EE 308 Lab Spring 2009

C Language Programming, Interruptsand Timer Hardware

In this sequence of three labs, you will learn howvrite simple C language programs for the MC9S12
microcontroller, and how to use interrupts and tene

WEEK 1
Introduction and Objectives
The C programming language is used extensivelyogramming microprocessors. In this lab you will

write some simple C programs which do the things ¢ial in assembly language in Lab 2. For example,
the following C program displays a counting pattenrthe LEDs connected to Port B:

/% A C program to display an incrementing pattern on ®
Dragonl2 Plus LEDs %/
#include "hcs12.h" /% get MCO512DP256 port defs */
#define D_1MS (24000/3) /% Inner loop is 13 cycles %/

/% 24,000 cycles is 1 ms ®/

/# for 24 MHz clock ®/
#define TRUE 1 /% A standard C define =/

void delay{unsigned int ms);

int main()

i
DDRP = DDRP | 0OxOF ; /% Make 4 LSB of Port P outputs =/
PTP = PTP | 0x0OF: /# Turn off seven—seg LEDs %/
DDRJ = DDRJ | 0x02; /% Make Bit 1 of Port J output =/
PTJ = PTJ & "0x02; /% Enable individual LEDs ®/
DDRB = 0OxFF: /% Activate LED control lines =/
while (TRUE) { /% Loop forever %/
PORTB = PORTB + 1; /% Increment Port B ®/
delay (100} ; /# Hait a bit %/
}
}
/% Function to delay ms milliseconds %/
void delay (unsigned int ms)
i
volatile unsigned int i; /# Need volatile so compiler =/
/% does not optimize %/
while (ms > 0) {
i = D_1MS:
while (i > 0) {
i=1i-1:
}
ms = ms — 1:
}
}

Figure 1. A C program to increment LEDs connected to Port B.

EE 308 Lab Spring 2009

PreLab
For the prelab write the program for Part 4 of thls
ThelLab

1. The procedure for compiling a program using@mei C compiler and the EGNU IDE is discussed in
detail in Section 5.10 of the text. Start the EGNDE, and select File, then New source file. Typé¢hia
above C program, then select File, then Save an#rd give it the nanienc. c, and save it in your EE
308 directory. Select File, then New project, dive project an appropriate name (such as

Lab3_Part 1. prj), and save it in your EE 308 directory. (Note: Tneject name must be different than
the C program base name. If the C program naineds c, the project name cannot be inc.prj.) When
Project options pops up, click on the down arrovelWeHardware Profiles, and seldatagon12. Click on
Edit Profile, and make sure the addresses andhsmgtthe memory locations are reasonable. Make sur
i nc. c is part of your project. Also, make sure the fitess12. h is in your directory. Compile and link
your project by selecting Build, then Make. You sldonow have a file*. s19” and a *. dnp”. The

“* 519" can be run on the MC9S12.

2. TheLab3_ Part 1. dnp contains the assembly language listing generateédebC compiler. Look at
the file and try to understand what it does. Nbt there may be some things which do not makeestens
you. At the very least, find the assembly langueae which increments Port B.

3. The fileLab3_Part 1. dnp also shows the addresses of the start of theifungcin the program, as
well as the addresses of any global variablescéStiihei nc. ¢ program does not use any global variables,
none will appear in theab3_Part 1. dnp file. The local variables usedimc. c are allocated on the
stack when they are needed.)

Note that the function and variable names are t@enoy the symbot_var nane>.

Note also that there is a functignexi t >. Find the address of this function.
Look at the fileLab3 _Part 1. s19. This contains the op codes that will be loadéd ihe HC12. Reverse
assemble the_exi t > function. What does it do? Load the file inc.sti®iyour MC9S12 and run it.
Verify that the LEDs increments.

4. Using the programnc. ¢ as a model, write a C program to implement thgy@m from Lab 2, week 3.
Compile and run your program. Have an instructeifyé¢hat it works.

5. Look at the output of the GNU IDE and deterntiogv many bytes the program takes (the length of the
.text segment). Compare this to the length ofugstk’s program written in assembly.

6. Put your program in the EEPROM at address OxOR@thember, when you put code into EEPROM you
need to do some setup which DBug12 normally doegda. You need to convert the assembly-language
code (which multiplies the clock by 6) from Labra C code, and add it as the first lines of yoagpam.
There is no C statement to implement the assemaligtlage instructiors®®i ”. You can use the asm()
function to insert this (or any other assembly lzage instruction) into you program:

asm“ sei;");
You will want the array which stores the turn sigpatterns into the EEPROM (so the array will not

disappear when you turn off power). You will waariables which will change as the program is exegtut
to be placed in RAM. You can tell the compiler t&t ponstant data (such as an array of patterne to b

EE 308 Lab Spring 2009

display on LEDs) immediately following the code tse data will be loaded into EEPROM) by defining
the data as type const. An example of setting ugraay of type const is:

const char table[] = {0xaa,0xbb, 0xcc};

Finally you need to tell the compiler to put thegmram into EEPROM. You can do this in one of two
ways. In the directory with your project there slddoe a file callednemory.x. You can edit memory.x to
look like this:

OUTPUT_FORMAT("elf32-m68hc12", "elf32-m68hc12","elf32-m68hc12")
OUTPUT_ARCH(m68hc12)
ENTRY/(_start)
SEARCH_DIR(C:\usn\lib\gcc-lib\m6811-elf\3.3.5-m68hc1x-20050515\m68hc12\mshort)
MEMORY
{

ioports (!x) : org = 0x0000, | = 0x400

eeprom (li) : org = 0x0f00, | = 0x0100

data (rwx) : org = 0x1000, | = 0x1000

text (rx) : org = 0x0400, | = 0x0Ob00

}
PROVIDE (_stack = 0x3c00);

This will tell the compiler to put text at addré®bs100, which is in the EEPROM. Compile your program
load it into the 9512, and verify that it runs eatty out of EEPROM.

Another way to do this is to go to the Options mesalect Project Options, and make sure the Hawar
Profile is set to Dragon12. Then select Edit Peofind set eeprom to start at fO0 with length $80text

to start at 400 with length b0O, set data to sta#t000 with length 2c00, and set the stack to 3CU6k

OK to accept these settings. Then go to Build @helcs Createrenor y. x. (Note: you will have to change
menory. x back to its old values when you want to reloadyprms into RAM.)

EE 308 Lab Spring 2009

USING THE MC9S12 TIMER OVERFLOW INTERRUPT AND REAL
TIME INTERRUPT

WEEK 2
Introduction and Objectives

Enabling an interrupt on the MC9S12 allows yourgpam to respond to an external event without
continually checking to see if that event has oamlirOnce the event occurs, the MC9S12 interrupt
subsystem will transfer control of your progranatointerrupt service routine (ISR) to handle thergy
and then return control to your original code semee In this week’s lab you will write assembly abd
language program which enable and use interrupts.
The interrupts on the MC9S12 which are easiesséoane the Timer Overflow Interrupt and the Realdi
Interrupt. These interrupts allow you to interrth microcontroller after a specified amount ofdihas
passed.

PreLab
For the prelab, write the programs for Sectionsd g. Also, calculate the time asked for in Part e.

ThelLab

a. Connect your MC9S12 to your computer. At the BBA prompt, display the contents of the TCNT
register. Do this several times. How do the vakesapare?

b. Use DBugl12 to modify the TSCRL1 register to emalé counter. Repeat Part 1.
c. Use DBug12 to modify the TSCR1 register to disdbe counter. Repeat Part 1.

d. Start with the following do nothing program:

N .inc”
prog: $2000
stack: $2000
: Need stack when using interrupts
loop:

Add code to make PORTB an output port, to enaldestght individual LEDs, and disable the seven-
segment LEDs. Then add a Timer Overflow Intertoghcrement the four lower bits for PORTB. Set the
timer overflow rate to be 175 ms. You should imecest the four lower bits of PORTB in the interrupt
service routine, and leave the four upper bits@RFB unchanged. Verify that the lower four bits of
PORTB function as an up-counter.

EE 308 Lab Spring 2009

Note: To use interrupts in an assembly languaggrpro you will need to include the file hcs12.indyigh
contains the addresses of the interrupt vectorse lHea part of the hcs12.inc file showing the addrof
the Timer Overflow interrupt vector:

User Timer Ovf equ $3E5E

Suppose you want to use the Timer Overflow intdriiyour program. You would need to write a Timer
Overflow ISR, with a label (say, tof_isr) at thesfiinstruction of the ISR. To set the Timer Overfl
interrupt vector in your program, you would inclutie following instruction in your program, befdahe
instruction which enables interrupts:

movw #tof _isr,User Timer Ovf

e. Calculate how long it should take for the lobiés of PTH to count from Ox0 to OxF and roll over
0x0. Use a watch to measure the time. How do tloetitwes agree?

f. Add a Real Time Interrupt to your assembly laanggi program. Set up the RTI to generate an interrup
every 65.536 ms. In the RTI interrupt service nogitiimplement a rotating bit on the four upper bfts
PTH, while leaving the four lower bits of PTH unclgad. Verify that the bit takes the correct amanfnt
time to rotate through the four upper bits.

A rotating bit will look like this:

@000
Oe00
ooeo
oooe

g. Implement the above program in C. (What you rteatb to use interrupts in C is discussed in the
textbook and lecture notes, and described briaffgaction k below.)

h. Change your C program so that you do not réseTimer Overflow Flag in the Timer Overflow ISR.
Does your up-counter work? Does your rotating latk? Why?

i. Restore your original C program from Part g. Navange your C program so that you do not reset the
Real Time Interrupt Flag in the Real Time InterrlR. Does your up-counter work?
Does your rotating bit work? Why?

j- Restore your original C program from Part g. @d@your C program so that you do not set the addre
for the Timer Overflow Interrupt. Run your prograwlhat happens now? Why?

k. To add interrupt vector in C you will need afiisting the addresses of the interrupt servicgimes.
Note that the different versions of the HCS12 hdi¥ferent interrupt vectors, and hence use differen
vector files. The file vectors12.c (available oa tHE 308 homepage) has the appropriate vectothdor
MC9S12DP256 chip. Here is part of vectors12.h:

#define VECTOR_BASE 0x3E00
#define INTERRUPT __ attribute__ ((interrupt))
#define _VEC16(off) *(volatile unsigned short *)(VECTOR_BASE + off*2)

EE 308 Lab Spring 2009

#define UserTimerOvf _VEC16(47)
#define UserRTI _VEC16(56)

This tells the compiler that, for example, UserTii@wef is a pointer to a short (16bit) number at addr
OX3ESE (0X3E00 + 2*47).

To compile your program with interrupts, include trectors12.h file in your program. Then, before
enabling interrupts, set the interrupt vectorstfimse interrupts you are using. For example, if g
using the Timer Overflow Interrupt, and the naméhef Timer Overflow ISR is toi_isr(), put the folling
line in your program:

User Timer Ovf = (unsigned short *)&toi_isr;

EE 308 Lab Spring 2009

HCS12 TIMER INPUT CAPTURE AND OUTPUT COM PARE

WEEK 3
Introduction and Objectives

Last week you wrote programs using the MC9S12 Tigwzrflow Interrupt and Real Time Interrupt.

This week you will work with the timer Input Capéuand Timer Output Compare functions. You will use
two Output Compare functions to generate two pasten Port T pins, and you will use the Input Ceptu
function to determine the time of an edge on omeopiPort T.

1. Start with the following program, which is justio-nothing infinite loop:

#include "hecsl2.h"
#include "DBugl2.h"
#include "wvectorsl2.h"
#define TRUE 1

main()
{
DDRE = 0Oxff; /* make all bits of PORTA output */
PORTR = 0x00;
while (TRUE)
{

asm(" wai"™);

}

2. Add to your program a global variable callead ue. Add the following Real Time Interrupt ISR, and
add code to the main part of the program to geaexraéal time interrupt every 2 ms. In your maop,
setval ue to a known value (e.g., 0x1234), and verify théd is correctly displayed on the seven segment
LEDs.

void INTERRUPT RTI_isr(void)
{
static unsigned char digit=0:
const char c2seven_segl] = { 0x3F. 0x06. 0x5B. Ox4F. 0x66. 0x6D.
0x7D. 0x07, Ox7F. Ox6F, O0x77. OxJc.
0x58. Oxbe. 0x79. Ox71}:
switch (digit) {
case 0: PTP = OxOE:
PORTB = c2seven_segl (value>>12)&0x0F1;
break:
case 1: PTP = 0x0D:
PORTB = c2seven_segl (value>>8)&0x0F1;
break:
case 2: PTP = 0x0B:
PORTB = c2seven_segl (value>>4)&0x0F1;
break:
case 3: PTP = 0x07:
PORTB = c2seven_segl (value)&0x0F1;
break:
¥
if (++digit >= 4) digit = 0:
CRGFLG = BIT7:

EE 308 Lab Spring 2009

3. In order to measure the time of an edge fromvitcks, you must use a debounced switch. Build a
debounced switch on the small protoboard on thg@ra2 Plus. Connect your debounced switch to input
Capture 2 (PORTT, Bit 2), as shown below:

)L

Q «~ Tr >

Figure 1. Circuit to measure speed of button pushing

The right part of Figure 1 is what the signal t@ Igill look like if you push the pushbutton twice.

4. Add to your program code to measure the numbtmer ticks TR between the two falling edgesuf t
signal in Figure 1. Set the prescaler so you unguthisly measure time difference of at least 250 ms.

Use theprintf() function to print out the result — the numberiofdr ticks between pushes of the button.
(Do not try to calculate the actual time as a fl@apoint number.)

You should write your program as an infinite loaptlat after pressing the button twice your progreith
print out the result, then go wait for the next tpasses.

5. Test your program on your EVBU. See how fast gan push the switch twice. Record several valoes i
your lab notebook, and convert the times to seconds

6. Add an Output Compare function on Bit 3 of POR®Qenerate a 1 kHz square wave. Use a logic probe
to verify that Bit 3 of PORTT is toggling.

— jpoops P

HUUUl |

Repeat

Figure 2. Signal for Part 6.

EE 308 Lab Spring 2009

7. Add an Output Compare function on Bit 4 of POR® Qenerate the following signal: The signal
consists of five pulses which are high for 3&0and low for 10Qs, followed by a 100Qis low signal.
This signal then repeats.

8. Connect your output compare signal to a logalyaer. Verify that the square wave has a 1 kHz
frequency and a 50% duty cycle, and that the atiwgral looks like the signal of Figure 2.

