash drive.

The Lab

The Dragon12 Plus has several ways to display data. It has an LCD display, four seven-segment LED
displays, and eight individual LEDs. Programming the LCD display is rather complicated, and will not be
discussed at this time. The easiest display to start with is the individual LEDs. You will write some
programs to display patterns on the LEDs.

You can display patterns on the LEDs by writing to the I/O port at address 0x0001 (called PORTB).
Because of the way the LEDs are connected, it is necessary to do some other setup of I/O ports as well.
The first five instructions in the program below set up the MC9S12 hardware so that you can write patterns
to the LEDs. (For now, we will give you the code you need to set up the I/O system properly. In later
labs, you will learn how to do the setup yourself.) The following program will flash the LEDs:

Figure 1. Demo program for week 2 of Lab 2.

EE 308 Lab Spring 2009
__

1) Complete the above program by adding the necessary addresses and: assembler directives. Assemble the
program.

a) Test your program on the MC9S12. Trace through the loop to see what is happening.
 Note: The program should cause the LEDs to flash on and off.

b) Run your program by typing “g 2000”. When you do this, the LEDs flash so quickly that it looks
like they are all lit. Add some code to create a 100 ms delay between the last two instructions of the
program. When you do this, you will be able to see the lights flash.

2) Write a program which will start with all the LEDs off, then increment the LEDs, implementing a binary
counter. Run your program to verify that it works. Make sure you use a delay so you can see the LEDs
incrementing.

3) Write a program to count the number of odd bytes in memory from address 0xff00 to 0xffff. Display
this number on the LEDs. (Note: You need to set up the hardware to display on the LEDs as in the
program of Figure 1.)

4) Write a program which puts the exclusive OR of the eight-bit numbers from memory locations 0x8000
through 0x8FFF and display the result on the LEDs. (This operation is often used to generate a check sum
to verify data transmission. The sending computer generates and transmits the check sum along with the
data. The receiving computer calculates the check sum for the received data and compares it with the check
sum sent by the sending computer. If the two values do not match, then there was an error in the
transmission.)

EE 308 Lab Spring 2009
__

WEEK 3

Introduction and Objectives

In this week’s lab you will write an assembly language program to display various patterns on the eight
individual LEDs on your Dragon12-Plus board. The displayed pattern will be based on the state of two bits
of the onboard DIP switch. You will also start using subroutines, and investigate the stack and stack
pointer, and learn how to load your program into EEPROM so the program will remain on your board after
a power cycle.

PreLab

The program for this lab will display four different patterns on the LED display connected to Port B. You
will use the state of bits 1 and 0 of the onboard DIP switch to select which of the four patterns to display.

Write a program to set up Port B as an eight bit output port (be sure to disable the seven-segment displays,
and to enable the individual LEDS), and to implement (i) a binary up counter, (ii) a Gray code counter, (iii)
a Johnson counter, and (iv) a Ford Thunderbird style turn signal based on the state of the DIP switches.
Insert a 100 ms delay between updates of the display. Write the delay as a subroutine. Be sure to initialize
the stack pointer in you program.

(Note: you will be referring to a number of MC9S12 registers in this and future programs. It is tedious and
error-prone to look up and enter the addresses of the registers each time you write a new program. There is
a file on the EE 308 web page called “hcs12.inc” which has a list of all registers and their addresses for the
9S12DP256 version of the MC9S12 microcontroller. If you include that file in your program (by including
the line #include hcs12.inc as the first line of your program), you can refer to all registers by name
rather than having to look up their addresses.)

(i) For the binary up counter, have the LEDs count 0, 1, 2, 3, 4, …. It should take 256 counts from the time
all LEDs are off until the next time all are off.

(ii) An eight-bit Gray code counter generates a count where only one bit changes at a time. A simple
method to generate a Gray code count is to take the exclusive OR of the binary count with the binary count
shifted right by one. (E.g., the number 7910 is 010011112. To find the Gray code for this, take the XOR of
010011112 with 001001112, which gives 011010002.) When you shift the binary count on the MC9S12,
use a logical shift rather than an arithmetic shift, because the MSB of the Gray code counter should be the
same as the MSB of the binary counter.

(iii) A Johnson counter works as follows: To generate the next count from the present count, shift the
present count right by one bit. The most significant bit of the next count will be the inverse of the least
significant bit of the present count. The starting count for a Johnson counter is 000000002

EE 308 Lab Spring 2009
__

(iv) The TBird style turn signal looks like this:

 ○○○○○○○○
 ○○○●○○○○
 ○○●●○○○○
 ○●●●○○○○
 ●●●●○○○○
 ○○○○○○○○
 ○○○○●○○○
 ○○○○●●○○
 ○○○○●●●○
 ○○○○●●●●

The easiest way to implement the TBird style turn signal is to put the above pattern into a table in memory,
and cycle through the table.

Set up Port H as an input port, and use bits 1 and 0 to control which of the LED patterns are displayed as
shown in Fig. 1. When you switch between functions, the new function should start up where it ended
when it was last activated, so set aside variables to save the states of the various patterns. In your program,
be sure to mask out the other bits of Port H so that only PH1 and PH0 are used to determine the pattern to
display.

PH1 PH0 Display
0 0 Binary Up Counter
0 1 Gray Code Counter
1 0 Johnson Counter
1 1 TBird Turn Signal

Figure 1. Port B inputs to control the Port A functions.

The Lab

Assemble your program, and run it on the MC9S12. If you have difficulty getting your program to work,
start by trying to implement one function only – say, the binary counter. Once this works, start working on
your next functions.

Verify that all the functions work correctly. In particular, make sure that the Gray code counter counts by
changing one bit only. You may have to slow the counter down, or put in a breakpoint, to verify this.

Set a break point at the first line of your delay subroutine after you save the registers used by the subroutine
on the stack. When the breakpoint is reached, check the value of the stack pointer, and the data on the
stack. Make sure you understand what these mean. (What value is in the SP register? What data is on the
stack? What do the data on the stack represent? Make sure you document this in your lab book.)

When you get your program to work, have your lab instructor or TA verify the program operation.

EE 308 Lab Spring 2009
__

The MC9S12 has EEPROM (Electrically Erasable Programmable Read Only Memory) functionality. If you
put your program into EEPROM the program will remain there when you turn off power.

The EEPROM is located at address 0x400. You can just change the origin statement of your assembly
language program, then reassemble, and reload your program. (Loading programs into EEPROM takes a
longer time than loading programs into RAM. DBug-12 needs to tell the ASMIDE to wait while it
programs some EEPROM bytes before ASMIDE sends the next set of bytes to program. It uses a protocol
called Xon/Xoff to do this. Make sure ASMIDE is set up to use Xon/Xoff. To do this, go to the
View/Options drop-down menu, click on “Set COM Parameters”, and make sure “Flow Control” is set to
Xon/Xoff.) Use the MD command to verify that your program was correctly loaded into EEPROM. Type
“G 400” to run your program out of EEPROM. It should work the same as it did when you ran it out of
RAM . (Try it.) You can power cycle your board, and then type “G 400”, and again your program will run
correctly. (Try it. The TBird pattern may not work correctly. The reason for this and the solution is
discussed below.)

For some applications it would be nice if you could run your program without having to type “G 400” – if
your board is controlling a robot, and no computer is connected to it, it would be impossible to start the
program by typing “G 400”. DBug12 has a special mode to allow you to run a program out of EEPROM
without having to type “G 400”. If you set the two switches on the LOAD DIP switch to “Jump to
EEPROM” mode (Switch 2 on, Switch 1 off), and power cycle the board (or push the reset button), the
program will run immediately out of EEPROM. (Try it.) You will notice that the program runs much
slower – actually, six times slower than it did when you ran it by typing “G 400”. This is because DBug12
does some system initialization which is bypassed when you run your program directly from EEPROM. In
particular, the Dragon12-Plus board has an 8 MHz clock, and the MC9S12 runs at half the clock frequency,
or 4 MHz. The MC9S12 has a built in phases lock loop (PLL) which allows the chip to generate a faster
clock internally, and run with a 24 MHz E-clock frequency. In order to get the chip to run at the higher
frequency, you must do the initialization which enables the PLL. Here is some code which will do that
initialization (adapted from the Dragon12-Plus Reference Manual):

Add the above code to your program, right after the “org $400” line and before the first line of your
program. Load this new code into EEPROM. (Be sure to move SW1 of the LOAD DIP switch down in
order to get back to the DBug12 monitor so you can load new code into memory.) Now move SW1 of the
LOAD DIP SWITCH to the up position , power cycle your board, and your program should run at the
same speed it did when running out of RAM.

Another problem with running out of EEPROM is that data which is loaded when you load your program is
not present when you start your program out of EEPROM after a power cycle. For example, if the TBird
pattern is put into RAM, when you turn power off that pattern is lost, and when you run turn power back on
and start running the program from EEPROM, an incorrect pattern is displayed. To fix this, put the table
into the program section of memory rather than the data section. In this way, the table is programmed into
EEPROM as well your program. Now if you power cycle the board, the table with the TBird pattern is still

EE 308 Lab Spring 2009
__

there. When you put a program into EEPROM, only variables which change should be put into the data
section. Also, you need to initialize these variables in the program rather than using a “dc.b” directive.

Note: The document “readme_EEPROM.pdf” which came on the DRAGON12-Plus CD says that you
need to convert your S1 code (in the S19 file) to S2 code to successfully load a program into EEPROM.
This is because the MC9S12 EEPROM must be programmed with an even number of bytes, and must be
programmed starting at an even address. However, I have had no problem loading a program which starts
on an odd address or has an odd number of bytes. I think that, when DBug12 sees that a user wants to load
a program which starts on an odd address or contains an odd number of bytes, into EEPROM, it
automatically adds the bytes needed to make the program start on an even address or to contain an even
number of bytes. If you have trouble getting an EEPROM program to load correctly, you should try
converting your S1 code to S2 code as discussed in the “readme_EEPROM.pdf” document.

